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Abstract

A class of totally disconnected groups consisting of partial direct products on an index set is examined.
For such a group, the scale function is found, and for automorphisms arising from permutations of the
index set, the tidy subgroups are characterised. When applied to the case where the index set is a finitely-
generated free group and the permutation is translation by an element* of the group, the scale depends on
the cyclically reduced form of x and the tidy subgroup on the element which conjugates x to its cyclically
reduced form.

2000 Mathematics subject classification: primary 22D05.

0. Introduction and notation

It was shown by van Dantzig in 1931 that each totally disconnected locally compact
group has a base of neighbourhoods of the identity consisting of compact open sub-
groups, [13]. He also gave an example of a totally disconnected locally compact group
which fails to have a normal compact open subgroup. This example is the semidirect
product Gx«Z, where

n
and the automorphism a is the translation defined by a(g)(k) = g(k + 1). The
subgroups GN = {g : g(k) = 0 for k < N] form a base of neighbourhoods of the
identity for a topology on G, in which each G\ is compact and open, and G xia Z is
equipped with the product topology.
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274 A. Kepert and G. Willis [2]

Results in the paper [15] imply that van Dantzig's example is in fact typical of the
way in which a totally disconnected locally compact group may fail to have a normal
compact open subgroup. It was shown that, if G is any totally disconnected locally
compact group and x is an element of G, then there is a compact open subgroup U
of G such that:

Tl. U= U+U-, where U± = f)n>0
x±" Ux*"'- a n d

T2. U++ = \Jn>ox" U+x~" and t/__ = Un>o x~" u-x" ^ closed subgroups of G.

A subgroup satisfying T1 and T2 is said to be tidy for x. Note that if JC Ux ~' = U, then
U is tidy for* and U+, £/_, U++ and U equal U. Conversely, if U = U+ — [/_,
then* normalises U. x

It was further shown in [15] that the index s(x) = [x U+x~l : U+] is independent
of the choice of subgroup tidy for x and defines a continuous function s : G ->• Z+

such that
SI. s(x) = 1 = s(x~x) if and only if there is a compact open subgroup U of G

wiihxUx'1 = U.

Regarding a as an element of G xo Z in the van Dantzig example, U+ = Go is tidy
fora, U++ = G, £/_ = {e}, s(a) = 2 and s(a~l) = 1.

The function 5 is called the scale function of G. In the case when x is not periodic,
(x, U+) is closed and is isomorphic to U++ xa 2, where a is the automorphism of
U++ defined by a(u) — xux~l, (u 6 U++). Thus any element x of G which fails to
normalise any compact open subgroup of G belongs to a closed subgroup U++ xa Z
(or U xa Z) which has the same form as van Dantzig's example.

These results do not completely answer the question of when totally disconnected
locally compact groups have normal compact open subgroups. It can happen that each
element of a group G normalises some compact open subgroup, but that G has no
normal compact open subgroup. The scale function of a group in which each element
normalises some compact open subgroup is identically 1 and so, following [10], we
shall call such a group uniscalar. Examples of uniscalar groups having no normal
compact open subgroup are given in [16] and [6, Section 6]. (Note that the main
theorem in [16] was proved earlier in [7].) However in all known examples G is not
compactly generated and it is an important question in the structure theory of totally
disconnected locally compact groups to decide whether there are compactly generated
uniscalar groups which have no normal compact open subgroups. A partial answer is
given in [6] where it is shown that each compactly generated, uniscalar, rank 1 p-adic
Lie group does have a compact open normal subgroup. This question is a special case
of the problem of how the local, or element by element, structure described by the
tidy subgroups of G may be assembled to give a global description of G.

The present paper generalises van Dantzig's construction with the aim of using the
groups found to help to answer some of these global structure questions.
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1. The extension of van Dantzig's construction and preliminary remarks

For the extension of van Dantzig's construction we consider groups of the form
G x A, where A is a discrete group and G is a restricted product, indexed by a set X,
of copies of a finite group K. The restricted product is defined as follows. We suppose
X to be partitioned into subsets P and 5 and define

S.P X S P

The topology on G is defined to be the product of the discrete topology on £^5 K and
the product topology on \\p K. For Y QX, define G m = {/ € G : / = e off Y}\
then G[Y) is compact if and only if Y \ P is finite and G[Y} is open if and only if P \ Y
is finite. As Y ranges over all sets of finite difference with P, the sets G[n form a
base for the topology at e e G. In a situation where the roles of the sets P and 5 are
reversed, we will use the symbol [^ in place of -f].

The action of A by automorphisms of G is induced by an action of A on X. For each
bijection a : X -> X and / e G, define a(f) by a(f )(x) = f (a'^x)). It follows
from the description of the topology of G above that a (f) e G and «" ' ( / ) 6 G if and
only if the symmetric difference P Aa(P) is finite and in this case the map/ t-> a ( / )
is a continuous automorphism of G. Hence, given an action of A on X such that
P A a(P) is finite for every a in A, there is an induced action of A by automorphisms
of G. The semidirect product G x A is defined to be the set G x A equipped with
the product topology and the multiplication (g\,a{)(g2,cti) = (giaifa),^^). It
is a totally disconnected locally compact group. The identity element in G will be
denoted by e and that in A by i. The identity in G x A then is {e, i).

This construction is our extension of van Dantzig's example. The original example
may be retrieved by taking X = Z = A, P = Z+ and a(n) : k i-> k — n, (n €
A, it e X) in our construction. Note that: if S is finite, then f\x K is isomorphic to
the compact group \\x K and; if P is finite, then -f]x ^ is isomorphic to the discrete
group ^2X K. In these cases we do not get any new types of totally disconnected
groups and so we will usually consider cases in which both P and S are infinite.

The aim now is to analyse the examples G xi A:
• to identify tidy subgroups for elements x in these groups;
• to describe the scale function for these groups; and
• investigate how the tidy subgroups depend on x.

PROPOSITION 1.1. Let Y be a subset ofX such that YAP is finite and let (g, a)

belong to G x A. Then G[Y] is tidy for (g, a) if and only if it is tidy for (e, a). There

may be subgroups tidy for (e, a) which are not tidy for (g, a).

PROOF. It is immediate from the definitions that for any g e G, (g, a)G[Y](g, a) - i
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= G[a(Y)]- Taking x = (g, a) and U = G[Y], it follows that U+, £/_, U++ and U are
independent of g. Hence G m satisfies Tl and T2 with x = (g,a) if and only if Tl
and T2 are satisfied with x = (e, a).

Every subgroup is tidy for the identity (e, i). We give an example of a compact
open subgroup which is not tidy for (g, i). For the example, let X be a single point,
A be trivial and K = 53 be the group of permutations of {1, 2, 3}. Let H = {e, (12)}
and g = (123). Then gHg~l D H = {e} and it follows that H x {i} is not tidy for
(g, t). Although this example is discrete, even finite, it can be used as the basis of
nondiscrete examples. •

If the finite group K happens to be abelian, then any^ubgroup U C G x {i} is tidy
for (g, a) if and only if it is tidy for (e, a). We shall see that (g, a) always has tidy
subgroups of the form G\Y\, from which follows the

COROLLARY 1.2. For each (g, a) in G xi A we have s((g, a)) = s((e, a)).

Proposition 1.1 shows that in order to identify some tidy subgroups for arbitrary
elements of G x A it suffices to identify tidy subgroups of the form G m for the
elements (e, a). We may work inside G for this and consequently may simplify
notation as follows: the compact open subgroup U C G will be said to be tidy fora if
U x [i] is tidy for (e, a). Observe that the criteria for U to be tidy for x are stated in
terms of the inner automorphism g i-> xgx~l (g e G) and so U will be tidy for a if
and only if U satisfies Tl and T2 with U± = f|B>0 ot±n(U), U++ = (Jn>0

 a" (u+) a n d

U = (Jn>oa~" ((/_). Similarly, the scale of the automorphism a will be the scale
of (e, a), which is s(a) = [a(U+) : U+].

The identification of tidy subgroups for individual elements will be seen to reduce
to van Dantzig's example and so we begin with a complete description of this case. It
is necessary only to identify the subgroups tidy for the single automorphism a induced
by the translation k i-> k — 1 of Z.

PROPOSITION 1.3. Suppose U is a compact open subgroup o / f ] z K. Then U is a
tidy subgroup for a if and only if

U =

where m,n€l,n>m and Uo c K""" is such that {e} x Uo c f/0 x K.

PROOF. Since U is compact and open, there exist m, n such that Ylj>n K £ ^ ^

IX>m K. Put Vo = f/fl n ; : l K Q ^n~m- Note that
K)=n n *=«>•

Jt>0 v>m k>0j>m+k
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If U is tidy, then U = U+U_ = U+ = C\kiOak(U), and so U c «(£/)• Conse-
quently {e} x f/0 c [ / o x l Conversely, if {<?} x Uo c f/0 x AT then or([/) 2 #, so
£/+ = U. Moreover, ak(U+) 2 Uj>n-k K s o U*>o «*(#+) = flz * . w h i c h i s c l o s e d '
as is |Jt>occ~k(U-) = {*>}. Hence C/ is tidy. •

There are several ways in which such a subgroup Uo c £•"-"< may arise.

(a) If m = n then U = Uj>n K = G[[«.«»].
(b) If {AT,}Z is an increasing sequence of subgroups of K varying from {e} to K,

then Y\z Ki is a tidy subgroup for a.
(c) If <p : K -> K is a group homomorphism such that >̂"~m is the trivial homomor-

phism, then

Uo = {(<p"-m'l(k), c p n - m - 2 ( k ) , . . . , <p(k), k ) : k e K }

has the desired property.

The group G >f 1 thus has subgroups, as in (a), which are tidy for every element
of the group. That is not the case in general. In the next section we characterise tidy
subgroups of individual elements in G x A and then investigate global properties of
particular examples in later sections.

2. Scale functions of automorphisms of -f]x K

The purpose of the present section is to determine s (a) where a is an automorphism
of -f]x K as considered in the introduction. Beyond this, we will see a characterisation
of the compact open subgroups that are tidy for a. There are few surprises here—this
case reduces to a finite product of fundamental cases, including the groups of the type
considered in Section 1.

Before proceeding, we have a lemma, whose proof follows directly from the defi-
nitions of 'tidy' and 'scale function'.

LEMMA 2.1. Suppose for i '= 1,2 that G, is a totally disconnected group and
a, € Aut(G() has a tidy subgroup ty. Put G = Gx x G2, U = Ui x U2, a compact
open subgroup of G and a = at <8> a2 € Aut(G). Then U is a tidy subgroup for a and
s(a) =

The action of {a" : n e 1} on X defines orbits G{ = {a"(z,)}nez for / in some index
set I. Define <?+ = {a"(z,) : n > 0} and 0~r - <?, \ G^. Each element of the finite
set P A a(P) can be written as either a*(z,) e P with ak~l(zi) £ P or vice-versa.
Consequently, there are only finitely many places where orbits cross from P into 5 or
from S into P. For a single infinite orbit ffh this means that either ak(zi) € P for all
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sufficiently large k or a*(z,) e S for all sufficiently large k. Equivalently, precisely
one of 0t \ P or Gf \ S is finite. A similar dichotomy holds for G~.

We partition I into 6 parts: I = lP U I s U \P P U Is,/> U VP_S U Is,s where:

(i) \P and I5 are those i for which Gt is finite, with \P being those for which
G{ c P and ls being those for which GtC\ S ^ 0, and

(ii) each I e R consists of those i for which <?, is infinite and Gj \ Q and Gf \ R
are finite.

Again using the finiteness of P A a(P), we see that there are only finitely many
i € ls with G, n P nonempty, and likewise for i e I s , s having Gt n P nonempty and
i e Ip,/> having ^ n S nonempty. Also the cardinalities n+ = \lP<s\ and n_ = \ls,P\
are finite. Consequently,

p' = U ̂ u U e>u U ̂ .+u U °T
i€lp i£lp.p iels.p ielc.s

has finite difference with P , making G[P<] a compact open subgroup of G. We will
use the following decomposition of G

finite finite finite finite

= GP x Gs x G,.,,. x Gs,/> x Gp,s x Gs,s

where each G*,, is the obvious factor. This type of subscripting will also be used to
denote sets in a partition of X consisting of the union of the corresponding orbits.
This gives us, for instance, XP P = [Jieip Gt and GPj> = G[xFP].

THEOREM 2.2. With notation as above, G[P>] is a tidy subgroup for a, s(a) = \K\"+

ands(a-1) = \K\"~.

PROOF. Clearly, Gin = GP x {e} x GP,P x Y\ielsi, G[<?+] x Y\ie\PS
 G[ff~) x &1

corresponding to the decomposition of G above. Since the first three and the last
factors of G[n are a-invariant, they are tidy for the corresponding restriction a*,
with s(at,,) = s(ot~\) = 1. Next note that for each i e lPiS, the action of a on the
invariant subgroup G[ffi] is a shift as in Section 1. Consequently G^y-j is tidy for a,,
the restriction of a to G[ffi], with s(a,) = \K\ and s(a~[) = 1. The situation for
i € Is,/> is similar, but with s(a,) = 1 and 5(af ' ) = \K\. The result now follows from
Lemma 2.1. •

To simplify what follows, we will assume for the rest of this section that P = P' .
This does not cause any loss of generality, P and P ' have finite difference, and so define
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the same totally disconnected locally compact group G. Moreover, the partitioning of
the orbits and resulting decomposition of G are identical.

The subgroups U of G that are tidy for a can be characterised using a similar
strategy to the above, and again this reduces to a product of subgroups of the type
considered in Section 1. However, the decomposition of G on which the structure of
U is based need not be as fine as that above. To obtain an appropriate decomposition,
we reindex Gs,p and GPS to each be a single partial direct product. For instance

finite finite

ieh.p Gi 1 ieh.p I

on which a acts by translation. The tilde ~ will be used to denote the isomorphisms
Gs.p - • Yii K"+ and Gp.s -*• -f]z K"-, as appropriate.

Much of the analysis of a tidy subgroup U relies on establishing relationships
between the orbits &t and the support set of U. In the following, Q is this support set,
and R is the largest subset of X such that G[R] c U. Then since G[R] c U c G[Q],
with U being compact and open in the product topology, the sets P, Q and R differ
in only finitely many points.

LEMMA 2.3. With U a tidy subgroup with support set Q as above,

(i) finite orbits are either totally contained in Q or disjoint from Q,

(ii) QnXs,s = 0,
(iii) ak(Q n XS,P) £ Q for all k>0, and
(iv) a-k(QnXp.s) C Qforallk> 0.

PROOF. The support sets of U+ and £/_ are subsets of (XLo «" (2) and CtLoa~" (C)
respectively. Since f/ = [/+f/_, we have that

n=0 «=0

Each of the conclusions follows immediately. •

An immediate consequence of this is that any tidy subgroup U is contained within
GP x Gs x GpP x Gs.p x Gf, s . With GP,P we can actually do better, and obtain
Gp.p as a factor of [/, and consequently of U+ and U—

LEMMA 2.4. */>,/> w a subset ofR.

PROOF. By definition of the topology on G, Z = XPP\R is finite. Put Y —
XP,P \ (Ut>oa*(2:)). Then G m < £/+ and so U ^ o G[«'(r)] < ^++- S i n c e « i s J u s t a

shift on each orbit ffi C X/.,/., Ut>oa*(^) = %P,P- Hence |Jt>o ^[a'ooi1S dense in
G[X,,,]. Since U++ is closed, we have G[XFI,) < U++.
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However, G[xPF] is compact and so there is m such that a~m(G[Xpp]) < U+ < U.
Since G[Xe,] is invariant under a, it follows that G[Xl,P] < U. •

To complete the classification of tidy subgroups, we need to consider the finite
orbits and those orbits passing from P to 5 or vice-versa.

THEOREM 2.5. A subgroup U of G is tidy for a if and only if U = Uo x GPP x
Us.p x UpS x [e] where Uo is a compact open subgroup of GP x Gs invariant under a
anda~l, Us,p is supported on Xs,p and satisfies u(Us,p) < USP and UPS is supported
on XP<s and satisfies a (Up s) > UP<S.

PROOF. By Lemma 2.1, the stated conditions are sufficient for U to be tidy for a.
Conversely, suppose U is tidy for a. Put

Uo = {geGpxGs :3heU such that the restriction of h to XP x Xs equals g},

Us,p — [g€ Gs,p :3h e U such that the restriction of h to Xs,p equals g]

and

Up,s = {g € GpS :3h € U such that the restriction of h to XP,S equals g).

Since Lemma 2.4 shows that GP,P < U, to prove the Theorem it will suffice to show
that each of Us,p and UP,S is a subgroup of U and that Uo is a subgroup of U+D [/_.

To show this for Uo, let g be in Uo and choose h e U whose restriction to XP x Xs

equals g. Factor /i as h+h~ where ft+ € U+ and / r e £/_. Since GPiP < U,
it may be supposed that h equals e on XPP and, by Lemma 2.3, that /i+ and h~
equal e on XPP U Xs,p and X/.p U XPS respectively. Let g+ € Uo agree with ft+

on Xs U X f . Then h+ = g+f+, where/+ G GP,5. Now a~"(/+) converges to the
identity as n -> oo and, since ^+ is supported on finite a-orbits, a~n\g+) -*• g+ as
n -*• oo. It follows that g+ = limn_ooQ!~"!(/i+), which belongs to f/+nf/_. Similarly,
g_ = lim^oo a"!(A_) belongs to U+ D [/_. Therefore g = g+g~ belongs to U+ n f/_.

Next let g be in £/Si/. and choose h e U whose restriction to Xs,p equals g. Factor
h as /I+/I~ where A+ e t/+ and /i~ € f/_. Then it may be supposed that h, h+ and
h~ equal « o n X f U X j U X/. /». Now h+ also equals e on XSP and /i_ does on XP_S.
Hence we have g = /i_ and thus belongs to (/_ < U. Similarly, UPis < U+ < U. •

The structure of the subgroups USiP and UPis may be described more explicitly
with the aid of Proposition 1.3 since US,P Q "Flz K"+ a n d UP.S ^ flz ^"" a r e t idy
under translation.

3. Groups acting on graphs

Now suppose that we have a finitely-generated group G = (au ... ,an), and a
right G-set X. Let F be the Cay ley graph of the action of G on X, so that vertices
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x,y 6 X are adjacent when there is some k with xak = y or xak
l =y. In this section

we consider partial direct sums as previously, where the index set is a graph and the
mapping a is given as right-translation by an element a 6 G. Note that this is not
an automorphism of the graph G. We find that the possibilities for the set P in the
construction of the partial direct sum can be related to the structure of the graph F.

In a graph F with vertex set X, we define:

(i) apar/itobea 1-1 mapping £ : N ->• X such that consecutive terms are adjacent
vertices in F,

(ii) two vertices x and y to be in the same component of F if there is a sequence
of vertices xo,xlt ...,xn with x0 — x and xn—y and such that **_! is adjacent to xk

for& = 1, . . . ,n,
(iii) the components of F to be the equivalence classes under the equivalence

relation on vertices of being in the same component,
(iv) two paths £ and £ to be disconnected by a set Y c X when there exist

arbitrarily large i, j such that £, and £,- lie in different components of F \ Y,
(v) two paths to be equivalent, £ ~ £, when there is no finite set disconnecting

them, and
(vi) an end of F to be an equivalence class of paths in F.

The set of all ends is denoted Q and the set X = X U f i can be endowed with a
natural topology so that X is dense. If X is a connected graph, which occurs if G
acts transitively, then X is compact. In this topology, points x e X are isolated and
for a finite set Y c X, the closure of a component Z of I" \ Y includes precisely
those ends whose paths eventually lie in Z. Then a base of neighbourhoods of co e £2
can be taken to be [ZY : Y finite}, where ZY is the component of F \ Y in which the
paths of o» eventually lie. It can be shown that X is metrisable—see for example [17,
equation (2.1)] or [3, Proposition IV.6.7]. For a Cayley graph, it follows immediately
from the definition that each vertex x is only a finite distance from its right translate
xa. Hence, if {*,}f c X is a path converging to u> € Q, then the sequence {jc.aJJ0

(which need not be a path) will also converge to co.

PROPOSITION 3.1. IfP c^f then P\Pa is finite for all a e G if and only ifWis
an open set in X.

PROOF. Suppose P \ Pa is finite for all a e G, then so is Pa \ P = (P \ Pa~l)a.
PutF = UT(^a*UPat"')\P,afinitesetwithP c X\F. Now.anyy € X connected
by an edge to some x e P is either in P or in F. It follows that each component of
X \ F is either wholly contained in P or does not meet P and so P is composed of
components. Hence P is open.

Now suppose P \ Pa is infinite for some a € G. Let co € Q be a limit point of
P \ Pa, so that co e P. If [Xi]f c p \ Pa is a sequence converging on co, then
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[Xia~1}™ c Pa~l \ Pis a sequence also converging on co. However, {Xja~1}™ C X \ P ,
and so co is not an interior point of P. Hence P is not open. •

In the situation where T = G and a = px, translation by an element x e G, the
structure of the space of ends of G can yield information on the scale function.

PROPOSITION 3.2. Suppose H is a subgroup of G such that H has a single end.
Thens(px) = 1 for all x 6 H.

PROOF. Let y € G be such that <?, = {y*"}^, is infinite. We show that fft is an
orbit with i e I/>,/> or i e Is,s, by the classification schenne in Section 2.

Since H has only one end, so does the coset yH, say co e fi. Supposing co e P, a
closed and open set in G U fi, we have that both sequences [yx"}™ and {yx~"}£° lie
in P after a finite number of terms. Consequently i e I ? i f . A similar argument gives
i e Is,s in the case when co £ P. •

Now a finitely generated infinite group G has either one, two or infinitely many
ends, see [3, Theorem IV.6.10]. If G has two ends, then it has an infinite cyclic
subgroup of finite index, see [3, Theorem IV.6.12], and the scale function and tidy
subgroups may be computed using the techniques of Section 1. If G has infinitely
many ends, then it is essentially a non-trivial free product, see [3, Theorem IV.6.10].
The ends of groups were studied in [4] and crucial steps towards the results on the
number of ends taken in [8, 12, 1].

4. Scale functions on free groups and free products

We now consider several examples where A = X is a group, with the action being
right multiplication, that is, the action of x in A is given by y i-»- yx~l. With this
action we have that (e, x)G[Y](e, x)~l = G ^ - I J , (x € A, Y c X). Typically, P will
consist of a finite number of branches of the Cayley graph of A.

In all these examples, the group A is a free group or a free product of groups. In the
case of free groups, elements of the group will be written as words in the generators
and their inverses, and we will assume that the words are reduced—that is, of minimal
length. For two words u and x, with u non-empty, we will say the count of u in x is
the number of times u appears as a subword of x. As we are interested in the orbits
{y*"}, we will also need to know the asymptotic behaviours of the count of a word
u in the reduced word of yx". For this we define a cyclic reduction of an element x,
this being a word w of shortest length in the conjugacy class of x. Note that the cyclic
reduction of a word is defined only up to cycling of the letters, for example abc and
bca — a~labca are both cyclic reductions of abc. Then the cyclic count of a word
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u in x is the number of cyclic occurrences of u in the cyclic reduction w of x—this
includes normal instances of u as a subword of w and those instances of u that wrap
around from the end to the beginning of w. This means that the cyclic count is the
number c such that for all sufficiently large n, the difference between the count of u in
x" and the count of u in xn+l is c. If 5 c H, then the total count of S in x is the sum
of the counts of all elements u € S in the word x and the total cyclic count is defined
similarly.

For instance, if a, b, c are generators of F3, then

(i) a cyclic reduction of w = abcbabca2bac~lb~la~i is babca2ba and the cyclic
count of ab in w is 3;

(ii) the cyclic count of ababab in aft is 1; and
(hi) the total cyclic count of [(ab)n}f in ab is infinite.

In the cases dealt with below, the total cyclic count is finite. The computation of s(x)
in terms of a cyclic count begins by assuming that x is cyclically reduced. This does
not affect the value of the scale function, as it is invariant under conjugation.

In the case of the free product B *• C, a non-empty reduced word consists of a word
with symbols alternating between B \ {e} and C \ [e] and the length of such a word
will be the number of symbols. The count of a word u of length one is not well-defined
because B and C need not be free but for u with length at least two the number of
occurrences of u in x can be counted. A cyclically-reduced word will either have
length one or have even length because any word C\b\C2 • • • bncn+i of length 2n + 1,
n > 1, may be cyclically reduced to the word b\C2 • • • bn(cn+\C\) of length 2n.

The first example to be discussed is the mixed case where A is the free product
B * C, with B a free group and C a discrete group. In this case the letters in reduced
words will be generators of B or their inverses and elements of C. 'Length', 'count'
and so on are defined accordingly.

EXAMPLE 4.1. Take B = {bn} = 1 and C any discrete group. LetA = X =
and let P — [y e X : the reduced word for y is of the form bw). Let x be in A and
write* = zwz~x where w is cyclically reduced. Then:

(i) log^| s(x) equals the cyclic count of b in x; and
(ii) a tidy subgroup for x is G^-ij.

PROOF, (i) Suppose to begin with that x is cyclically reduced. For x = b, the only
orbit passing from P to 5 is [b"}, and so s(b) = \K\. Consequently for x — b",
s(b") = \K\"ifn >0 and s(b") = 1 ifn < 0.

For other cyclically reduced words we can suppose that x = bq'cib
q2c2 • • • bqkck.

The cyclic count of b in x is Ylqi>o Q>- ^ e n > e ? satisfies yx~x £ P if and only if
y = b'CjbqJ+lCj+i • • • bqkck where 1 < j < k and 1 < / < q}•,. The value of log^, s(x)
is at most the number of such y, which is £L >01i- Since x is cyclically reduced we
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have for such y that yx~" e S when n is positive and yx~" e P when n is negative.
Hence log^, s(x) is exactly J2gi>o a> a s required. The result now follows for general x
because the scale function is invariant under conjugation.

(ii) It was shown in the first part that, if x is cyclically reduced, then all *-orbits enter
or leave P exactly once or not at all. Hence G[P] is tidy for x when x is cyclically
reduced. If x = zwz~l, where w is cyclically reduced, then (e, z)G[P)(e, z)~l —
G[p2i] is tidy for x. •

It has been seen in other examples that tidy subgroups are a type of normal form
for elements of totally disconnected locally compact groups. In [15] it was seen that,
in automorphism groups of trees, identifying tidy subgspups for an automorphism x
corresponds to identifying the unique path in the tree such that x is a translation along
the path. In [5] it was seen that, in p-adic Lie groups, identifying tidy subgroups
for x corresponds to finding the Jordan canonical form for the adjoint representation
of x on the Lie algebra. In the present case we see that identifying tidy subgroups
corresponds to finding the cyclically reduced form for a word x.

Another characterisation of the scale function and tidy subgroups is given in [14].
It is shown that for any totally disconnected locally compact group G

s(x) = min{[x Ux~l : UC\x Ux~l] : U is a compact open subgroup of G] (x € G)

and the minimum is attained at precisely those compact open subgroups which are
tidy for x. In view of this characterisation, and of the fact that the scale function is
invariant under conjugation, it is not surprising that identifying tidy subgroups in this
example involves minimising the cyclic word length.

The proof of (i) shows that all cyclically reduced elements of A have G[P] as a tidy
subgroup. However, as we shall see, there is no subgroup of G which is tidy for every
element of A. For a pair of elements JCI, x2 in a totally disconnected locally compact
group define

d(xi,x2) - min{[f/, : Ux fl U2][U2 : Ux D U2] : U{ tidy for*,, i = 1, 2.}.

Then d(x\,x2) is a measure of how far xi and x2 are from having a common tidy
subgroup.

The computation of this value involves the cyclic reduction of pairs of elements of
B * C. Among the conjugates of a pair (x\, x2) are pairs (wx, zw2z"x) where wx and
w2 are cyclically reduced and z has minimum length. Define a cyclic reduction of
(xux2) to be such a pair. The element z will be said to be a comparator of xy and x2.
Some properties of the comparator and notation will be required in the following
discussion.

Suppose that the comparator z = bqicibq2c2 • • • bq"ck is a reduced word, where we
may have q\ = 0 or ck = t but qj ^ 0 and Cj ^ i otherwise. There are further
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restrictions on z depending on Wi and w2. The possibilities and restrictions for
cyclically reduced w2 are:

(1) w2 = b", in which case ck ^ t (otherwise bqt can be commuted past b" and the
length of z reduced);
(2) w2 6 C, in which case ck = i (otherwise ck and ck

l can be absorbed into w2 and
the length of z reduced); and
(3) w2 = bTd • • • d'b3, where r and s are not both 0 and have the same sign, in which

case either: (a) ck ^ i, or (b) ck = i and s = 0 if qk has the same sign as r and r = 0
if #* has the opposite sign as 5.

In all cases except (3a) when either r or s is zero, zw2z~l is in reduced form for all
non-zero n. In case (3a) with r — 0, ck and d can be combined to reduce the length
of zw\z~x by 1. Note however that ckd ^ t because then w2 could be replaced with
a cyclically equivalent word and the length of z reduced. Thus in this case there is
a contraction in zw2z~l but no cancellation. No further reduction of zw2z~x can be
made and similarly if s = 0. Thus in all cases there is no cancellation possible in
zw2z~l. It may be seen in the same way that there is no cancellation in z~lw1z for
any n ^ 0.

(iii) Let x{,x2 € A. Then log^, d(xux2) equals the total count of {b, b'1} in a
comparator of x{ and x2.

PROOF. The function d is conjugation invariant and so we have that d(x{, x2) =
d{w\, zw2z~l) where (w\, zw2z~x) is a cyclic reduction of (x\,x2). We compute this
latter value.

Since Wi and w2 are cyclically reduced, G[Pi is tidy for W\ and G[Pz-i] is tidy for
zw2z~l. Denote these groups as U\ and U2 respectively. Then

logw[£/, : Ux n U2] = #(P \ Pz-1) and log|Jf|[[/2 : I/, n U2] = HPz'1 \ P).

An element y € P satisfies yz~l & P if and only if y = b'Cjbqj+'Cj+l • • • b
9kck where

1 < j < k and 1 < i < q,. Hence #(Pz~l \ P) equals £ >0 Qi > w hi c n is t n e count
of b in z. Now #(P \ Pz"1 jS= #(Pz \ P) which, by the same argument, equals the
count of b in z"1. This is just the count of b~x in z and so log^ d(wu zw2z~l) is at
most the total count of {b, b~l} in z.

Now let Ui be any subgroup tidy for wx and U2 be any subgroup tidy for zw2z~l.
Suppose at first that both w{ and w2 have infinite order. Let y e P be such that
yz"1 £ P. Then y = b'Cj bg'+'cj+i • • • bqkck as above, so that y is a right subword of z.
Since there is no cancellation in zw2z~x for any non-zero n, it follows that there is no
cancellation in yw2 for any n and hence that yw^ € P for every n. It follows that
yz~l(zw2z~l)n € Pz"1 for every n. Since this orbit is infinite, we have G^-i] C U2.
Similarly, yz~x = fc1"*^.^"*' • • • c^b'1" is a right subword of z'1. Since there

https://doi.org/10.1017/S1446788700002640 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002640


286 A. Kepert and G. Willis [14]

is no cancellation in z~xw"z for n ^ 0, yz~lw" & P for every n. Since this orbit is
infinite, we have G[yz-i] D U\ = {e}. We have shown then that GlPz-i\P] D U\ = {e}
and GlPz-i\p] C £/2 and it follows that log|Jf([[/2 : £/, n t/2] > # ( P z - 1 \ P) . It may
be shown that in a similar way that \og]Kl[Ux : f/i n U2] > # (P \ Pz"1) . Therefore
log^i d(u>i, zu;2z~') is at least the total count of [b, b~1} in z when wx and u>2 have
infinite order.

The remaining case is when either wiorw2 has finite order. Suppose, without loss
of generality, that w\ has finite order. Then, by [9, Corollary 4.1.4], wx is conjugate
to an element of C and so, since wx is cyclically reduced, it follows that in fact W\
belongs to C. The above discussion of the comparator shows that q\ ^ 0 in this
case. The iui-orbits are finite and Ui is an infinite product of finite groups invariant
under w\.

As a first subcase, consider when w2 has infinite order. Then, as seen above,
G[PZ->\P\ C U2 and G[P\Pz->] fl U2 = {e}. It cannot be shown that G[Pz-i\P] D U\ must

be the trivial subgroup but we can show that this intersection may be assumed to be
trivial without increasing [Ux : Ux n U2][U2 : £/, n U2]. To this end, let yz~l be in
Pz~* \ P and note that the equation we are trying to prove holds if wt is the identity,
so that we may suppose that (wi) has at least two elements. Then, for w e (wi) \ {t},
the element yz^wzw^ has no cancellations because qx ^ 0, w € C and zw\ has
no cancellations. Hence yz~xwzw\ is not in P , because yz"1 isn't, and it follows
that yz~1w(zw2z~l)n is not in Pz~l for any n. Since this orbit is infinite, it follows
that G[yz-iw] nU2 = {e}. Denote [/, n Gbz->{Wl)] and U2 D Glyz-i{Wl)] by U[ and U'2
respectively. Then we have seen that U\ is the product over the orbit of copies of
some subgroup, L say, of K and U'2 = G^-i j . Hence [U[ : C/J (1 f/j] > \L\ and
[f/2 : U[ n Uj] = IK\/\L\. It follows that if £/, is now replaced by the group which is
trivial on yz~l <wi) and agrees with U\ elsewhere, then the new group is also tidy for wt

and[[/! : UiC\U2][U2 : Ux n U2] is not increased. Doing this for each yz~l e Pz~l\P
we arrive at a group U\ which is tidy for w{ and satisfies G[Pz-i\P] n U\ — {e} without
increasing [Ui : U\C\ U2][U2 : U{ n U2]. Similarly, it may be shown that U{ may be
assumed to satisfy G[P\Pz->] C Ui without increasing [ Ux : UiDU2][U2 : Uxr\U2]. For
this, show that for each y 6 P\Pz~l and w € (wi)\{t) we have ^uiCz^z"1)" € Pz~l

for every n, from which it follows that f/2' = U2 n G^u,,)] = G^^,)^)] . Hence
[{/" : f/('n f/2'] = |L| and [U'2' : f/('n f/2'] > |A"|/|L|, where U'{ = Uxn Gly(Wl)] is the
product of copies of L. Then Ux may be replaced by a group whose intersection with
G[y(Wl)] is the product of copies of K without increasing [ U\ : U\ D f/2][ ^ • £A n ^ ] -
Therefore, log^idCiyLZ^z"1) is at least the total count of [b, b~x) when w2 has
infinite order.

The second subcase is when wx and w2 both have finite order. It may be assumed
that G[Pz->XP] fl [/, = {e}, Gt^^- i j C f/i, G(/.z-i\P] C C/2 and Gi,^:-.] n U2 = {e}
and this suffices to show that l o g ^ d(wx, zw2z~l) is at least the total count of [b, b~1}.
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To see, for example, that we may assume that G[P\Pz-i) c U\, let y 6 P \ Pz~\ let
Li = f/| (1 Gly] and L2 = U2D Gt>]. Then for each u € (tui) \ {i\ we have yu € P
because w € C, so that there is no cancellation. Furthermore, qx ^ 0 because u ) , e C
and so there is no cancellation in yuz. It follows that yu e Pz~l as well. Similar
arguments show that

Sy = [yuiVi •••«/, ymvi • • • uiv, : H, e {wi) \ [i], v, € (zw2z~l) \ {i}}

is contained in P D Pz"1. By construction, 5,, is partitioned into (zio2z~1)-cosets
and {v} U 5j, into u^-cosets. It may be shown that, if U[ = Ui D G^jus,,] and
U2 = U2n G[MUSy], then [U[ : U[ n U'2\\IJ'2 : t/( n 1^] > |AT|/|L2|. Replacing I/,
by the group which agrees with G[(>)usy] on {y} U 5j, and with Ut elsewhere, and U2

by the group which agrees with GiSy) on Sy and with U2 elsewhere, the new groups
are still tidy for Wi and zw2z~l respectively and we now have [U{ : U[D U2][U2 :
U[ n U2] = \K\/\L2\. Repeating for each y € P\ Pz~l, we have G[A/>z-i] C f/i and
[f/i : f/i n f/2][f/2 : t/i n f/2] has not been increased. Similar arguments show that the
other assumptions may also be made and so l o g ^ d(w\, zw2z~l) is at least the total
count of [b, b~x) when wx and w2 both have finite order. •

It follows from the above discussion that if x has infinite order and is in C, then x
normalises a unique compact open subgroup of G.

It may seem that this example is rather special but in fact the same discussion applies
whenever we take P = {y € X : the reduced word for y has the form sw] where s
is a reduced word ending in b, because, if z is any reduced word, then #(P A Pz~l)
equals the total count of [b, b~1} in z. We now give some examples where P has
several branches.

EXAMPLE 4.2. Let A = X = IF* = {au ... , ak) and let P be those w € F* whose
representations as reduced words begin with one of at, a2,... ,ak.

(i) log|A:| s(x) = (total cyclic count of {at : 1 < / < k] in x )

— (total cyclic count of {a"1 a, : 1 < i: ̂  j < k] in x) .
(ii) Let x = zwz~l where w is the cyclic reduction for x. If w € P D P~\ then

GKPU{I))Z->] is tidy forx and G[Pz->) is not. If w e P A P ~ \ then G[f2-i] and G[(pu(,))z-i]

are both tidy for x. If u; £ P U P~\ then G(/>z-i] is tidy for x and G[(/.u(l))z-i] is not.

(iii) Let X\ and x2 be in .A, and let (w\, zu;2z"') be the cyclic reduction of the pair
(xi,x2). Then

log^i d(x\,x2) = (total count of {a,, a~l : 1 < i < k) in z)

— (total count of {a"1**;, a,-aj"' '• 1 < i ^ j < k) in z)

+ e(u;1,i02, z),

where —2 < e(u>i, w2, z) < 2.
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PROOF, (i) We may suppose that x is cyclically reduced and write x =a"1 a™2 • • -aj",
where j , ^ ji+i, i = 1 , . . . , n — 1 and, if n > \,jn ^ j x . Define

Pt — {y € A : the reduced word for y has the form a,if},

so that P = (J*=1 Pj.
Let y G Pj for some i and suppose that yx~l £ P,. As in the previous example, the

number of such v equals the count of a, in x, which is also the total cyclic count. As
before, it follows from the fact that x is cyclically reduced that yx~p £ Pi for p > 0
and yx~p e P, for/? < 0. Hence the orbit [yx~p] will contribute to the value of s(x)
unless it enters P, for somej ^ i. Since x is cyclically reduced, the words (yx~l)x~p,
p > 0, are reduced. Hence there are two ways in which the orbit may enter P;: a)
yx~l = i and x~l € Pj or b) yx~x is in P,. Now the first possibility occurs if and
only if x e Pi and x~l e P,, which means thaty'i = i and mi > 0 and yn = j and
mn < 0. The second possibility occurs when y has the form aj'aj'^1 • • • a™", where
r > \,jr = i and mr > 0 andyV-i = j and mr_i < 0. These possibilities coincide
with the cyclic occurrences of a"1 a, in X, so that the number of times the orbit leaves
P, and enters P, is the cyclic count of a~'a, in x. Hence #(Px~l \ P) is equal to the
difference between the total cyclic count of {a, : 1 < i < k] in x and the total cyclic
count of {ajxa, : 1 < i: ^ j < k] in x. Since, as we have seen, each orbit which
leaves PU(i) does not return this number equals log^ s(x).

(ii) Let w be cyclically reduced. Then the argument in the previous paragraph
shows that a io-orbit which leaves P does not return unless w € P f) P~ \ in which
case one orbit leaves P, passes through i and then returns to P. Hence if w g P fl P"1,
then G[P] is tidy for w and, if w e P D P"1, then G[/.] is not tidy for u; but G[PUM] is.

If u; € P, then i e Pw~l and, if w e P~l, then t e Pit;. Hence in both cases
G[PU(0] is tidy for w. However G[PIJM] is not tidy for w if u; ^ P U P"1 because in
that case w" £ P for every n.

Therefore, for cyclically reduced w: if w e P fl P"1, then G[/>u(lj] is tidy for w
but G[/.j is not; if w € P A P"1, then G[/>u{,}] and G[P] are both tidy for u>; and if
to ^ P U P"1, then G[P] is tidy for w but G[/.u(l)] is not. Conjugating w by z yields
the claim for x.

(iii) Let (wi, zw2z~l) be the cyclic reduction of (x\, x2). Then z~lw\z is a reduced
word. Itfollows, as in the previous example, that {yw"}n£z C Pforeveryy 6 P\Pz~*
and that {yz~lw"}nGZ n P = 0 for every yz~l € Pz"1 \ {P U {i}}. Hence, for every
subgroup Ui tidy for W!, G[P\Pz-i] C f/i and G[Pz-i\(Pumr\ U{ = {e}. Similarly, since
zw2z~l is a reduced word, for every set U2 tidy for zw2z~l we have G[Pz-\\P] C f/2
and G[/>\(/>z-iu(z-i))] D f/2 = {«}. These observations may be used as in the previous
example to show that d(xu x2) is attained when U\ and U2 are among the subgroups
tidy for x\ and x2 given in (ii).
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If f/i = G[P] and U2 = G{Pl-^, then

and this number equals

(total count of {a,, a~l : I < i < k) in z)

— (total count of {a~lah atajl : 1 < i ^ j < k) in z) .

The £(u)!, w2, z) term arises because, depending on wu w2 and z, </(*], *2) may be
attained when Ux = G[PUW] or U2 = G[/»z-'u(Z-')]- There are numerous cases to be
considered.

(1) When wu w2 <? P U P ~ \ then U} = G[P], U2 = G[Pz-t] and e(wu w2, z) = 0.
(2) When wx <£ P U P" 1 and w2 <= P A P " 1 and:

a) z"1 e P , then f/i = G[P], U2 = G[PZ-HJ[Z->)] and e(wu wi, z) = - 1 ;

b) z"1 ^ P , then Ux = G[P], U2 = G[Pz-i] and £(u;!, u;2, z) = 0.

(3) When iw, g P U P" 1 and u;2 e P n P " 1 and:

a) z~' € P , then f/i = G[P], U2 = GlPz-iU{Z-')] and e(wi, w2, z) = - 1 ;

b) z"1 ^ P , then [/, = G(/.], t/2 = GlPz-iulz-in and £(»! , u>2, z) = 1.

(4) When wu w2 € P A P" 1 and:

a) z"1 e P andz e P , then t/, = G[/>u(in, f/2 = G[/»2-iu(z-i)] and£(io!, iy2, z) = - 2 ;

b) z"1 e P and z & P, then f/i = G[P], U2 = G[Pz-^z-in and e(wu w2, z) = —1;
c) z"1 ^ P and ze P, then f/i = G[ f u ( l | ] , U2 = G[/»z-i] and £(io!, w2, z) = —1;
d) z"1 ^ P and z £ P , then f/i = G[P], U2 — G{Pz-^ and s{wu w2, z) = 0.
(5) When wu € P A P~ ' and u;2 € P D P" 1 and:

a) z"1 e P andz e P , then {/, = G[/.uw]> U2 = G^z-iu^-i)] ande(u;i, u;2, z) = - 2 ;
b) z"1 6 P and z & P, then f/i = G[P], f/2 = G[PZ-IU(Z-I)] and £(uii, w2, z) = —1;
c) z"1 ^ P and z e P , then £/( = GlPU{l]], U2 = GlPz-njlz-in and e(wu w2, z) = 0;
d) z~ V and z ^ P , then t/, = G[P], U2 = G[Pz-iulz-in and e(wu w2, z) = 1.

(6) Whenu;!, u;2 e P H P " 1 , then £/, = G[pu(l)], f/2 = G[/>z-iu(Z->]] and when:

a) z"1 e P andz e P, wehave £(u>!, u;2, z) = —2;
b) z'1 6 P and z ^ P , we have £(u>i, «;2, z) = 0;
c) z"1 ^ P and z e P , we have £(u>i, w2, z) = 0;
d) z"1 ^ P and z £ P , we have £(u>i, io2, z) = 2.

The remaining cases may be obtained from these by interchanging the roles of u>i

and w2. •

A similar analysis applies whenever P has several branches, that is, when PSl Jn =
{y e X : the reduced word for y has the form SjW for some j). Let J denote the
family of last letters of the s, 's counted according to multiplicity and let D = {^"'s, :
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\<i£j < n}. Then

logjArj s(x) = (total cyclic count of J in x) — (total cyclic count of D in x).

An extreme case is when [SJ } is just the set of generators and their inverses, so that
P = F* \ [i]. Then J = [sj} and the cyclic count of J in x is just the length of the
cyclic reduction of x. D is the set of all length 2 words and the cyclic count of D
in x is also just the length of the cyclic reduction of x. Hence the scale function is
identically 1, which could have been seen immediately in this case because Y[x K is
a normal compact open subgroup.

v
EXAMPLE 4.3. For any discrete groups B and C, let A = X = B * C and let P

consist of those reduced words beginning with a symbol from B. Then log^ s(x) is
the total cyclic count of words cb in x, where b e B and c € C.

We first check that this is a valid example, in that P A Px is finite for all x. Suppose
v 6 P and y £ Px. Then y begins with b e B but yx~l does not begin with a symbol
from B. Hence either y = x or y must be a proper right subword of x, of which there
are only finitely many. Hence P \ Px is always finite. Also Px \ P = (P \ Px~x)x,
which is finite so P A Px is finite.

PROOF. By cyclic reduction we can suppose that either x e B, x € C, orx =
bxci • • • bkck with alternating symbols from B and C. In the first case Px~l = P U {t}
and P U {1} is invariant under x, so that (e, x) normalises G[PU[c)] and s(x) = 1. In the
second case Px~l = P, (e, x) normalises G[P] and s(x) = 1.

In the third case, suppose y is such that y € P but yx~l £ P. Then we must
have y = bjCj • • -bkck, where 1 < j < k. Moreover, yx" e P and yx~n £ P for all
n > 1. Therefore there are exactly * orbits {yx ~"} such that for all sufficiently large n,
yx" G P and yx~" ^ P. Hence JQC) = |̂ T|*, as required. •

5. Construction of uniscalar groups

The preceding examples have non-trivial scale function but it seems possible that
the construction described in the first section could be used to construct a compactly
generated uniscalar group without compact open normal subgroups and thus to answer
the question discussed in the introduction. In order to say how this might be done, we
first formulate some properties of group actions.

DEFINITION 5.1. Let the group A act on the set X and let P c X.

(i) P is almost invariant if P A a.P is finite for every a e A.
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(ii) P is locally nearly invariant if for each a € A there is Qa C X such that
P A Qa is finite and a. Qa — Qa-

(iii) P is near/y invariant if there is <2 C X such that P A Q is finite and a. Q = Q
for every a e A.

It is clear that, if P is nearly invariant, then it is locally nearly invariant and that
if P is locally nearly invariant it is almost invariant. The condition that P be almost
invariant is necessary for the group G x A constructed in Section 1 to be a topological
group. This group is uniscalar if and only if P is locally nearly invariant and has
a compact open normal subgroup if, and only if, P is nearly invariant. Further,
G x A is compactly generated provided that A is finitely generated and its action on
X is transitive. Hence a positive answer to the following question would produce an
example of a compactly generated uniscalar group which does not have a compact
open normal subgroup.

QUESTION 5.2. Is there a finitely generated group A acting transitively on a set X
with a P C X which is locally nearly invariant but not nearly invariant!

It is clear that X must be countable and that, if P is to be not nearly invariant, that
both P and X \ P must be infinite. In this case P is called a moiety.

If P C X is almost invariant for an action of A on X and if for each a e A and
x e X the orbit [a".x : n e Z} is finite, then P is locally nearly invariant. It would be
particularly interesting to find an action of this type where P is not nearly invariant
because then for each a e A the group G x A would have a base of neighbourhoods
of the identity consisting of compact open subgroups normalised by a but would have
no compact open normal subgroup.

In answer to these questions, Meenaxi Bhattacharjee and Dugald Macpherson have
constructed an example satisfying these conditions in [2]. It follows then that there
is a compactly generated uniscalar totally disconnected locally compact group which
does not have a compact open normal subgroup. On the other hand, it is shown by
Anne Parreau in [11] that every compactly generated, uniscalar p-adic Lie group has
a compact open normal subgroup.
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