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Mordell–Weil Groups and the Rank of
Elliptic Curves over Large Fields

Bo-Hae Im

Abstract. Let K be a number field, K an algebraic closure of K and E/K an elliptic curve defined over

K. In this paper, we prove that if E/K has a K-rational point P such that 2P 6= O and 3P 6= O, then

for each σ ∈ Gal(K/K), the Mordell–Weil group E(K
σ

) of E over the fixed subfield of K under σ has

infinite rank.

1 Introduction

In [1], G. Frey and M. Jarden showed that if K is an infinite field of finite type and
A is an abelian variety of dimension d ≥ 1 defined over K, then for any positive

integer n, there is a subset of Gal(K/K)n of Haar measure 1 such that for every n-tuple
(σ1, . . . , σn) belonging to the subset, the group of rational points A(K(σ1, . . . , σn))
of A over the fixed subfield of K under (σ1, . . . , σn) has infinite rank.

In [12], M. Larsen proved that for a number field K and an elliptic curve E/K

over K, there is a nonempty open subset Σ of Gal(K/K) such that for any σ ∈ Σ, the
Mordell–Weil group E(K

σ
) of E over the fixed field under σ has infinite rank.

It is natural to ask if such an open subset can be the whole Galois group Gal(K/K).
We have a positive answer for elliptic curves defined over Q . In [7], we proved that for

any elliptic curve E/Q , the rank of E(Q
σ

) is infinite, for every σ ∈ Gal(Q/Q). Our
approach in [7] is arithmetic: taking advantage of the modularity of elliptic curves
over Q and the complex multiplication theory and constructing an infinite supply of
rational points of E consisting of Heegner points.

This paper is motivated by [1, 7, 12], and we prove in Section 3 that if E/K has
a K-rational point P such that 2P 6= O and 3P 6= O, then for each σ ∈ Gal(K/K),
the Mordell–Weil group E(K

σ
) over the fixed subfield of K under σ has infinite rank.

Here, we approach by using Diophantine geometry which is a completely different

method from the one that we use in [7].
The main strategy for constructing infinitely many linearly independent rational

points of E over K
σ

for σ ∈ Gal(K/K) is approximately as follows: find a finite
group G, a Z-free Z[G]-module M of rank r and an infinite sequence {Ki/K}∞i=1 of

linearly disjoint finite Galois extensions of K with Gal(Ki/K) ∼= G such that for each
i, E(Ki) ⊗ Q contains a G-submodule isomorphic to M ⊗ Q . If MG

= 0 but Mg 6= 0
for each g ∈ G, then we can find Q-independent points of E(Ki) ∩ E(K

σ
) for any

σ ∈ Gal(K/K).

Then G acts on E⊗M through its action on M. Define E⊗M to be the abelian vari-
ety representing the functor S 7→ E(S) ⊗Z M, where S is any scheme over the ground
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Mordell–Weil Groups 797

field and E(S) is the functor of points associated to E. Then, as an abelian variety,
E ⊗M is just Er , since the action of G on E ⊗M is only though M. Suppose we find a

projective line P1 in (E⊗M)/G over K. If its preimage X in E⊗M under the quotient
map is an irreducible curve over K, then by the Hilbert irreducibility theorem [11,
Chapter 9], most points in P1(K) determine points in Er(Ki) with Gal(Ki/K) = G;
the coordinates generate the desired G-submodule of E(Ki) ⊗ Q . In this paper, we

take for G the alternating group An on n = 2k letters and for the module M the irre-
ducible (n− 1)-dimensional quotient of the permutation representation of An by the
trivial representation.

In Section 2, we first show that Sn admits a nontrivial action on the (n − 1)-fold

product En−1 of E and that its quotient En−1/Sn by Sn is isomorphic to the
(n−1)-dimensional projective space Pn−1. We also find some properties of transitive
subgroups of Sn which contain a transposition and observe properties of subgroups
of An which occur as branched Galois coverings of a projective line.

In Section 3, if K is totally imaginary and E/K has a K-rational point P such that
2P 6= O and 3P 6= O, then we show that for some even integer n, there is a projective
line over K in En−1/Sn whose preimage in En−1/An under the double cover is a curve
of genus 0, which gives infinitely many linearly independent points of E over the fixed

field of each σ ∈ Gal(K/K).
In Section 4, using the Hilbert irreducibility theorem [11, Chapter 9] and the

density of the Hilbert sets over Q in R, we prove as a special case that if K is a number
field and Kab is the maximal abelian extension of K, then for any complex conjugation

automorphism σ ∈ Gal(K/K), the rank of E((Kab )σ) is infinite. Hence, the rank of
E(K

σ
) is infinite.

Then in Section 5, we show that if σ ∈ Gal(K/K) is not a complex conjugation
automorphism, then there is a totally imaginary finite extension of K which is fixed

under σ. So by applying this to extend the ground field to a totally imaginary exten-
sion for such automorphisms in Gal(K/K), and combining the result of infinite rank
of the case of totally imaginary number fields and the case of complex conjugation
automorphisms, we get a more general result that if K is an arbitrary number field

and E/K has a K-rational point P such that 2P 6= O and 3P 6= O, then for each
σ ∈ Gal(K/K) the rank of E(K

σ
) is infinite.

2 Action of Sn on E
n−1 and Branched Galois Coverings of P

1

Let n ≥ 2 be an integer. First let Sn be the symmetric group on n letters and An

the alternating subgroup of Sn. Denote the n-fold product of E by En. Naturally,
Sn acts on En by permutation, i.e., if we denote its action by “·”, for σ ∈ Sn and an

n-tuple (P1, . . . , Pn) ∈ En, σ · (P1, . . . , Pn) = (Pσ(1), . . . , Pσ(n)). So does An on En.
Let Σ : En → E be the map defined by the sum of coordinates of an n-tuple. Then
identify En−1 with n-tuples of elements in E which sum to O i.e., Ker(Σ). Sn still acts
on En−1 ∼= Ker(Σ) by the nontrivial induced permutation action.

Through the paper, we always consider En−1 as Ker(Σ) so that a point in En−1 (or
its quotient En−1/Sn by Sn) is an n-tuple (P1, . . . , Pn) ∈ En−1 whose coordinates sum
to O.

The following lemma gives the structure of the quotient space En−1/Sn of En−1
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798 B.-H. Im

by Sn.

Lemma 2.1 For each n ≥ 2, Sn admits a nontrivial action on En−1. The quotient

space En−1/Sn of En−1 by Sn is isomorphic to the (n − 1)-dimensional projective space

Pn−1.

Proof Identify En−1 with n-tuples of elements in E which sum to O, i.e., with the
set Ker(Σ), where Σ : En → E is the map defined by the sum of coordinates of an
n-tuple. Then for each (P1, . . . , Pn) ∈ Ker(Σ) ∼= En−1, there is a rational function f

on E such that
∑n

i=1(Pi) = ( f ) + n(O) as divisors. This gives a map from En−1 to the
linear space of all rational functions f on E such that ( f ) + n(O) ≥ 0. Denote this
linear space by |n(O)|.

Then by the Riemann–Roch Theorem [6, Chapter IV, Theorem 1.3], the dimen-
sion of this space is n as a vector space so it gives an (n − 1)-dimensional projec-

tive space. We choose a basis f0, . . . , fn−1 of the space |n(O)| and define a map
φ : En−1 → Pn−1 in the following way.

For each (P1, . . . , Pn) ∈ Ker(Σ) ∼= En−1, there is a rational function f on E such
that

∑n
i=1(Pi) = ( f ) + n(O). Write f =

∑n−1

i=0 ai fi with a0, . . . , an−1 ∈ C. Then
define φ(P1, . . . , Pn) = (a0 :a1 : · · · : an−1) ∈ Pn−1.

Then two n-tuples which sum to O in En−1 map onto the same point in Pn−1

under φ if and only if they are the same up to permutations of Sn. This implies that

the quotient space En−1/Sn is isomorphic to the projective space Pn−1.

Now we find some properties of subgroups of Sn which act transitively on
{1, 2, . . . , n} and contain a transposition. The following lemma assumes a weaker

condition than in [3, Lemma 1.4].

Lemma 2.2 If H is a subgroup of Sn containing a transposition and H acts transitively

on {1, 2, . . . , n}, then there are positive integers m and k such that mk = n, where

m > 1, k ≥ 1, and there are subgroups K of H and T of Sk such that K ⊳H, K ∼= (Sm)k,

H/K ∼= T and T acts transitively on {1, 2, . . . , k}, where

(Sm)k
= Sm × · · · × Sm

︸ ︷︷ ︸

k times

.

Moreover, K∩An EH∩An and (H∩An)/(K∩An) ∼= T and H∩An acts transitively

on {1, 2, . . . , n}. In particular, if n is a prime p, then H ∼= Sp and H ∩ Ap
∼= Ap.

Proof Without loss of generality, we may assume that the transposition (12) ∈ H.

Define a relation ∼ on {1, 2, . . . , n} by: for x, y ∈ {1, 2, . . . , n},

x ∼ y if and only if x = y or there is a transposition (xy) ∈ H.

Then this relation is an equivalence relation. In fact, the transitivity of the relation
holds, since if (xy) ∈ H and (yz) ∈ H, then (xz) = (xy)(yz)(xy) ∈ H.
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Since (12) ∈ H, 1 ∼ 2, hence the equivalence class of 1 has at least two elements in
{1, 2, . . . , n}. Moreover, if we suppose x ∼ y, then (xy) ∈ H. Let x ′ ∈ {1, 2, . . . , n}.

Since H acts transitively on {1, 2, . . . , n}, there is h ∈ H such that h(x) = x ′. Now
h(xy)h−1

= (h(x) h(y)) = (x ′ h(y)), which is in H. Hence h(x) = x ′ ∼ h(y), i.e.,

x ∼ y iff h(x) ∼ h(y). Therefore, each equivalence class has the same number of
elements.

Let k be the number of equivalence classes and let C1, . . . ,Ck be the equivalence

classes of {1, 2, . . . , n}. And let m =
n
k
. Each class Ci has m elements. Note that

m ≥ 2, since (12) ∈ H.

For each h ∈ H, on each class Ci , h(Ci) = Chi
, for some hi ∈ {1, 2, . . . , k}, since

we have showed in the above that x ∼ y iff h(x) ∼ h(y). And h gives a bijection
of Ci and Chi

. Hence we have a natural map φh : {Ci}1≤i≤k → {Ci}1≤i≤k defined
by φh(Ci) = Chi

where i, hi = 1, 2, . . . , k. This shows that φh permutes equivalence

classes C1, . . . ,Ck. Hence we get a permutation σh ∈ Sk such that σh(i) = hi , where
ik is given by h(Ci) = Chi

.

So we can define a map π : H → Sk given by π(h) = σh defined as above.
Then π is a group homomorphism, since hh ′(x) = h(h ′(x)), for h, h ′ ∈ H and
x ∈ {1, 2, . . . , n}.

Let T = Image(π) and K = ker(π). Then K E H and T ≤ Sk. Moreover, T acts
transitively on {1, 2, . . . , k}, since C1 ⊔C2 ⊔ · · · ⊔Ck = {1, 2, . . . , n} and H acts on

{1, 2, . . . , n} transitively.

Now we show that

K ∼= Sm × · · · × Sm
︸ ︷︷ ︸

k times

:= (Sm)k.

Let S(Ci) be the group of all permutations on elements of Ci . For any h ∈ K, h has
a decomposition, h = h1h2 . . . hk, where each permutation hi is a product of disjoint

cycles in S(Ci), since h is stable on each class. If h, g ∈ K, let h = h1h2 · · · hk and
g = g1g2 · · · gk, where hi , gi ∈ S(Ci), then hg = h1g1h2g2 · · · hkgk, since hi and g j

are disjoint for i 6= j. Hence we get an injective homomorphism f : K → S(C1) ×
· · · × S(Ck) defined by f (h) = (h1, · · · , hk), where h = h1h2 · · · hk and hi ∈ S(Ci).

Since S(Ci) ∼= Sm is generated by transpositions and for any xi , yi ∈ Ci , there is a
transposition (xi yi) ∈ H, f ((x1 y1) · · · (xk yk)) = ((x1 y1), . . . , (xk yk)). Hence f is
surjective. Therefore, K ∼= S(C1) × · · · × S(Ck) ∼= (Sm)k. By the first isomorphism
theorem, H/K ∼= T.

Hereafter we identify the subgroup K of H with (Sm)k under the isomorphism in
the above. Then we get a short exact sequence of groups,

1 −→ (Sm)k f−→ H
π−→ T −→ 1.

Next we show that the following sequence is exact:

1 −→ (Sm)k ∩ An
f ′

−→ H ∩ An
π ′

−→ T −→ 1,

where f ′ is the restriction of the inclusion f to (Sm)k ∩ An.
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First, it is obvious that f ′ is injective, since f is injective. Moreover, since ker(π) =

Image( f ), we have ker(π ′) = ker(π) ∩ An = Image( f ) ∩ An = Image( f ′). So this

implies the exactness of the middle one. Now we need to show π ′ is surjective. For
any σ ∈ T, there is h ∈ H such that π(h) = σ, since π is surjective. If h is an
even permutation, then h ∈ H ∩ An and π ′(h) = π(h) = σ. If h is not even,
then consider σ as a permutation of {C1, . . . ,Ck} as in the above. Then there are

two distinct integers i and j ∈ {1, 2, . . . , k} such that σ(Ci) = C j . Since Ci has
at least two elements, there are two elements a, b ∈ Ci , i.e., a ∼ b ∈ Ci . Hence
(ab) ∈ H. Moreover, (ab) ∈ Ker(π) from the construction. Hence (ab) ◦ h is an even
permutation and π ′((ab) ◦ h) = π((ab) ◦ h) = π(h) = σ. Hence π ′ is surjective.

Therefore, K ∩An
∼= (Sm)k ∩An = ker( f ′)EH∩An and (H∩An)/((Sm)k ∩An) ∼= T.

Now we show that H ∩An acts transitively on {1, 2, . . . , n}. If k = 1, then m = n,

hence H ∼= Sn. Therefore, H ∩ An = An, which acts transitively on {1, 2, . . . , n}.
Assume that k ≥ 2. Let a, b ∈ {1, 2, . . . , n}. We need to find an even permutation
σ ∈ H such that σ(a) = b. If both a and b are in the same class Ci for some i ∈
{1, 2, . . . , k}, then there is (ab) ∈ H. Since k ≥ 2, we choose two distinct elements c

and d ∈ C j for some j 6= i. Then if let σ = (ab)(cd), then σ ∈ H ∩An and σ(a) = b.

If a and b are in distinct classes, say a ∈ Ci and b ∈ C j for i 6= j, then there is
τ ∈ T such that τ (i) = j. Since τ is a bijection between Ci and C j , there are b ′ ∈ C j

and a ′ ∈ Ci such that τ (a) = b ′ and τ (a ′) = b. If τ is an even permutation, then let
σ = (aa ′)(bb ′)◦τ . Then σ(a) = b and σ ∈ H∩An. If τ is odd, then let σ = (bb ′)◦τ .

Then σ(a) = b and σ ∈ H ∩ An. This completes the proof.

Lemma 2.3 If H is a transitive subgroup of Sn and (V, ρ) is the permutation rep-

resentation of Sn, then the restriction of (V, ρ) to H has one 1-dimensional invariant

subspace.

Proof Let e1, . . . , en be a basis for the restriction (V, ρ ′) of the permutation repre-

sentation of Sn to H. Let H1 = {h ∈ H | h(1) = 1} be the stabilizer of 1 in H. Let W

be the subspace of V generated by e1. Then W is invariant under H1. Moreover, since
H acts transitively on {1, 2, . . . , n}, we have exactly n left cosets of H1 in H. Hence we
can identify the permutation representation (V, ρ ′) with the induced representation
(⊕n

i=1 ρ
′
gi

(W ), IndH
H1

(1)
)

of H by the trivial representation (W, 1) of H1, where gi

are representatives of left cosets of H1 in H.

If we denote by 1 the trivial representation of H, then by Frobenius reciprocity,

〈1, IndH
H1

(1)〉H = 〈ResH
H1

(1), 1〉H1
= 〈1, 1〉H1

= 1.

Therefore, the restriction (V, ρ) of the permutation representation to H has one
1-dimensional invariant subspace.

Corollary 2.4 If H is a transitive subgroup of Sn and H contains a transposition, then

the restriction of the permutation representation of Sn to H ∩ An has one 1-dimensional

invariant subspace.
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Proof This follows from Lemma 2.3, since H ∩ An acts transitively on {1, 2, . . . , n}
by Lemma 2.2.

Lemma 2.5 Let n ≥ 1 be an integer. Let σ ∈ An have k disjoint cycles for some positive

integer k ≤ n. Then there are k fixed vectors under σ in the permutation representation

of An.

Proof Let e1, . . . , en be a basis of the permutation representation of An. Let σ ∈ An

have k disjoint cycles. Then they form k partitions C1, . . . ,Ck of {1, 2, . . . , n}.

For 1 ≤ i ≤ k, let

vi =

∑

j∈Ci

e j .

Then, these k vectors are fixed under σ.

Lemma 2.6 For any even integer n, every element in An has more than one cycle.

Proof Let σ ∈ An have the cycle decomposition

σ = (a11 · · · a1m1
)(a21 · · · a2m2

) · · · (ak1 · · · akmk
),

where ai j ∈ {1, 2, . . . , n} are distinct and m1 + m2 + · · · + mk = n for some positive
integer mi . If k = 1, then m1 = n and σ = (a11a12 · · · a1n) has one cycle of length of

the even integer n which is an odd permutation, hence it is not in An. Thus, we must
have that k ≥ 2. This implies that σ ∈ An has at least two cycles.

The following two lemmas show that subgroups of Sn which occur as Galois cov-
erings of a projective line (which is isomorphic to a projective closure of a base-point
free linear system of E) act transitively on {1, 2, . . . , n} and contain a transposition.

Lemma 2.7 Let K be a number field and E/K an elliptic curve over K. Suppose that

there is a projective line L in En−1/Sn
∼= Pn−1 which is a projective closure of a base

point-free linear system of E. Let C be the preimage of L in En−1/An under the double

cover from En−1/An to En−1/Sn and let the preimage in En−1 of C under the quotient

map of En−1 by An have a decomposition X1 ∪X2 ∪· · ·∪Xk into irreducible components

Xi .

Then for each i = 1, . . . , k, the morphisms ψi : Xi → C and φi : Xi → L are Galois

coverings with Ki = Gal(Xi/C) and Hi = Gal(Xi/L), respectively, such that Ki ≤ An,

Hi ≤ Sn and Hi ∩ An = Ki . Moreover, the Hi are conjugate to each other, and each Hi

acts transitively on {1, 2, . . . , n}.

Proof For each i = 1, . . . , k, the morphism ψi : Xi → C is the quotient map by the

stabilizer Ki of Xi in An, that is, Ki = {σ ∈ An | σ ·Xi = Xi}. Since Xi is an irreducible
component of the preimage of C under the action of An, for any σ 6= 1 ∈ Ki , Xi is
not contained in the kernel of 1 − σ acting on En. So ψi is a regular Galois covering
map with Galois group Gal(Xi/C) = Ki a subgroup of An. Similarly, each map
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φi : Xi → L is also a Galois covering with Galois group Gal(Xi/L) = Hi which is the
stabilizer of Xi in Sn and φi is the composite of the Galois covering from Xi to C with

Ki = Gal(Xi/C) and the double cover from C to L. Hence Hi ≤ Sn and Hi ∩An = Ki .

First, we show that the Hi are conjugate to each other. Note that Sn acts transitively
on {X1,X2, . . . ,Xk}, since X1 ∪X2 ∪ · · · ∪Xk is the preimage of the irreducible curve
L. Hence for each i, there is τi ∈ Sn such that τi · Xi = X1. Let σ ∈ H1. Then
τi · Xi = X1 = σ · X1 = στi · Xi . Hence τ−1

i στi · Xi = Xi . Hence τ−1
i στi ∈ Hi . This

proves that τ−1
i H1τi = Hi for each i.

Next, we show that each Hi acts transitively on {1, 2, . . . , n}. It is enough to show
that H1 acts transitively on {1, 2, . . . , n}, since Hi are conjugate to each other. Note
that En−1/Sn is isomorphic to the projective closure of the linear space |n(O)| of

all rational functions f such that ( f ) + n(O) ≥ 0 by Lemma 2.1. Since the curve
L ⊂ En−1/Sn is a projective closure of a base point-free linear system of E, there
exists an elliptic function f in H0(E,L(n(O))) which has n zeros which sum to O

of E such that the base-point free linear system is generated by f and the constant

function 1.

Parameterize an open dense subset of the projective line L in Pn−1 ∼= En−1/Sn by
the parameter λ such that f −λ represents a point of the open subset. Let g : En−1 →
E be defined by g(z1, . . . , zn) = z1 where (z1, . . . , zn) is a point of En−1 so that the
sum of coordinates equals O. Then, the curve X1 ⊆ En−1 maps to E through g as well

as to the projective line L ∈ En−1/Sn through the quotient map by Sn. So X1 maps to
E × L and projects onto L.

Choose a fundamental domain so that the distinct zeros z1, . . . , zn of f − λ are
in the interior of the domain. Let i ∈ {2, 3, . . . , n} be fixed. We can take a path

α : [0, 1] → E such that α(0) = z1 and α(1) = zi so that the path does not pass
through the other zeros of f − λ. By composing α with f , we get a closed path in
En−1/Sn starting and ending at λ, that is f − λ, since f (z1) = λ = f (zi).

Since X1 is a connected component which maps to E × L through g and φ1 and
the morphism φ1 is a Galois covering, by the unique path homotopy lifting property

of a covering space, there exist P and Q ∈ X1 such that φ1(P) = λ = φ1(Q), and
g(P) = z1 and g(Q) = zi . This implies that there is an element σ ∈ H1 such that
σ(1) = i. This shows H1 acts transitively on {1, 2, . . . , n}.

The following lemma has a similar setting as in [3, Lemma 1.5]. But here we as-
sume that there is a divisor in a given projective line which decomposes into the sum
of one ramified divisor of degree 2 and other divisors of odd degree or unramified
divisors under a Galois covering, while the lemma in [3, Lemma 1.5] assumes ev-

ery divisor decomposes into one ramified divisor of degree 2 and other unramified
divisors.

Lemma 2.8 Suppose there is a curve L ⊂ En−1/Sn
∼= Pn−1 which is isomorphic to

a projective closure of a base-point free linear system on E and the normalization of its

preimage in En−1 under the quotient map is X1 ∪ X2 ∪ · · · ∪ Xk such that for each

m ∈ {1, 2, . . . , k}, the Galois covering Hm := Gal(Xm/L) is a subgroup of Sn. Then if L

contains a divisor D = 2(P1) +
∑ℓ

i=2 ki(Pi) − n(O), where Pi are points of E such that
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Pi 6= P j , 2P1 +
∑ℓ

i=2 kiPi = O and ki are odd integers ≥ 1 with
∑ℓ

i=2 ki = n − 2, then

each Hm contains a transposition.

Proof Note that if ki = 1, for all i = 2, . . . , ℓ, then we apply the proof in [3, Lemma
1.5] with the given divisor D to get a transposition. Now we assume the general case
when ki are odd integers.

Let k1 = 2. For each m = 1, . . . , k, let φm : Xm → L be the restriction of the
quotient map of En−1 by Sn with Hm = Gal(Xm/L). Let Hm act by permutation of
coordinates of each point: for σ ∈ Hm, σ · (P1, P2, . . . , Pn) = (Pσ(1), Pσ(2), . . . , Pσ(n)),
where Pn = −(P1 + P2 + · · · + Pn−1).

Suppose L contains a divisor D =
∑ℓ

i=1 ki(Pi) − n(O) = 2(P1) +
∑ℓ

i=2 ki(Pi) −
n(O), where P1, . . . , Pℓ are distinct points of E and ki are odd integers such that
∑ℓ

i=2 ki = n − 2. Let f be the function whose divisor is equivalent to D and let zi be

the zeros of f corresponding to Pi for each i = 1, . . . , ℓ, i.e., f (z) = (z − zi)
ki (ai0 +

ai1(z − zi) + · · ·+) with ai0 6= 0. Then by Hensel’s Lemma [19, Chapter IV, Lemma
1.2], for a number λ with small |λ|, f − λ = (z − zi)

ki (ai0 + ai1(z − zi) + · · · ) − λ
has zeros at

Qi, j = zi +
( λ

ai0

) 1

ki ζ
j−1

ki
+ Ai, j , for each i = 1, . . . , ℓ, and j = 1, . . . , ki,

where Ai, j are convergent Puiseux series in λ such that each term of Ai, j is of higher

degree than λ1/ki , and ζki
is a primitive ki-th root of unity.

Note that each quotient map φm by Hm is surjective. Choose a small enough num-

ber λ such that for each i = 1, . . . , ℓ and j = 1, . . . , ki , the circles centered at zi with

radius
(
λ

ai0

) 1/ki
do not intersect each other and the ki points Qi, j lie in the circle

centered at zi .

Since these circles are closed paths and Qi, j are zeros of one fixed function f − λ,
their preimages in En−1 still lie in one irreducible component Xm for some m. There-
fore, for each i = 1, . . . , ℓ, there exists a cycle τi in Sn of length ki which permutes
Qi, j for j = 1, . . . , ki and the product of all τi is in Hm. In particular, τi are disjoint

cycles and τ1 is a transposition permuting Q1,1 and Q1,2.
Let r = lcm(k2, . . . , kℓ). Then r is odd, since all ki for i = 2, . . . , ℓ are odd. Since

τ1 is of order 2, (τ1τ2 · · · τℓ)r
= τ1 ∈ Hm. Hence, Hm contains a transposition τ1.

Since Mm are conjugate to each other by Lemma 2.7, every Hm has a transposition.

3 E/K for K a Totally Imaginary Number Field with a Rational
Point P Such That 2P 6= O and 3P 6= O

First, we show that if K is a totally imaginary number field and E/K has a K-rational
point P such that 6P 6= O, then for some even integer n there is a projective line

over K in En−1/Sn
∼= Pn−1 whose preimage under the quotient map of En−1 by An

is a curve of genus 0 in En−1 over K. We will need the following lemma to show the
existence of such a projective line. We start with the definition of rank of quadratic
forms that we use in this paper.
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Definition 3.1 The rank of a quadratic form Φ on the space V is the codimension
of the orthogonal complement of V with respect to Φ in the sense of [16, Chapter IV,

Section 1.2, p. 28].

Lemma 3.2 Suppose Φ1 and Φ2 are two quadratic forms defined over K such that for

all r, s ∈ K, not both zero, the form rΦ1 + sΦ2 is of rank ≥ 5. Then the intersection of

the zero loci of Φ1 and Φ2 is not entirely contained in a finite union of hyperplanes.

Proof By the abuse of the notation, we denote the intersection of two hypersurfaces
defined by f and g by f ∩ g and the union of them by f ∪ g.

Suppose codim(Φ1 ∩Φ2 ∩ L) = 2 for some hyperplane by L. If both intersections
Φ1 ∩ L and Φ2 ∩ L are irreducible, then Φ1 ∩ L = Φ2 ∩ L. Thus Φ1 ≡ cΦ2 (mod L)
for some c ∈ K, that is, Φ1 − cΦ2 = LL ′ for some linear form L ′. Hence, the pencil of
Φ1 and Φ2 contains some form which has rank ≤ 2, which leads to a contradiction

of the hypothesis.
So we assume that a quadratic form, say Φ1, intersected with L is reducible into

two hyperplanes defined by linear forms L2 and L3 on the original space. Then Φ1 ≡
L2L3 (mod L). Therefore, for some linear form L4, Φ1 = LL4 + L2L3, so it has rank

≤ 4, which is a contradiction to the hypothesis. Hence, we have shown that for every
hyperplane by L,

codim(Φ1 ∩ Φ2 ∩ L) < 2.

Now, suppose the intersection of Φ1 and Φ2 is entirely contained in the union of
hyperplanes by L1, . . . , Ln. Then

min
1≤i≤n

codim(Φ1 ∩ Φ2 ∩ Li) = codim(Φ1 ∩ Φ2) = 2,

which is impossible. This completes the proof.

We will need the following weak approximation of quadrics.

Proposition 3.3 There exists a function F : N → N with the following property: Given

a non-negative integer n, a number field K, a K-vector space V , an n-dimensional K-

vector space of quadratic forms W ⊂ Sym2 V on V , and a finite set of places S of K,

if for every non-zero w ∈ W there exists an F(n)-dimensional subspace Vw ⊂ V on

which w is non-degenerate, then the intersection of all quadrics in W , XW (K), is dense

in
∏

v∈S XW (Kv).

Proof See [8, Theorem 2] for the complete proof, where we use induction on the

dimension n of W to find points in XW (K). Note that we show in [8] that such a
function F(n) can be given explicitly by F(n) = 2n2 + 2n − 1.

Proposition 3.4 Let K be a totally imaginary number field. If E/K has a K-rational

point P such that 2P 6= O and 3P 6= O, then for some even integer n, there is a projective

line over K in En−1/Sn
∼= Pn−1 as a projective closure of a base-point free linear system

of E such that the normalization of its preimage under the double cover is a curve of
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genus 0 over K in En−1/An which contains a divisor of a rational function on E of degree

n which has one double zero and all other zeros of odd order (including simple zeros).

Proof By Lemma 2.1, En−1/Sn
∼= Pn−1, which is isomorphic to the (n − 1)-dimen-

sional projective space P(H0(E,L(n(O)))).

If f is an elliptic function of degree n, holomorphic except at a unique pole O, the

vector space spanned by f and 1 defines a pencil of all divisors (a + b f ) + n(O) with
a, b ∈ C on E linearly equivalent to n(O), or equivalently, a line on En−1/Sn

∼= Pn−1.
Note that since P is neither 2-torsion nor 3-torsion, we have that −2P /∈ {P,O}. Now
we find an elliptic function f of degree n = 2k for some integer k, whose derivative

is of the form f ′
= lh2, where l has the divisor 2(P) + (−2P) − 3(O) and h is in

the vector space of elliptic functions defined over K with divisors ≥ (1 − k)(O). Let
y + ax + b = 0 be the affine tangent line at a K-rational point P and let l := y + ax + b.
Let f and f ′ be as follows:

Case 1 Suppose n ≡ 0(mod4). Let n = 4m for some integer m. For parameters
a0, . . . , am−1, b0, . . . , bm−3, d0, . . . , d2m−2, c1, . . . , c2m to be determined and the given
tangent line l = 0, let

f (z) = y(d2m−2x2m−2 + · · · + d1x + d0) + c2mx2m + · · · + c1x

and

f ′(z) = l(h(z))2,

where h(z) = am−1xm−1 + · · · + a1x + a0 + y(xm−2 + · · · + b1x + b0).

Case 2 Suppose n ≡ 2( mod 4). Let n = 4m + 2 for some integer m. For parameters
a0, . . . , am−1, b0, . . . , bm−2, d0, . . . , d2m−1, c1, . . . , c2m+1 to be determined and the
given tangent line l = 0, let

f (z) = y(d2m−1x2m−1 + · · · + d1x + d0) + c2m+1x2m+1 + · · · + c1x

and

f ′(z) = l(h(z))2,

where h(z) = xm + am−1xm−1 + · · · + a1x + a0 + y(bm−2xm−2 + · · · + b1x + b0).

From the equations obtained by equating the coefficient of each xi y j-term of f ′(z)
with that of the derivative of f (z) given in the above form (equivalently, by equating

f with the integral of f ′ along two periods of E), we get two quadratic equations
over K in n−4

2
variables, namely a0, . . . , am−1, b0, . . . , bm−4 and bm−3 if n = 4m, and

a0, . . . , am−1, b0, . . . , bm−3 and bm−2 if n = 4m+2. Homogenize these two quadratic
equations to get two quadratic forms in n−4

2
+ 1 variables with a new variable. We

need to find a common isotropic vector over K of two quadratic forms which defines
a common solution of two original quadratic equations, (that is, which is outside the
hyperplane at ∞) and defines f ′

= lh2 such that h(−2P) 6= 0 in the above notation
of cases 1 and 2.

https://doi.org/10.4153/CJM-2006-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-032-4


806 B.-H. Im

s

O

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

I1 -�

@
@@I

C1

I2

�
�
�
����

�
�

���

�����

C2

Figure 1: A fundamental domain D of E with two periods C1 and C2

Let D be a fundamental domain of E and C1 and C2 be two line segments dividing
the fundamental domain of E into four congruent parallelograms and I1 and I2 the
first half line segments of C1 and C2 respectively, as shown in Figure 1.

Let M = max{F(2), 5}, where F is the function given in Proposition 3.3. We can
choose 2M holomorphic functions f1, . . . , f2M on I1 ∪ I2 such that

∫

I1

l fi f j dz =

∫

I2

l fi f j dz = 0, for i 6= j,

∫

I1∪I2

l f 2
i dz =

∫

I1

l f 2
i dz 6= 0, for i = 1, 2, . . . ,M,

∫

I1∪I2

l f 2
i dz =

∫

I2

l f 2
i dz 6= 0, for i = M + 1, , . . . , 2M.

Since the Weierstrass ℘ -function x = ℘ (z) : I1 ∪ I2 → C is injective, its inverse
℘−1 is well defined on the image ℘ (I1 ∪ I2) and the image is a compact contractible

set in C. Hence the complement of ℘ (I1 ∪ I2) is connected. So by Mergelyan’s The-
orem [15, p. 390], each holomorphic function fi ◦ ℘−1 : ℘ (I1 ∪ I2) → C can be
approximated by some polynomial pi(z), for each i = 1, . . . , 2M. Moreover, since
K is a totally imaginary number field, K is dense in

(∏

v∈S∞
C
)

with respect to the

usual topology for any embeddings of K in C, where S∞ is the set of all infinite places.
Hence we may assume that coefficients of pi(z) are in K. So each fi can be approxi-
mated by the polynomial pi(x) in terms of x = ℘ (z) with coefficients in K.

Let W be a space of dimension ≥ 2M generated by elliptic functions including all

of pi(x) for i = 1, . . . , 2M. Integrating functions in W defines quadratic polynomials
and by homogenizing them, we get quadratic forms. Then any two quadratic forms
Φ1 and Φ2 over K obtained from this homogenization of the integration on W satisfy
the property:

for any r, s ∈ K not both zero, any form in the pencil rΦ1 + sΦ2 is of rank ≥ M.

For example, if r = 0, then the M functions pi(x) for i = M + 1, . . . , 2M generate
an M-dimensional non-degenerate subspace of W for the form rΦ1 + sΦ2. If s = 0,
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then pi(x) for i = 1, . . . ,M generates an M-dimensional non-degenerate subspace
for rΦ1 + sΦ2. And if neither r nor s is zero, either the M functions pi(x) for i =

M + 1, . . . , 2M or for i = 1, . . . ,M generate an M-dimensional non-degenerate
subspace.

Hence, any pencil of Φ1 and Φ2 has rank ≥ F(2), since M ≥ F(2). Then since K is
totally imaginary, the previous argument implies that the hypothesis of Proposition

3.3 is satisfied. So by Proposition 3.3 it has the weak approximation. Therefore,
the set of K-rational points in the intersection of Φ1 and Φ2 on a non-degenerate
subspace of dimension ≥ M is Zariski-dense in the variety defined by Φ1 and Φ2.

Let L be the hyperplane at ∞ and L ′ the hyperplane defined by h(−2P) in the

above notation of f ′
= lh2 in case 1 or 2. By Lemma 3.2 the intersection of two

forms Φ1 and Φ2 is not contained in the union of two hyperplanes defined by L and
L ′. Hence, by the density of K-rational points, we can get a nontrivial common
zero over K which is a common zero of two original quadratic equations which de-

fines an elliptic function f such that f ′
= lh2 for some elliptic function h such that

h(−2P) 6= 0.

Now we take the projective closure V over K of the linear subspace of

P(H0(E,L(n(O))))

generated by f and the constant function 1 over K. Note that the linear space gener-
ated by f and 1 is a base-point free linear system on E from the construction. Then
V is isomorphic to the projective line P1(K). And the normalization X ⊆ En−1/An

of its preimage under the 2-1 map from En−1/An to En−1/Sn meets the ramification

divisor wherever the divisor f −λ for some λ has a zero or a pole of even multiplicity
≥ 2, that is, wherever its derivative ( f − λ) ′ = f ′ has a zero or a pole of odd or-
der. And by Lemma 3.5 X has only two points which meet the ramification locus at
−2P and O to odd contact order. Hence by the Hurwitz formula, the normalization

of X in En−1/An is a curve of genus 0 defined over K. By subtracting the constant
λp = f (−2P) from f , the function f − λp has one double zero at −2P and other
zeros of odd order, since f ′ has only one simple zero at −2P and other zeros of even
order.

Lemma 3.5 Under the same notation as in the proof of Proposition 3.4, if an elliptic

function f has a zero (or a pole) at a point P of order m, the contact order of f with the

ramification locus of the double cover from En−1/An onto En−1/Sn at P is m − 1.

Proof Suppose f has a zero α corresponding to the zero P of order m. Let f (z) =

(z − α)m(a0 + a1(z − α) + · · ·+ higher terms in (z − α)), where a0 6= 0.

Note that the ramification locus under the quotient map from En−1 to En−1/Sn is

the zero locus of
∏

i< j(zi − z j), where zi are zeros of f − λ for a parameter λ, that
is, the quotient map is ramified whenever f − λ has a double zero. By considering
the ramification index, since the degree of the map from En−1/An onto En−1/Sn is
2, the ramification locus under the double cover from En−1/An onto En−1/Sn is the
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zero locus of the discriminant of f − λ, that is,

∏

i< j

(zi − z j)
2,

where zi are zeros of f − λ. If we write the discriminant of f − λ in terms of λ with
small |λ|, then its degree with respect to λ is the contact order of f at P. We may
assume that α = 0 by translation. Hence we have

f − λ = 0 ⇔ zm(a0 + a1z + a2z + · · · + higher terms in z) − λ = 0.

By Hensel’s Lemma [19, Chapter IV, Lemma 1.2] on C[[λ
1

m ]], all zeros of zm(a0 +
a1z + a2z + · · · + higher terms in z) − λ are

zi =

( λ

a

) 1

m

ζ i
m + Ai(λ), for 0 ≤ i ≤ m − 1,

where ζm is a primitive m-th root of unity, and Ai(λ) is a convergent Puiseux series

in λ, that is, a convergent power series in λ
1

m . Hence the degree of the discriminant
of f −λ with respect to λ is 1

m
·
(

m
2

)
· 2 = m− 1, which is the contact order at α with

the ramification locus. For a pole, we proceed similarly, replacing f by 1/ f .

Next, we examine the Galois theory of the fixed fields K
σ

under automorphisms
σ ∈ Gal(K/K). We give some definitions.

Definition 3.6 A field F is (formally) real, if −1 is not a sum of squares in F. A real

field F is real closed if no algebraic extension of F is real.

Lemma 3.7 Let K be a number field. Then for any σ ∈ Gal(K/K),

Gal(K/K
σ

) ∼=
∏

p∈S

Zp or Z/2Z,

where S is a set of prime integers. In particular, if K is totally imaginary, Gal(K/K
σ

) has

no torsion element, hence, the Brauer group Br(K
σ

) of the fixed field under σ is trivial.

Proof Let σ ∈ Gal(K/K). Then Gal(K/K
σ

) is isomorphic to the closure of the
subgroup generated by σ in the sense of the Krull topology by [13, Theorem 17.7].
Hence,

Gal(K/K
σ

) ∼=
∏

p∈S

Zp ×
∏

p∈T

Z/pmp Z ∼=
∏

p∈S

〈σp〉 ×
∏

p ∈ T〈τp〉,

where S and T are disjoint sets of primes, mp are positive integers, and τp has a finite

order pmp . But since any element in Gal(K/K
σ

) has the order 1, 2 or ∞ by Artin–
Schreier theorem [9, Theorem 25.1], the torsion part of Gal(K/K

σ
) is trivial or Z/2Z.

Moreover, if there are q ∈ T and p ∈ S ∪ (T − {q}), then, τq is an involution and
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its fixed field K
τq

is a real closed field by [9, Theorem 25.13]. Also σ−1
p τqσp = τq,

so σp induces a nontrivial automorphism of K
τq

. This contradicts the uniqueness
of an isomorphism between two real closed fields [10, XI, §2, Theorem 2.9, p. 455].
Therefore,

Gal(K/K
σ

) ∼=
∏

p∈S

Zp or Z/2Z.

On the other hand, if Gal(K/K
σ

) is isomorphic to Z/2Z generated by τ , then
[K :K

τ
] = 2, so K

τ
is real-closed by [9, Theorem 25.13], so it has a real embedding

by [9, Theorem 25.18]. Hence if K ⊆ K
τ

is totally imaginary, then Gal(K/K
σ

) is
isomorphic to

∏

p∈S Zp. Then since K
∗

is a divisible topological
∏

p∈S Zp-group,

H2(
∏

p∈S Zp,K
∗

) is trivial by [14, Proposition 1.6.13.(ii)]. Therefore, Br(K
σ

) = 0.

Lemma 3.8 Let K be a totally imaginary number field. Then for any σ ∈ Gal(K/K),

a conic curve X defined over K has a K
σ

-rational point.

Proof Let σ ∈ Gal(K/K). Since a conic can be identified with an element of Br(K
σ

)
as a Severi–Brauer variety of dimension 1, and Br(K

σ
) = 0 by Lemma 3.7, a conic is

isomorphic to P1 over K
σ

. Equivalently, it has a K
σ

-rational point.

Let f ∈ K(t1, . . . , tm)[X1, . . . ,Xn] be a polynomial with coefficients in the quo-
tient field K(t1, . . . , tm) of K[t1, . . . , tm] which is irreducible over K(t1, . . . , tm). We
define

HK( f ) = {(a1, . . . , am) ∈ Km | f (a1, . . . , am,X1, . . . ,Xn) is irreducible over K}

to be the Hilbert set of f over K. We need the following lemma.

Lemma 3.9 Let L be a finite separable extension of K and let f ∈ L(t1, . . . , tm)
[X1, . . . ,Xn] is an irreducible polynomial over the quotient field L(t1, . . . , tm). Then

there exists a polynomial p ∈ K[t1, . . . , tm,X1, . . . ,Xn] such that p is irreducible over

K(t1, . . . , tm) and HK (p) ⊆ HL( f ).

Proof For a given irreducible polynomial f ∈ L(t1, . . . , tm)[X1, . . . ,Xn], by [2,

Lemma 11.6], there is an irreducible polynomial q ∈ K(t1, . . . , tm)[X1, . . . ,Xn] such
that HK (q) ⊆ HL( f ). By [2, Lemma 11.1], there is an irreducible polynomial p ∈
K[t1, . . . , tm,X1, . . . ,Xn] which is irreducible over K(t1, . . . , tm) such that HK(p) ⊆
HK (q). Hence the Hilbert set HL( f ) of f over L contains the Hilbert set HK (p) of p

over K.

Let G be a finite group and Λ an n-dimensional G-representation. Then G acts on
E ⊗ Λ through its action on Λ. Define E ⊗ Λ to be the abelian variety representing

the functor S 7→ E(S) ⊗Z Λ, where S is any scheme over the ground field and E(S)
is the functor of points associated to E. Then as an abelian variety E ⊗ Λ is just En,
since the action of G on E ⊗Λ is only though Λ. With this background, we prove the
following proposition.
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Proposition 3.10 Let K be a totally imaginary number field and σ ∈ Gal(K/K). Let

G be a nontrivial finite group and Λ an n-dimensional integral G-representation for a

positive integer n and G act on En ∼= E ⊗ Λ through Λ. Suppose that there is a curve

X of genus 0 in En/G over K. Suppose the preimage of X under the quotient map by G

is decomposed into k irreducible curves C1, . . . ,Ck such that each C j → X is a Galois

covering with Gal(C j/X) ≤ G. Then

(i) X cannot be decomposed completely, i.e., k < |G|;
(ii) Gal(C j/X) are conjugate to each other in G, for j = 1, . . . , k;

(iii) for an irreducible component C ⊆ En in the preimage of X, there exist a finite ex-

tension F of K and an infinite sequence {Li/F}∞i=1 of linearly disjoint finite Galois

extensions of F such that F ⊆ K
σ

and for each i,

(1) Gal(Li/F) is naturally isomorphic to Gal(C/X) as a subgroup of G, and

(2) there exists a submodule Mi of E(Li)⊗Q isomorphic to Λ⊗Q as a Gal(Li/F)-

module via the inclusion Gal(Li/F) →֒ G.

In particular, if K is an arbitrary number field and X is isomorphic to P1 over K, then

this holds with F = K. And if the preimage of X in En is irreducible, then each Gal(Li/F)

is isomorphic to G itself.

Proof Let σ ∈ Gal(K/K). If the curve X of genus 0 has a K-rational point, then X ∼=
P1 over K. If not, it is isomorphic to a conic curve. Then since K is totally imaginary,
by Lemma 3.8, for every σ ∈ Gal(K/K), X has a K

σ
-rational point. Choose a point

of X over K
σ

and let F be the field of definition of this point. Then F ⊆ K
σ

, F is a
finite extension of K, and X is isomorphic to P1 over F. Now we consider X ⊆ En/G

as P1 over F. Note that if X ∼= P1 over K, then we can take F = K.

First, suppose that the preimage of the curve X in En under the quotient map by
G is an irreducible curve C with the function field F(C), that is, k = 1. Then the
restricted quotient map φ : C → X by G realizes F(C) as a Galois extension of the

function field F(x) of X(F) ∼= P1
F with the Galois group isomorphic to G. By the

theorem of the primitive element, there exists t ∈ F(C) such that F(C) = F(x, t) and

gmtm + gm−1tm−1 + · · · + g1t + g0 = 0,

where gi are polynomials in F[x]. Choose a minimal polynomial of t over F(x) and
clear its denominators so that we let f (x, y) be a minimal polynomial of t in F[x, y].
Then f is absolutely irreducible over F, so it is irreducible over F(x).

By [18, Lemma], the set
⋃

[L : F]≤k E(L)tor is a finite set, where the union runs over
all finite extensions L of F whose degree over F is ≤ k, where k = |G|. Let L ′ be a finite

field extension of F over which all points of
⋃

[L : F]≤k E(L)tor are defined. Applying
Lemma 3.9 and [2, Lemma 12.12] to f over L ′, we can choose x1 ∈ HF( f ) ∩ K such
that the specialization x 7→ x1 preserves the Galois group G and there is a point Q1 of
C ⊆ En ∼= E ⊗Λ in the preimage φ−1((1 : x1)) of (1 :x1) ∈ P1(F) ∼= X under φ which

is defined over a finite Galois extension L1 of F with Gal(L1/F) ∼= G. That is, the
preimage of (1 : x1) under φ consists of a single point, Spec L1. Let Λ

∗ be the dual of Λ

with the action of G. Then the morphism from Spec L1 to E⊗Λ induces a Z[G]-linear
map g : Λ

∗ → E(L1) given by λ∗ 7→ ∑

j λ
∗(λ j)P j , where Q1 =

∑

j P j ⊗λ j ∈ E ⊗Λ.
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Since f (x1, y) is irreducible over L ′, two extensions L1 and L ′ are linearly disjoint
over F. So for λ∗ ∈ Λ

∗, g(λ∗) ∈ E(L1) is a non-torsion point. Then if we let

M1 ⊆ E(L1) ⊗ C be the submodule generated by the points of E(L1) in the image of
Λ
∗ under the given map g in the above, it is a submodule of E(L1)⊗Q isomorphic to

Λ
∗ ⊗ Q as a Gal(L1/F)-module via the natural isomorphism Gal(L1/F) ∼= G. Since

Λ is a finite dimensional integral representation, it is isomorphic to its dual Λ
∗ as

G-representations. So M1 is isomorphic to Λ ⊗ Q as a Gal(L1/F)-module.

Now suppose the preimage of X is decomposed into a union of irreducible curves
C1 ∪ C2 ∪ · · · ∪Ck, where k ≥ 2. Then G acts transitively on the set of k curves and
each Gal(C j/K) can be identified with the stabilizer of C j in G, so Gal(C j/K) are
conjugate to each other. If k = |G|, then this implies that C j

∼= P1 in En, which is

impossible, because no abelian variety contains P1 as a subvariety. So k < |G|.
Let C be one of irreducible components C j . Applying the same argument with

the quotient map from the fixed component C to X, we get a Galois extension L1 of F

with the Galois group Gal(L1/F) which is isomorphic to the stabilizer Gal(C/X) ≤ G

of C in G, and a Gal(L1/F)-submodule M1 of E(L) ⊗ Q generated by n non-torsion
points of E(L1) which is isomorphic to Λ⊗ Q as a Gal(L1/F)-module via the natural
inclusion Gal(L1/F) →֒ G.

Inductively, suppose we have found linearly disjoint finite Galois extensions
L1, L2, . . . , Lk of F and for each i = 1, 2, . . . , k, there is a submodule Mi of E(Li)⊗ Q

isomorphic to Λ⊗ Q as a Gal(Li/F)-module via the natural inclusion Gal(L1/F) →֒
G. By applying Lemma 3.9 and [2, Lemma 12.12] to f over the composite field
L ′L1L2 · · · Lk, there is a point xk+1 ∈ X(F) such that the specialization x 7→ xk+1

preserves the Galois group G, and a point in the preimage of xk+1 in C is defined over
a Galois extension Lk+1 of F which is linearly disjoint from L ′L1L2 · · · Lk and has the
Galois group isomorphic to a subgroup of G. Then, similarly, we get a Gal(Lk+1/F)-
submodule Mk+1 generated by n non-torsion points of E(Lk+1) isomorphic to Λ ⊗ Q

via Gal(Lk+1/F) →֒ G. This completes the proof.

Corollary 3.11 Let K be a totally imaginary number field and E/K an elliptic curve

over K with a K-rational point such that 2P 6= O and 3P 6= O. Let Λ be the (n− 1)-di-

mensional irreducible quotient representation space of the natural permutation repre-

sentation of the alternating group An by the trivial representation. Let σ ∈ Gal(K/K).

Then for some even integer n, there exists a finite extension F ⊆ K
σ

over K and an

infinite sequence {Li/F}∞i=1 of linearly disjoint finite Galois extensions of F such that for

each i,

(i) Gal(Li/F) acts transitively on {1, 2, . . . , n} as a subgroup of An, and

(ii) there exists a submodule Mi of E(Li) ⊗ Q isomorphic to the (n − 1)-dimensional

irreducible quotient representation space Λ ⊗ Q as a Gal(Li/F)-module via the

natural inclusion Gal(Li/F) →֒ An.

Proof By Proposition 3.4, there is a curve X of genus 0 defined over K in En−1/An,
for some even integer n. So by Proposition 3.10, there exist such an infinite se-
quence of Galois extensions Li and submodules Mi of E(Li) ⊗ Q isomorphic to
the (n − 1)-dimensional irreducible quotient representation space Λ ⊗ Q of An as
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a Gal(Li/F)-module via the natural inclusion Gal(Li/F) →֒ An. And by Proposition
3.4, Proposition 3.10, and Lemma 2.7, for each Gal(Li/F) as a subgroup of An, there

is a subgroup Hi ≤ Sn such that Hi ∩ An
∼= Gal(Li/F) and which acts transitively on

{1, 2, . . . , n}. Moreover, the image of X given by Proposition 3.4 under the 2-to-1
map from En−1/An onto En−1/Sn has a divisor which decomposes into one divisor
of ramification degree 2 and other divisors of odd degree. So by Lemma 2.8, Hi con-

tains a transposition. Therefore, by Lemma 2.2, Gal(Li/F) also acts transitively on
{1, 2, . . . , n}.

Lemma 3.12 Let E/K be an elliptic curve over a number field K. Let d be a positive

integer ≥ 2. Suppose {Li/K}∞i=1 is an infinite sequence of linearly disjoint finite Galois

extensions of K whose degrees [Li :K] are ≤ d and {Pi}∞i=1 is an infinite sequence of

points in E(K) such that for each i, Pi ∈ E(Li) but Pi /∈ E(K). Then there is an integer

N such that {Pi}i≥N is a sequence of linearly independent non-torsion points of E.

Proof By [18, Lemma], the set S =
⋃

[L : K]≤d E(L)tor is a finite set, where the union
runs all over finite extensions L of K whose degree over K is ≤ d. So there is a finite
extension F of K over which all points of S are defined and there is an integer n such

that nP = O, for all P ∈ S. Let n be such a fixed integer and let T be the set of
all points P of E(K) such that nP ∈ E(K). Then since E(K) is finitely generated by
the Mordell–Weil theorem [19, Chapter VIII], there is a finite extension F ′ of K over
which all points of T are defined. Then all but finitely many fields Li in the given

sequence {Li/K}∞i=1 are linearly disjoint from F and F ′ over K. This implies that
there is an integer N such that points Pi for all i ≥ N are non-torsion points in E(Li).
And by linear disjointness of fields Li , F and F ′ over K, we have that for all i ≥ N ,

E(Li) ∩ S ⊆ E(K)tor and E(Li) ∩ T ⊆ E(K).

Note that since each Pi /∈ E(K), we have that for any integer m ≥ N and for each i

such that N ≤ i ≤ m, there is an automorphism τi ∈ Gal(K/K) such that τi|L j
=

idL j
for all N ≤ j 6= i ≤ m, but τi(Pi) 6= Pi . Moreover, we may choose such

a τi that τi(Pi) − Pi is not a torsion point. In fact, otherwise, for every restriction
τi|Li

∈ Gal(Li/K) of τi , τi|Li
(Pi) − Pi is a torsion point in E(Li). Hence, τi|Li

(Pi) −
Pi ∈ E(Li) ∩ S ⊆ E(K)tor . Then n(τi|Li

(Pi) − Pi) = O so τi|Li
(nPi) = nPi for all

τi|Li
∈ Gal(Li/K). This implies nPi ∈ E(K) so Pi ∈ T ∩ E(Li) ⊆ E(K) which

contradicts the assumption that Pi /∈ E(K). Hence, we conclude that for each i such
that N ≤ i ≤ m, there is an automorphism τi ∈ Gal(K/K) such that τi|L j

= idL j
for

all N ≤ j 6= i ≤ m, but τi(Pi) − Pi is a non-trivial and non-torsion point of E.
Let m ≥ N be a given positive integer. Suppose that for some integers ai ,

aN PN + aN+1PN+1 + · · · + amPm = 0.

By the claim above, for each i = N,N + 1, . . . ,m, there is an automorphism τi ∈
Gal(K/K) such that τi|L j

= idL j
for all 1 ≤ j 6= i ≤ m but τi(Pi)− Pi is a non-trivial

and non-torsion point of E. Now we apply such τi to get

aN PN + aN+1PN+1 + · · · + ai−1Pi−1 + aiτi(Pi) + ai+1Pi+1 + · · · + amPim
= 0.
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So by subtracting, we get ai(Pi − τi(Pi)) = 0, which implies ai = 0. Hence any
non-torsion points in {Pi}i≥N are linearly independent.

Theorem 3.13 Let K be a totally imaginary number field. Suppose E/K has a K-

rational point P such that 2P 6= O and 3P 6= O. Then for each σ ∈ Gal(K/K), E(K
σ

)

has infinite rank.

Proof Let σ ∈ Gal(K/K). By Proposition 3.4 and Corollary 3.11, there are a finite
extension F ⊆ K

σ
over K and an infinite sequence {Li/F}∞i=1 of linearly disjoint

finite Galois extensions of F such that the Galois group Gal(Li/F) acts transitively
on {1, 2, . . . , n} as a subgroup of An for some even integer n. And for each i, there

is a Gal(Li/F)-submodule of E(Li) ⊗ Q which is isomorphic to the restriction of
the natural (n − 1)-dimensional quotient of the permutation representation of An to
Gal(Li/F).

Let σi = σ|Li
be the restriction of σ to Li . Then since F ⊆ K

σ
, σi |F = idF .

Therefore, σi ∈ Gal(Li/F) ≤ An. Let E(Lσi

i ) be the group of fixed points of E(Li)
under σi . Then obviously, E(Lσi

i ) ⊆ E(K
σ

). Since n is even, each Mi of E(Li)⊗ Q has

a fixed element vi under σi by Lemma 2.6 and Lemma 2.5.

Note that each vi is not a torsion point and not defined over F. In fact, if vi is de-

fined over F, then vi is fixed under every element in Gal(Li/F). But since Gal(Li/F)
acts transitively on {1, 2, . . . , n}, by Lemma 2.3 there is no fixed vector of the restric-
tion to Gal(Li/F) of the (n − 1)-dimensional quotient of the permutation represen-
tation of An ≤ Sn. Then by Lemma 3.12 there is an integer N such that {vi}i≥N are

linearly independent.

Since vi ∈ E(Lσi

i ) ⊗ Q for each i, the module generated by {vi}∞i=1 over Q is a

submodule of E
(∏∞

i=1 Lσi

i

)
⊗ Q . Hence

E(K
σ

) ⊗ Q ⊇ E
( ∞∏

i=1

Lσi

i

)

⊗ Q ⊇ {vi}∞i=1 ⊇ {vi}i≥N

is infinite dimensional.

4 Infinite Rank over the Fixed Fields under Complex Conjugation Au-
tomorphisms

As we have seen in the proof of Proposition 3.4 and Lemma 3.8, if K has no real
embeddings, then the fixed field K

σ
under an element σ ∈ Gal(K/K) has no real

embeddings and there exists a rational curve over K
σ

in the quotient space En−1/An

for some n. So if K
σ

has a real embedding, there may be a potential obstruction to
find a rational curve over K

σ
in En−1/An. So this is the only difficulty in proving the

rank of E(K
σ

) is infinite.

In this section, we consider complex conjugation automorphisms of K and prove
that without hypothesis on rational points of elliptic curves and the ground field,
the rank of an elliptic curve over the fixed field under every complex conjugation
automorphism is infinite.
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Definition 4.1 A field F is called an ordered field with the positive set P, if F =

P ⊔ {0} ⊔ −P, a disjoint union, where P is a subset of F closed under addition and

multiplication.

Now we prove the following two lemmas by using the relation between real fields
(see Definition 3.6) and ordered fields.

Lemma 4.2 If a field F is ordered (or real) and algebraic over Q , then F has a real

embedding θ, that is, θ(F) ⊆ R ∩ F, where F is an algebraic closure in C.

Proof By [9, Corollary 25.22, p. 411], a field F is ordered if and only if it is real.
Hence, F is real. And since F is real and algebraic over Q , by [9, Theorem 25.18,
p. 410] there exists an isomorphism from F into R ∩ F.

We give some equivalent statements of complex conjugation automorphisms.

Lemma 4.3 For an automorphism σ ∈ Gal(K/K) the following statements are equiv-

alent.

(i) K
σ

has a real embedding θ, that is, θ(K
σ

) ⊆ R ∩ K.

(ii) σ is a complex conjugation automorphism, that is, the order of σ in Gal(K/K)
is 2.

(iii) K
σ ∼= R ∩ K.

Proof Suppose (i). Then

〈σ〉 ∼= Gal(K/K
σ

) ∼= Gal(K/θ(K
σ

)) D Gal(K/R ∩ K) ∼= Z/2Z,

since [K : R ∩ K] = 2. Hence, Gal(K/K
σ

) has a torsion subgroup of order 2. Then
by Lemma 3.7 Gal(K/K

σ
) itself is isomorphic to Z/2Z. Since σ is not trivial, we have

Gal(K/K
σ

) ∼= Gal(K/R ∩ K), hence, the order of σ is 2, which implies (ii). And
K
σ ∼= R ∩ K, which implies (iii).

Now we suppose (iii). Then the order of σ equals the degree [K :K
σ

] which is
equal to [K : R ∩ K)] = 2, and this implies (ii).

Suppose (ii). Then [K : K
σ

] = 2. By [9, Theorem 25.13], K
σ

is real closed. Then
it is real and algebraic over Q . So by Lemma 4.2, it has a real embedding. This

implies (i).

The following lemma gives the density of the Hilbert sets over a number field K

with respect to any real embeddings of K into R.

Lemma 4.4 Let K be a number field and τ1, . . . , τm be a family of real embeddings of

K. For i = 1, 2, . . . , k, let fi(x, y) ∈ K[x, y] be irreducible polynomials over K(x). Let

HK ( fi) be the Hilbert set of fi over K. Then

( k⋂

i=1

HK ( fi)
)

∩
( m⋂

j=1

τ−1
j (I)

)

6= ∅,
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for any open interval I in R.

Proof This is a special case of [4, Lemma 3.4].

Theorem 4.5 Let K be a number field, Kab the maximal abelian extension of K, and

E/K an elliptic curve over K. Then for any complex conjugation automorphism σ ∈
Gal(K/K), E((Kab )σ) has infinite rank. Hence, E(K

σ
) has infinite rank.

Proof For a complex conjugation automorphism σ ∈ Gal(K/K), there exists a real

embedding θ such that θ(K
σ

) ⊆ R∩K, by Lemma 4.3. Note that σ(
√
−1) = −

√
−1,

since otherwise σ(
√
−1) =

√
−1 and then

√
−1 ∈ K

σ
and 0 < (θ(

√
−1))2

=

θ(−1) = −1 which is a contradiction. And for any element α ∈ K such that θ(α) >
0, σ(

√
α) =

√
α, since otherwise, σ(

√
α) = −√

α, hence σ(
√
−α) =

√
−α, then√

−α ∈ K
σ

and 0 < (θ(
√
−α))2

= −θ(α) < 0 which is a contradiction.

Let us fix a Weierstrass equation of E/K, y2
= x3 + ax + b, for a, b ∈ K. Then

there exists α ∈ R such that x3 + θ(a)x + θ(b) > 0 for all x > α. Let I = (α,∞) be
the open interval of all real numbers > α. Let f (x, y) = y2 − (x3 + ax + b). Then f

is an absolutely irreducible polynomial in K[x, y], hence irreducible over K(x). Let
HK ( f ) be the Hilbert set of f over K. Note that the restriction θ|K of θ to K is a real
embedding of K.

By Lemma 4.4 there is an element x1 ∈ HK( f )∩θ|−1
K (I). Then x3

1 +ax1 +b ∈ K and

since θ(x1) > α, θ(x3
1 +ax1 +b) is positive, hence σ(

√

x3
1 + ax1 + b) =

√

x3
1 + ax1 + b.

Hence σ fixes
√

x3
1 + ax1 + b. Let K1 = K(

√

x3
1 + ax1 + b). Then since f (x1, y) is

irreducible in K[y], K1 is a quadratic extension of K and K1 ⊆ K(σ).

Inductively, suppose we have constructed linearly disjoint quadratic extensions
K1, . . . ,Kn−1 of K such that Ki = K(

√

x3
i + axi + b) for xi ∈ HK( f ) ∩ θ|−1

K (I). Let
Ln−1 = K1 · · ·Kn−1 be the composite field extension over K. By Lemma 4.4 again,

there is xn ∈ HLn−1
( f )∩θ|−1

K (I). Let Kn = K(
√

x3
n + axn + b). Then, similarly, we can

show that Kn is a quadratic extension of K and Kn ⊆ K(σ). Moreover, Kn is linearly
disjoint from all K1,K2, . . . ,Kn−1, since xn ∈ HLn−1

( f ).

Hence we have obtained {xi}∞i=1 ⊆ K and an infinite sequence {Ki/K}∞i=1 of lin-

early disjoint quadratic extensions of K such that Ki = K(
√

x3
i + axi + b). For each i,

let Pi be a point of E(Ki) whose x-coordinate is xi . Note that Pi /∈ E(K), for each i.
Hence, by Lemma 3.12 for some N , {Pi}i≥N consists of linearly independent non-
torsion points of E(K). In particular, since Ki are abelian extensions of K and are

fixed under σ, Pi are points of E((Kab )σ). Hence

E((Kab )σ) ⊗ Q ⊇ E
( ∞∏

i=N

Ki

)

⊗ Q ⊇ {Pi ⊗ 1}i≥N

is infinite dimensional. And E(K
σ

) has infinite rank as well.
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5 More General Result: E over Arbitrary Number Fields with a Ratio-
nal Point Which Is Neither 2-Torsion Nor 3-Torsion

In this section, we prove a more general result than the result of Theorem 3.13 for

E/K with a rational point P such that 2P 6= O and 3P 6= O without hypothesis on
the ground field K. To do so, we need the following lemma and proposition.

Lemma 5.1 For a number field K let σ ∈ Gal(K/K). If σ does not fix any totally

imaginary finite extensions of K, then σ is a complex conjugation automorphism.

Proof Since K
σ

is algebraic over Q , by Lemma 4.2 and Lemma 4.3 it is enough to
show that K

σ
is ordered.

If L is a finite extension of K such that L ⊆ K
σ

, then L is not totally imaginary by
the assumption. Let τ1, . . . , τr be all real embeddings of L.

For α ∈ L∗ (= L − {0}), if τi(α) < 0 for all i = 1, . . . , r, then L(
√
α) is totally

imaginary (otherwise, L(
√
α) has a real embedding ρ and ρ|L = τi for some i. But

we have 0 < (ρ(
√
α))2

= ρ(α) = τi(α), which contradicts τi(α) < 0 for all i).
Hence, σ does not fix

√
α by the assumption, so σ(

√
α) = −√

α. This implies that
for β ∈ L∗ , if τi(β) > 0 for all i = 1, . . . , r, then σ(

√
−β) = −

√
−β, and since

τi(−1) = −1 < 0 for all i, σ(
√
−1) = −

√
−1; hence σ(

√
β) =

√
β.

Therefore, there is a homomorphism h :
∏r

i=1{±1} → {±1} such that the action
of σ on

√
α for α ∈ L∗ depends only on the image of the vector of signs of α under h.

In other words, for α ∈ L∗ we let f : L∗ → ∏r
i=1{±1} be a homomorphism defined

by

f (α) = (sign(τ1(α)), . . . , sign(τr(α))),

and g : L∗ → {±1} defined by

g(α) = sign
( σ(

√
α)√
α

)

,

so σ(
√
α) = g(α)

√
α, then there exists a homomorphism h :

∏r
i=1{±1} → {±1}

such that h ◦ f = g.
Note that from the above explanation on totally positive or totally negative ele-

ments of L∗, we get

(∗) h(−1, . . . ,−1) = −1 and h(1, . . . , 1) = 1.

In particular, there is always a vector consisting of −1 in all but one coordinate and 1

in the remaining coordinate which lies in the kernel of h. In fact, there are r vectors
consisting of −1 in all but one coordinate and 1 in the remaining coordinate:

v1 = (1,−1, . . . ,−1), v2 = (−1, 1,−1, . . . ,−1), . . . , vr = (−1, . . . ,−1, 1).

If all r vectors map to −1 under h, then

(−1)r
=

r∏

i=1

h(vi) = h
( r∏

i=1

vi

)

= h((−1)r−1, . . . , (−1)r−1).

https://doi.org/10.4153/CJM-2006-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-032-4


Mordell–Weil Groups 817

But this contradicts (∗) by taking an even and odd integer r. Therefore, at least one
of vi must map to 1, so it lies in the kernel of h. Without loss of generality, we may

assume that v1 maps to 1 under h.

Hence, we can choose α ∈ L∗ such that σ(
√
α) =

√
α and τ1(α) > 0 but τi(α) <

0 for all i = 2, . . . , r, and let L ′
= L(

√
α). Then L ′ is fixed under σ, so L ′ is not

totally imaginary. Let ρ be a real embedding of L ′. Then since α is positive only with
respect to τ1,

0 < (ρ(
√
α))2

= ρ(α) = ρ|L(α) = τ1(α).

Hence,

ρ(
√
α) = ±

√

τ1(α).

This shows that L ′ has exactly two real embeddings ρ1 and ρ2 such that

ρ1(
√
α) =

√

τ1(α), ρ2(
√
α) = −

√

τ1(α), and ρi|L = τ1, for i = 1, 2.

We proceed using the same argument on L ′ with two real embeddings ρi as before

and get a homomorphism h ′ : {±1} × {±1} → {±1} and f ′ : L ′∗ → {±1} ×
{±1} given by f (β) = (sign ρ1(β), sign ρ2(β)), g ′ : L ′∗ → {±1} given by g ′(β) =

sign(σ(
√
β)/

√
β), such that h ′ ◦ f ′

= g ′ on L ′∗. Again, we have that

(∗∗) h ′(−1,−1) = −1 and h ′(1, 1) = 1.

This implies that h ′ cannot send both (−1,−1) and (1, 1) to the same value 1 or −1.
So either h ′(−1, 1) = −1 and h ′(1,−1) = 1 or h ′(−1, 1) = 1 and h ′(1,−1) =

−1. Therefore, h ′ is the projection onto either the first factor or the second factor.

Without loss of generality, we assume that h ′ is the projection onto the first factor,
that is, g ′ is defined by the sign of the first real embedding ρ1. Then if β, γ ∈ L ′∗

such that
√
β,

√
γ are fixed under σ, then ρ1(β) > 0 and ρ1(γ) > 0 so ρ1(β+γ) > 0.

Hence,

g ′(β + γ) = h ′( f ′(β + γ)) = h ′(1, a) = 1, where a = 1 or − 1.

So σ(
√
β + γ) =

√
β + γ. And obviously, σ(

√
βγ) =

√
βγ.

We have shown that the set of β ∈ L ′∗ with σ(
√
β) =

√
β is closed under addition

and multiplication. Therefore, for any two elements a and b ∈ K
σ−{0}, by applying

the preceding argument and taking L as a finite extension of K generated by a2 and
b2, the set of squares in K

σ−{0} is closed under addition and multiplication. Hence,

if we let S be the set of squares in K
σ − {0} and denote the the set of non-squares in

K
σ − {0} by −S, then K

σ
= S ⊔ {0} ⊔ −S, a disjoint union. Hence, K

σ
is ordered

with the positive set S. This completes the proof.

Proposition 5.2 For a number field K, let σ ∈ Gal(K/K). If σ is not a complex

conjugation automorphism, then there is a totally imaginary finite extension L over K

such that L ⊆ K
σ

.
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Proof It follows from Lemma 5.1.

The following is our more general theorem without hypothesis on the ground field

or the given automorphisms.

Theorem 5.3 Let K be a number field and E/K an elliptic curve over K with a K-

rational point P such that 2P 6= O and 3P 6= O. Then for each σ ∈ Gal(K/K), the

rank of E(K
σ

) is infinite.

Proof Let σ ∈ Gal(K/K). If σ is a complex conjugation automorphism, then E(K
σ

)

has infinite rank by Theorem 4.5. If σ is not a complex conjugation automorphism,
then by Proposition 5.2 there is a totally imaginary finite extension L of K such that
L ⊆ K

σ
. Hence σ ∈ Gal(K/L). Now consider E/L defined over L by replacing the

ground field K by L. Then since the given K-rational point P is also defined over L,

we apply Theorem 3.13 to complete the proof.
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