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PRIMES IN SHORT SEGMENTS 
OF ARITHMETIC PROGRESSIONS 

D. A. GOLDSTON AND C. Y. YILDIRIM 

ABSTRACT. Consider the variance for the number of primes that are both in the 
interval \y,y + h] fory E [x,2x] and in an arithmetic progression of modulus q. We 
study the total variance obtained by adding these variances over all the reduced residue 
classes modulo q. Assuming a strong form of the twin prime conjecture and the Riemann 
Hypothesis one can obtain an asymptotic formula for the total variance in the range 
when 1 <h/q< JC 1 / 2 - 6 , for any e > 0. We show that one can still obtain some weaker 
asymptotic results assuming the Generalized Riemann Hypothesis (GRH) in place of 
the twin prime conjecture. In their simplest form, our results are that on GRH the same 
asymptotic formula obtained with the twin prime conjecture is true for "almost all" q 
in the range 1 < h/q < hl'4~e, that on averaging over q one obtains an asymptotic 
formula in the extended range 1 <h/q < Jil'2~e, and that there are lower bounds with 
the correct order of magnitude for all q in the range 1 <h/q<xl/3~e. 

1. Introduction. In this paper we study the mean square distribution of primes in 
short segments of arithmetic progressions. Specifically we examine 

(i.i) i(x,Kq) = Y,^*U(y+h'>v>a)-^(y^>a)-i^) dy 
a(q)Jx V <PWJ 

where 

(1.2) 1>(x\q,a)= E Mn), 
n<x 

n=a{q) 

A is the von Mangoldt function, and £*, ^ denotes a sum over a set of reduced residues 
modulo q. We shall assume throughout 

(1.3) x>2, 1 <q <x, 1 <h <x, 

the other ranges being without interest. As far as we are aware the only known result con­
cerning the general function I(x, h, q) is due to Prachar [11], who showed that, assuming 
the Generalized Riemann Hypothesis (GRH) 

(1.4) I(x,h,q)<^hxloglqx. 
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On the other hand, much more is known about the special cases where one of the two 
aspects, segment or progression, is trivialized. Indeed, our function I(x, h,q)is essentially 
a hybrid of the more familiar functions 

(1. 5) I(x, h) = f*(il>(y + h) - V>(y) - hf dy, 

the second moment for primes in short intervals, and 

(1.6) G(x,q) = E*U(x;q,a) - -£-) , 

which measures the total variance in the prime number theorem for arithmetic progres­
sions modulo q. We see I(x, h, 1) = I(x, h) so that I(x, h, q) generalizes I{x, h). We shall 
see for small q that I(x, h, q) behaves rather similarly to I(x, h). When h is about x then 
h~lI(x, q, h) will behave rather similarly to G(x, q). 

In studying I(x, /z, q) we will use some techniques from the recent papers Goldston [4] 
and Friedlander and Goldston [2] where I(x, h) and G(x, q) were examined. It is helpful 
in understanding the results we obtain to first consider what follows from the Riemann 
Hypothesis (RH) and a strong form of the twin prime conjecture. Let 

(1.7) Ni=N{ (k) = max(0, - * ) , N2 = N2{x, k) = min(x, x - k), 

and 

(1.8) E(x, k) = £ A(n)A(n + k) - ©(*)(* - \k\\ 
Ni(k)<n<N2(x,k) 

where we define as usual 

f 2C n D\k (*4) , if * is even, k ± 0; 
(1.9) S ( * ) = | %Kp~l} 

0, if&isodd; 

with 

(l.io) c=nfi 
p>2\ (P-l> 

THEOREM 1. Assume the Riemann Hypothesis and that for 0 < \k\ < x and some 

given e € (0, \) 

(1.11) £ ( * , £ ) < x K 

Then for 1 < h/q < x* ~€ and h <xwe have 

(1.12) I(x,h,q)~hx\og(jty 

In the smaller range q4e < h/q < x^~2e we have 

(1.13) I(x,h,q) = Axlog(^) - hx[l + log ^ + £ - ^ j + 0(h2) + Oe(h
l-*x). 
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In the case q = I we recover the formula 

(1.14) I(x,h)~hxlog(x/h), 1 <h<xL2~€ 

subject to the same hypotheses. We may conjecture that equation (1.14) hold for the ex­
panded range 1 < h < xl~e, since Goldston and Montgomery [5] showed this conjecture 
is equivalent under the RH to a pair correlation conjecture for zeros of the Riemann zeta-
function. Therefore we might conjecture the condition h/q <C xi~e for (1.12) might be 
relaxed. In the case of G(x, q) it was proved in [2] that under the same conjectures 

(1.15) G(x,q) ~ xlogq, x*+e <q <x. 

We mention that the case h/q < 1 may be dealt with trivially, and it is easy to show that 

(1.16) I(x,h,q) ~ hxlogx, l<h<q. 

The conjecture (1.11) is a very strong conjecture and one purpose of this paper is to 
see what cam be proved when we replace this conjecture with GRH. For certain small 
ranges of A and q our results are unconditionally true, but the results conditional on GRH 
are more interesting. 

We begin by proving that (1.12) and (1.13) holds for "almost all" q in a smaller range. 

THEOREM 2. Assume the Generalized Riemann Hypothesis. Then we have for h3'4 < 
Q<h that 

(1.17) Q/2<q<Ql KtlJ V l p\qP~in 

<C A'xlogT x + xmin(/^Q^ log^ Q,hQ) + h2(Q + x^ log3x). 

From this theorem we obtain the following almost-all result, where we mean by 
almost-all that all except at most o(Q) integers in the interval [Q/2, Q] satisfy the given 
property. 

COROLLARY. Assume the Generalized Riemann Hypothesis. Then for almost all q 
with h3/4 log5 x < q < h we have 

(1.18) I(x,h,q)~hx\og(jty 

and for h = o(x) in the range h3/4 log5 x < q < o(h/ log3 h) we have 

(1.19) / ( x , A , ? ) - A x l o g ( ^ ) - A x ( 7 + l o g | + X ; - ^ ) -

The range where the Corollary holds is 

h h* 
(i.20) - « r ^ ' 

q log3 x 
which is smaller than the range of validity in Theorem 1. 

Next we prove a Barban-Davenport-Halberstam type theorem for I(x, h, q). 
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THEOREM 3. Assume the Generalized Riemann Hypothesis. Then we have, for 1 < 
Q < h < x, 

Y, I(x, K q) = Qhxlogi^f) - cQhx + 0(xmm(Q^h± log* Q, Qh) 
(1.21) q<Q v h J 

+ 0(Qh2) + 0(h2 xlog6x), 

We thus obtain an asymptotic formula 

>Qx\ 

q<Q 

provided h 2 log6 x < Q < h < x. This gives a range of validity 

h h* 

(1.22) E ^ A , ? ) - e f a c l o g ( ^ ) 

t? log0* 

which is larger than the range in Theorem 2 and close to Theorem 1 when h is close to x. 
All of our results in Theorems 1, 2 and 3 contain an error term containing an 0(h2) 

which is significant as a second order term if h is close to or equal to x. This error term can 
be replaced by an explicit expression; we have chosen not to do so to keep the appearance 
of the results as simple as possible. We have retained these terms in Lemma 4, and it is 
straightforward to retain them through the paper and obtain the complete second order 
terms for h close to x. 

Finally we prove that we can obtain reasonable lower bounds for I(x, h, q) consistent 
with (1.7). 

THEOREM 4. Assume the Generalized Riemann Hypothesis. Then for any e > 0 and 
1 

1 < - <C f33 , we have 

(1.24) I(x,Kq) > y logf ( J ) V ) - 0(/*x(loglogx)3). 

Letting - = xa, we have in particular for any e > 0 and 0 < a < | , 

(1.25) I(x,h,q) > ( j - 2 a ~ e ) / z x l o g x -

Equation (1.25) improves the result obtained in [4]. This improvement is based on a 
suggestion of Heath-Brown. A similar improvement has been made in [3] for the result 
in [2]. 

Our results have interesting connections with the pair correlation of zeros of Dirichlet 
L-functions, and allow us to obtain new results that connect and extend the earlier work 
of Yildmm [12] and relate it to work of Ozliik [10]. We will present these results in a 
later paper. 
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2. Preliminaries and lemmas. In this section we relate I(x, h, q) to E(x, k) and ob­
tain the necessary lemmas for proving our results. 

We have 

I(x, h, q) = jy:[ Uiy + h\ q, a) - ijj(y; q, ajf dy 
a{q)Jx ' 

/ fj r2jc fox 

(2-1) -JM^I {W + h;q,a)-My,q,a))dy+ — 

2h „ h2x 
s, s2 + — . 

Now 
S 2 = E * E M") f Idy 

= £ A(nY(n,x,h), 

(n,q)=\ 

where 

(
n—x, forx < n <x + h 

h, forx + h<n<2x 
2x-n + h, for2x<n<2x + h 
0, elsewhere. 

Since 
(2-3) £ A(/i) = £ £ log /?<£ log /?< log<7 , x<n<2x+h p\q . v

1' . p\q 
(n,q)>\ ™ x<p»<2x+h ™ 

we conclude 

(2.4) S2= J2 A(nY(n,x, h) + 0(h logq). 
x<n<2x+h 

To evaluate sums involving f(n, x, h) we use the following result. 

LEMMA 1. Let C(x) = J2n<x cn- Then we have 

p2x+h rx+h 

cff(n,x,h)= j 
x<n<2x+h 

where cv = 0 ifv is not an integer. 

PROOF. Since the left-hand side is 

r2x+h rlx+h 

r2x+h rx+h 

(2. 5) Yl ctf(nix> h)— Qw) du — I C(u) du + h(cx+h — c^) 
^^.-^T^-Lf. ^2x Jx 

rzx+n rix+n 

I f(u, x, h) dC(u) = - 1 C(u) dj{u, x, h) 
rx+h r2x+h 

= — / C(u) du+ C(u) du + h(cx+h — C2x), 
Jx J2x 

rx+h r2x+h 

J2x 

the lemma follows. 
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Now writing 

(2-6) R(x) = xKx)-x, 

we obtain on taking C(x) = ijj(x) in Lemma 1 that 

rlx+h rx+h 

(2.7) S2 = hx + J R{u) du- J R{u) du + 0{h logx). 

To evaluate S\, we use the following lemma. 
LEMMA 2. For real numbers an and bn we have 

f ( E *)( E O* 
(2.8) = E anbff(n,x,h) 

x<n<2x+h 

+ E ( E (anbn+k + an+kbnY(n,x,h-k)). 
0<k<h \x<n<Zx+h-k 

PROOF. The left-hand side of (2.8) is 

= E fl«*in / l̂ K-
x<m,n<2x+h J[x,2x]D[n-h,n)n[m-h,m) 

\m-n\<h 

The terms n = m give the first term on the right of (2.8). The terms with n < m are 

= E anb„f(n,x, h-(m- nj), 
x<n<m<2x+h 

m—n<h 

and letting m — n + k this becomes 

E ( E anbn+kf(n,x,h-k)). 
0<k<h \<n<2x+h-k J 

The terms m < n contribute the symmetric term in (2.8). 
By Lemma 2 we see that 

S, = £ A2(nY(n,x,h) + 2 £ £ A(/I)A(/I + k)f(n,x,h - k). 
x<n<2x+h 0<k<h x<n<2n+h-k 

(n,q)=\ k=0(q) (n(n+k),g)=\ 

A calculation similar to (2.3) shows that we may drop the conditions (n, q) = 1 and 
(n(n + k), q) = 1 in the above sums with an error 

h2 , 9 

(2.9) < — log2;c + /zlog2x. 

Thus we have 

(2.10) S{ =S3+2S4 + o((l + -y\og2x\ 
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where 

(2-11) S3 = Y, A2(n)f(n,x,h) 
x<n<2x+h 

and 

(2.12) S4 = E E A(n)A(n+jqY(n,x,h~jq). 
0<j<h/qx<n<2x+h-jq 

To evaluate S3 w e let 

(2.13) P(x) = E A2(«) - x logx + x 
/2<JC 

and on applying L e m m a 1 with C(x) = E«<JC A2(n) w e obtain 

S3 _ S £ l ^ log(2j+1) _ <2f ,og to _ <i±9! l o g ( , + » , 

+ — log x - — + / P(u)du- P{u) du + 0(h log2 x) 
2 2 J2x JX 

=felog^ log(^M)+fa(-? t l„glLi|!) 
h2 f 2x + h \ r2x+h rx+h 0 

+ Trlog r ) + / P(u)du~ / P(«)</u + OQilog2x). 
2 V x + h ) J2x Jx 

For 1S4, w e take C(u) = Eo<«<« A(n)A(n +yg) in L e m m a 1 and obtain 

s*= £ ( o r * - f"*) £ A ( W ) A ( " + >H + ° (T io§2 *) 
o</<* l Vj2x x J «<« ? y 

/•2x+A 

(2.15) = /, E E A(n)A(n+jq)du 

~ f * E E A(n)A(n + y g ) ^ + O f - log2x). 

On combining our results on Si, S2,
 a nd ^3 w e obtain 

h \2x f n / in a. A^2 
I(x,h,q) = hxlogx + x2\og\^-^j+hx\[--+log ^ ^ j 

2 V x + / z / /̂2x 0 < / < ^ „ < M _ ^ 

-jc+/i „ „ . h2x 

0 < / < ^ n<u-jq Y W 
(2-16) - 2 f + E E A(n)A(n+jq)du 

J* o < / < ^ w<«-/a 

— (I R(u)du-l R(u)du) 

+ 
r2*^ r*+/j //z2log2x\ _ , „ 7 x - / P(u)du- j P{u)du + 0{ — J + 0(Mog2x). 
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We see that if h/q < 1 the double sums above vanish and by the prime number 
theorem the terms with R(u) and P{u) contribute <C h( 1 + — ) ^ V . Thus equation (1.16) 
follows from (2.16). To evaluate the double sums over primes in (2.16), we use (1.8) and 
find 

r2x+h „ „ 

L E E Mn)M*+jq)du 
0 < / < ^ n<u-jq 

rx+h 

~ E E A(n)A(n+jq)du 
•>* 0 < / < * f n<u-jq (2. 17) 

r2x+h 

•x E (h -7?)®(/?)+ L E E{ujq)du 
0<j<h/q JZx Q</<M=M 

rx+h rx+h 

/ E E{ujq)du. 
0<j<u-f 

To evaluate the singular series above we using the following result from [2]. 

LEMMA 3. We have 

(2.18) Yfy-mtiq) = y^^-h°%y-U^ 
j<y 2 <PW 2 2 V p \ q P - 1 J 

for any 8, 0 < S < \, where, letting 2q = —-*, 

1 r-6+ioo n f 1 ^ / y \s+{ ds 

mq) = w ? , )- l_ i x as) n (i + j^^) (£) ^ry 
PA1(i 

Further, we have the estimates 
(2.19) k(y,q) « ^ ^ ' ^ - ' ( i -S)~l n ( l + -L)(l + ^ L _ ) , 

and, for arbitrarily small fixed e, 77 > 0, 

(2.20) min Is(y,q) < m i n i n g log 3 ? ) 3 , ^ e x p f - ^ f ) ^ 1 , 
o<<5<± V Woglq/ J 

and 

(2.21) min £ q\h(-,q)\ < m i n ( e ^ log^ a g A ) , (he <Q< h). 

On combining (2.16) with (2.17) and (2.18) we obtain the following result which we 
use in the proof of Theorems 1, 2, and 3. 
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LEMMA 4. We have 

(2.22) - t -2 / ; 2 ^ £ E(uJq)du-2[X+h £ £(«,/?) A 
J2jc 0 < / < ^ 0O'<«? o</<«^£ ^ o<y< 

2/z / f2x+/r /-jc+Zi \ 

<KqV 
rlx+h rx+h (h2 log 2 X \ ~> 

J P(u)du- J P(u) du + Ol-——J + 0(h log2x). 
9 

3. Proof of Theorems 1 and 2. Assuming the Riemann Hypothesis, we have [1] 

(3.1) i?(x)<xhog2 jc, 

and by partial summation 

(3.2) P ( x ) < x h o g 3 x . 

Using Lemma 4 and these estimates we find after expanding the logarithmic terms into 
power series that, assuming RH, 

/(*, h, q) = hx l o g ( ^ ) - hx(l + log J + £ ^ T ) 

+ 0{h2) + 2qxlb{^,q) 

r2x+h rx+h *-^ 

+ 2 / Y E{ujq)du-2 Y E(uJq)du 

J2x
 0 < / < ^ X 0<j<*f 

(3.3) 

+ 0fhx'h*x\ 0 ( f c c , / 2 l o g 3 x ) 

Since 

(3.4) £ ^ « £ 1 ^ « l o g l o g 3 , , 
p k ^ - 1 /><21og2tf P 

on using the former bound in (2.20) and the conjectured bound (1.11), we see that (1.12) 
holds. In order to prove (1.13) we need to show that 

(3.5) min qls(-9q) <h]~e. 
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If q > \e~\ (?7 will be specified in terms of e below), then the latter bound in (2.20) yields 

(3.6) mm qI5(~9q)<(hq)l2+\ 

For q4e < ~ < X2~2e and e < j we have 

(hq)l2+11 < (hl+^)L2+11 = h{l-^)(l+2rl) < h l - e 

if we choose rj = | . For 1 < q < \e~^ we appeal to (2.19) with 8 = e to see that (3.5) 
holds with the implied constant now depending on e. 

We now turn to the proof of Theorem 2, which depends on the following result essen­
tially due to Kaczorowski, Perelli, and Pintz [7]. 

PROPOSITION 1. Assume the Generalized Riemann Hypothesis. Then, with 2 < H < 
N, we have uniformly in N that 

(3.7) J2 \E(X> k)\2 < rt*2 lo^ x-
N<k<N+H 

We first derive Theorem 2, before making some comments on the proof of Proposi­
tion 1. By (3.3) we have 

£ | / ( x ,A , 9 ) -Ax log( f )+Ax(7 + l o g f + E ^ - ) 
?^„^ni v n ' v ^ p\qP ~ Q/2<q<Q 

<^h2Q + x £ q\h(-,q) 
(3.8) Q/2<q<Q I V<7 / 

+ /z max max J2 S I^OJtf)! 
x<«<3x 0<v<h Q/2<q<Q 0</< J 

+ 0((h2+hQ)x1!2 log3 x). 

Now 

(3.9) 

£ £ \E(u,jq)\< £ |£(„J?)| 
Q/2<q<Q0<j<% 0<jq<v 

= J2T(k)\E(u,k)\ 
k<v 

2 . 3 J l 

<C v4t/log2 vlog4 w 

where we have used £&<VT2(&) <C vlog3 v and Proposition 1 in the last line. We apply 
(2.21) for the term involving k(-,q) in (3.8), where the condition in (2.21) is satisfied 
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for he <Q <h, and conclude 

E |/feAf?)-faiogm+^7+iog^+E^) 
>2<a<0] V h } V 2 *l<r P ~ l ' 

(3.10) 
Q/2<q<Ql 

p\q j 

< /r*g + jcmin(gU* log^ g,Q/0 

+ /z*xlogT x + h2xxl2 log3 x. 

This proves Theorem 2. To prove the corollary, by (3.4) it is sufficient to pick Q so that 
the right hand side of (3.10) (or (1.17)) is <C hQx log logx. This is the case if h* log5 x < 
Q < h. If in addition, h = o(x) and Q = o(h/ log3 /z), then the right hand side of (3.10) 
is oQiQx) which gives the second part of the corollary. 

Proposition 1 is due to Kaczorowski, Perelli, and Pintz. The proof may be found in 
[7] with three modifications. First, in that paper the result is proved for the Goldbach 
problem, and therefore one replaces the generating function S(a)2 with |S(a)|2. This 
changes the main term to the one given in Proposition 1 but all error terms are estimated 
with absolute value and therefore the rest of the proof goes through unchanged. Second, 
as mentioned in [8], Lemma 1 should state 

XlqQ I i /zoxr M 2 j A f l 0 g 4 7 V (3.11) / " h//(2iV,x, ri)\2dn < 

where the original had the log factor log2 iV instead; this slightly inflates the power of 
the log term in Proposition 1. Finally, there is an additional error term F(n,N,H) in the 
Kaczorowski, Perelli, and Pintz result that can be eliminated. To do this, as in [7] one 
derives from (3.11) that 

(3-12) E 0*(™,«)|^<^ 
(a,q)=\ 

and then by the Cauchy-Schwarz inequality one obtains 

^ rUiQ , , N2 \og2N 
(3.13) £ \R(ji,q9a)\dTK jf—. 

(a,q)=\ 

Using this estimate in the proof in [7], one obtains £2 < Px^ log3x, which is smaller 
than the error estimate for E 3 since Q < ^X2. One then finds that F(n,N,H) can be 
absorbed into the main error term. 

4. Proof of Theorem 3. The proof of Theorem 3 closely follows the proof of Theo­
rem 4 of [2] and therefore we do not repeat parts of the proof that need no alterations from 
the earlier proof. The information on twin primes we need is contained in the following 
Proposition. 
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PROPOSITION 2. Assume the Generalized Riemann Hypothesis. Then we have 
Hl2 <R<H<x that 

(4.1) E E E(x,jq) 
o<|/|<£'*<?<$ 

<#2X log 6x. 

This generalizes Proposition 4 of [2] which is the case H = x. 

PROOF OF THEOREM 3. Using the GRH estimate (1.4) we have 

(4.2) T,I(x,h,q)= E I(x,h,q) + O(Q0hxlog2x), 
q<Q Qo<q<Q 

where Qo will be chosen later. By (3.3) we therefore have on GRH that 

E4*M)= £ f*xiog(f)-*x(7 + togf + E^)) 
q<Q Qo<q<Q^ K k J V 2 p\qP~lJJ 

(4.3) 
+ 0(Qh2) + 2x £ ^ ( - ,<z) 

Qo<q<Q 

+ 2 E ( - i ) * i L E E £(M?)<fc 

+ 0(h2xl /2 log3 JC) + O^fct1 /2 log3 JC) + O(2o^ log2 x). 

First, an easy computation gives 

E ^ l o g ( f W 7 + logf+E^)l 
&><<7<ev 

fiAxlog(^) - £ ^ ( 7 + log I - 1 + E ^ ~ 1 ) ) + <*©>** log*). 

Next by (2.21) we have, for ¥ < Q0, 

Qo<q<Q ^ 
(4.5) E qk(-,q) < min(Qhi log* e,gA). 

Finally, by Proposition 2 we have for h 2 < £?0 

/•foc+A 

. 12 22 E{u,jq)du 
"* Qo«l<Qo<j<^ 

(4.6) 
L ( E E - E E )E(ujq) 

^ h 3Bu E E £(* J4) 

< /z2xlog6jc. 

dw 
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We now choose go = h*. Therefore the conditions in equations (4.5) and (4.6) are 
satisfied, and Theorem 3 follows from (4.3), (4.4), (4.5), and (4.6). 

PROOF OF PROPOSITION 2. We sketch the modifications needed in the proof of 
Proposition 4 in [2]. Since E(x, —k) = E(x, k) we need only consider positive/. By (7.7) 
and (7.16) of [2] we have 

(4. 7) E(xjq) = 2/2 + h + Ex + E2 + 0(logjq). 

We shall denote 

£/</.?)= El E fO\q) 
H,R j<%]R<q<f 

Then Lemma 7.2 of [2] states that, for \a - £| < £ , (Z?,r) = 1, and r < tfS <R, 

(4. 8) W(a) = E *(/*<*) < ^ # . 

To prove Proposition 2 we sum over/ and q in (4.7) and estimate each term on the right 
hand side. This was done in [2] for the case H = x. The argument is identical here only 
we apply the estimate (4.8) at the appropriate point in each estimation. We obtain in this 
way 

Mx 
(4.9) J2l2^HxL2 log5 x, E h < ~Y log6 x, 

H,R HJi K 

Hx 
E #i < RHlogH, J:E2<^— log3x, E l°BJ'q < #log2x. 
HJi HJi K H,R 

Taking H^ < R < H < x (which forces R < x1/2), then all of these error terms are 
<^H*x log6 x and Proposition 2 follows. 

5. Proof of Theorem 4. - The proof of Theorem 4 is similar to the proof of the lower 
bounds for I(x, h) in [4] and G(x, q) in [2]. We make use of the arithmetic function 

(5.i) A K « ) = E ^ T E ^ W -
r<R <P(n d\r 

d\n 

We note the simple bound, for any e > 0, 

(5.2) XR(n) < r(n) log2 R < ne log2 R. 

We require the following lemma from [2]. 
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LEMMA 5. Let 

(5.3) L(R)=J2^ = \ogR + 0(l). 

For 1 < R < x, we have 

(5.4) £ XR(n)A(n) = ^(x)L(R) + 0(# log*), 

(5.5) ^A« 2 («) = ^(i?) + 0(/?2). 

Letting E(x; q, a) = ij){x\ q, a) — Eq^a -^, where Eq^a = 1 if(q, a) = 1 and is 0 otherwise, 
we have for 0 < \k\ <x, with N\, N2 as in (1.7), that 

£ XR(n)A(n+k) 
Nl(k)<n<N2(x,k) 

(,6) ^{k)ix-\kl) + o{^) 

v r < * <£(>-) y 

(5.7) £ A*(n)A*(« + *) = 6(*)(* - |A|) + o ( ^ ] + 0(R2). 

PROOF OF THEOREM 4. By (2.1), (2.7), and (3.1) we have on RH that 

(5.8) I(x,h,q) = Sl-^ + o(£XhogiX). 

Let Ea(?) denote a sum over a complete set of residues modulo q. By (2.9) and the equa­
tion above it we see that 

5, = Z f{i>(y + h;q,a)-ip(y,q,aj)2dy + o[h(- + l) log2* 

(5.9) = £ f | E Atof^ + o f ^ + l W x ) 
n=a{q) 

= S „ + 0 ^ ( - + l)log2A 

We now obtain a lower bound for S\ \ through the inequality 

(5.10) J(X,q) = Y,f2X\ E (A(«)-A«(«))|2^>0. 
a(q) x *y<n<y+h ' 

n=a(q) 
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Writing AR(TI) = A(n) — A/?(«), we have by Lemma 2 that 
(5.11) 
J(x,q) 

= E{ E {*R(n))2f(n9x,h) + 2 E ( E *R(n)AR(n + ky(n,x,h-k))) 
a(q) V x<n<2x+h 0<k<h Xx<n<2x+h-k J J 

n=a(q) k=0(q) n=n+k=a(q) 

= SU~ J2 a(n,0)f(n,x,h) 
x<n<2x+h 

~ 2 E E a(n,kY(n,x,h-k), 
0<k<h x<n<2x+h-k 
k=0(q) 

where a(n, k) = A(n)\R(n + k) + A(n + £)A#(«) — A#(«)A/?(« + k). To evaluate these sums 
we use Lemma 1 and Lemma 5. In order to control the error term 0(R2) in (5.5) and (5.7) 
we assume 

(5.12) \<R<xl2. 

By (5.3),(5.4), (5.5), (5.12) and the prime number theorem we have that 

Y,oc(n,0)=x\ogR + O(x) 
n<x 

which on applying Lemma 1 gives together with (5.2) that 

(5.13) £ a(n,0Y(n,x,h) = hxlogR + OQix). 
x<n<2x+h 

By replacing x by x + k in (5.6) and (5.7) and using the case of k negative in (5.6) to 
handle the term A(ri)\R(n + k), we obtain 
(5.14) 

£ <*!,*) = 6(*)x + o[ %&) + 0(R2) 
n<x \<l>(k)RJ 

+ of £ MV>logfffi/r) QE{X + ̂  r> t ) | + |£(x; r> ̂ | + m ,9 k)fj\ 
\r<R <P\n J 

By Lemma 1, we now obtain 

£ £ a ( « , t y ( / i , x , / i - t ) = £ £ a(njqy(n,x,h-jq) 
0<k<h x<n<2x+h~k 0<jq<h x<n<2x+h-jq 

(5.15) te%) 

where 

= * £ (^ -y t fS fa ) + 0(R(x, h, qj), 
0<7<; 

(5.16) 

+ E E E Mrs max \E(v;r,jq)\du. 
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By Lemma 3 we have 

(5.17) x Z (h -jq)&(jq) = ^ r - ^ l o g - + 0(/a(loglog3^)3), 

and therefore we conclude by (5.8), (5.9), (5.10), (5.11), (5.13), (5.15) and (5.17) that 
subject to (5.12) and RH 

(5.18) I(x,h,q) > fcclog^+0(/a(loglog3?)
3)+of^-^ log2*) +0(R(x,h,qj). 

It remains to bound R(x, h, q). Since 

,trLh 60a) 6(a) ntrLh 60) a V a J 

we see 

o</<* <Wq) <t>(a) 0<j<n 4><J) Q V aj 

h2xqe , _ 2h ̂ h2
 2 

(5.19) tf(Xj/^)<__JMog_ + _ ^ + i ? l , 
^ 4 4 

where 

(5.20) Rl=hiogR^t^}L £ mm\E(u;r,jq)\. 
f<R <t>(r) Q<j^u<2x+h 

The simplest way to bound R\ is to use the bound [1] E(x,q,a) <C x* log2(#x), which 
assumes GRH. This was done in [4] and [2]. Heath-Brown observed that one can do 
better by taking advantage of the averaging over/. To do this, we use Hooley's GRH 
estimate [6] 

(5.21) Y*max\E(u;q,a)\2 <jclog4x. 

This result without the max is a well known result of Turan and of Montgomery [9]. Now 
in the inner sum in (5.20) we insert the condition (rjq) = 1 with an error 

< E V(3x;rj<7) « E E E M») < " l°g*E l < \ lo^x-
0</'<^ 0<y<- p\r n<ix Q p\r " 

(rjq)>l " Pln 

Since for (jq, r) = 1 the sequence ofjq will run through a reduced set of residues modulo 
r as y" runs through a reduced set of residues modulo r, we see that 

(5.22) Rx<h\ogR E ^ E ^Mu;rjp0(^^-\ 
(r,q)=\ , . ~ \ 
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By Cauchy's inequality and (5.21) we have 

E ^ E max \E{u;r,j)\ 

li2(r)r(h\i< ^ 

(5.23) fh\i „ /i2(r)r/ A \ l 
V ^ <£(r) V ? r / V ^ K<3*' J 

/fc*/{ hR?\ I , , 
< — r + x2log2x. 

We conclude by (5.19), (5.22) and (5.23) that 

(5.24) R{x,h,q) < hx? log3* — + + —f- log — + 5^_ + . 
\ qi q ) qR q q q 

We now obtain from (5.18) that 

I(x, h,q)>hx log ^ + 0(fcc(log log qf) + R2, 

, (hhR, , hRh , , ft^logjc W?2\ 
*2 < fe(-r-r log3** — r log3* + J L - ~ + — ) • 

v t f2X2 tfX2 ^ #X ' 

where 

#x 

We take 

# 
log x 

and see that i?2 = 0(hx) subject to the condition that -q < e[o% • We conclude that 

(5.25) /(*, A,9) > y l o g ^ ( | ) 3 x j - 6>(/zx(loglogx)3) 

which proves Theorem 4. 
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