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Approximating the Riemann Zeta-function
by Polynomials with Restricted Zeros

P. M. Gauthier

Abstract. We approximate the Riemann Zeta-Function by polynomials and Dirichlet polynomials
with restricted zeros.

The Riemann zeta-function { has zeros at the negative even integers (the so-called
trivial zeros). The Riemann Hypothesis states that the remaining zeros (the non-trivial
zeros all lie on the critical line S = {z : Rz = 1/2}. A refinement of the Riemann
Hypothesis claims that, moreover, the zeros are simple.

We wish to approximate { by sequences of polynomials whose zeros have these
properties on larger and larger sets. Since Euler originally defined the zeta-function
by the Dirichlet series

01
{(x) =) —, 1<x<+oo,
n:lnx

it seems natural to approximate (, not only by “ordinary” polynomials

m
P(z) = ). anz",
n=0

but also by Dirichlet polynomials
D(z)=> n.
n=1 n®

To clearly distinguish between Dirichlet polynomials and ordinary polynomials, we
shall sometimes refer to the latter as algebraic polynomials.

While the theory of approximation by algebraic polynomials is a well developed
classical subject, that of approximation by Dirichlet polynomials has received less
attention. Recently [1, Lemma 4.1], the two theories were shown to be equivalent.

Theorem 1 ‘There exists an increasing sequence K, of compact subsets of C whose
union is C, a sequence P, of algebraic polynomials, and a sequence D, of Dirichlet
polynomials, with the following properties:

max{|Pn(z) - {(2)|,|Du(2) - C(z)|} <1/n, forze K, {1}.
P,(1) =D,(1) = n.
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OnK,n(RuS),
P, and D,, have only simple zeros and they are the (-zeros.
OnK,~ (RuS),

P, and D,, have no zeros,
P,(R)cR, D,(R)cR.

It follows that P, — { and D, — { pointwise on all of C, and, for each fixed m,
the convergence is uniform with respect to the Euclidean distance on K, ~ {1} and
uniform with respect to the spherical distance on K,,.

Let K be a compact subset of C. As usual, A(K) denotes the space of functions
continuous on K and holomorphic on the interior K, endowed with the sup-norm,
and P(K) denotes the uniform closure in A(K) of the set of algebraic polynomials.
Similarly, D(K) will denote the closure in A(K) of the set of Dirichlet polynomials.

Lemma 2 For a compact set K c C the following are equivalent:

(i) C\ K is connected;
(ii)) P(K)=A(K);
(iii) D(K) = A(K).

The equivalence of (i) and (ii) is Mergelyan’s Theorem, the most important theorem
in polynomial approximation. The equivalence of (ii) and (iii) is a very recent result
due to Aron et al. [1, Lemma 4.1].

For A c C, we denote by A* the set {z : z € A}, and we say that A is real-symmetric
if A = A*. We say that a function f : A — C on a real-symmetric set A is real-

symmetric if f(z) = f(z). For a class X of functions on a real-symmetric set A, we
denote by Xg the class of functions in X that are real-symmetric. If X is a complex
vector space, we note that Xg is a real vector space (even though the functions may
be complex valued). We have a real-symmetric version of the previous lemma.

Lemma 3  For a real-symmetric compact set K c C, the following are equivalent:
(i) C\ K is connected;

(i) Pr(K)=Ar(K);

(i) Dr(K) = Ar(K).

Proof Suppose C \ K is not connected. Then K has a bounded complementary
component U. Fix a € U. The function f(z) = (z—a)~'(z—a) 'isin Ag (K). Suppose,
to obtain a contradiction, that there is a sequence p, of real-symmetric polynomials
such that

Ipn(2) = (z—a)(z-a)"'|<1/n, forallzeK.
Then
pn(2)(z-a)(z—a) -1 <|(z-a)(z-a)|/n, forallzed(UuU")cK.
By the maximum principle,

pn(z)(z-a)(z-a)-1< max |(w-a)(w-a)|/n, forallze UuU".
wed(UuU*)
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In particular, at z = a, we have

1< max |(w-a)(w=-a)|/n, foralln,
wed(UUU*)

which is a absurd. Therefore, (ii) implies (i). A similar argument shows that (iii)
implies (i).

Now suppose that C \ K is connected and f € Ag(K). By Lemma 2, there are
algebraic polynomials P, and Dirichlet polynomials D, that converge uniformly to
f on K. Since f is real-symmetric, it is easy to see that the real-symmetric alge-

braic polynomials (P,(z) + P,(z))/2 and the real-symmetric Dirichlet polynomi-
als (D,(z) + D,(z))/2 also converge uniformly to f on K. Thus, (i) implies (ii)
and (iii). [ |

The next lemma, due to Frank Deutsch [2], generalizes a result of Walsh and states
that if we can approximate, we can simultaneously interpolate.

Lemma 4 LetY be adense (real or complex) linear subspace of the (respectively real or
complex) linear topological space X and let Ly, ..., L, be continuous linear functionals
on X. Then for each x € X and each neighbourhood U of x, there is a y € Y such that
yeUandL;(y)=Li(x),i=1,...,n.

With the help of these lemmas, we now prove the theorem.

Proof of Theorem 1 Our construction of the sets K, is inspired by a construction
in [3].

First, we prove the theorem for algebraic polynomials P,. Set t; = 0 and let #,
k € N, be the imaginary parts of the zeros of { in the upper half-plane, arranged in
increasing order. For each t;, k > 0, there are at most finitely many corresponding
zeros of {. Choose 0 < A; < A, < -+ < 1, such that A; ~ 1. Let so = 1 and for
k € Z~ {0}, let s, = 2k. Foreach i e Nand foreach -i < j<i,and k =0,1,..., 1, set

Qijk = {Z 155 < Rz < Sj+ A,’(S]‘H - Sj), fr < |jZ| <t + Ai(tk_,.] — tk)},
Qi:UQijki —ZSJSI, k:(),l,...,i.
The compact set Q; is real-symmetric and is the union of disjoint closed rectangles,
so C \ Q; is connected.
Let Z} be the zeros of { in Q; n (R U S) and let Z7 be the zeros of { in Q; \ (RUS).
Then Z; = Z} U Z? is the set of zeros of { in Q;. Denoting by B(z,r) (resp. B(z,7))
the open (resp. closed) disc of center z and radius r, set

Bi= U B(z,l),

zeZ;u{1} !

K; = (Q, AN '.B,) U Z,‘ @] {1}
Then K;, K>, ..., isan increasing sequence of compact sets whose union is C, and the
complement of each K, is connected. Moreove, since Z} and Z? are real-symmetric,
so are the K;. Now, forn =1,2,..., set

— 1 — 1

Ko=Keo U B(z—)=(Q B)v U B(z-).
22,01} 2n zeZy0{1} 2n
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For each n, the complement of X, is connected and K, is real-symmetric, and
so0, by Lemma 3, the real-symmetric algebraic polynomials are dense in the space of
real-symmetric holomorphic functions on (neighbourhoods of) X,. By Lemma 4,
for every real-symmetric function f holomorphic on X,, and finitely many points
ai,...,a, € K, and for each € > 0, there is a real-symmetric polynomial P, such
that |f - P| < eon X,, and P(a;) = f(a;), j = 1,..., m. Moreover, for each k € N,
there is such a polynomial P such that, for each a; € X, P(e)(aj) = fO(a;), for
£=0,1,...,k.

We apply this approximation and interpolation procedure to the following func-
tion, holomorphic, and real-symmetric on X, :

{(z) forzeQ,\B,,

n for z ¢ B(1,1/(2n)),

z—a forzeB(a,1/(2n)), acZl,
1/n  forzeB(a,1/(2n)), aeZl

fa(2) =

Set &, = min|f,(z)| for z € Q, \ B,,. Since { has no zeros on this compact set, §,, > 0.
Choose €, < min{d,/2,1/n}. Invoking the approximation-interpolation procedure,
for each n, there is a real-symmetric polynomial P, such that

[P, (2) = fu(2)| <€, forall zeX,;
P,(1) =n;

P,(a)=0,P.(a)=1, forall aeZ;
P,(a)=1/n, forall aeZ>.

Since P, is real-symmetric, P,(R) c R. This completes the proof for algebraic
polynomials.
The proof for Dirichlet polynomials is identical (thanks to Lemmas 3 and 4). =
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