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We present a theoretical approach that derives the wavenumber k~! spectral scaling
in turbulent velocity spectra using random field theory without assuming specific eddy
correlation forms or Kolmogorov’s inertial-range scaling. We argue for the mechanism
by Nikora (1999 Phys. Rev. Lett. 83 (4), 734), modelling turbulence as a superposition of
eddy clusters with eddy numbers inversely proportional to their characteristic length scale.
Statistical mixing of integral scales within these clusters naturally yields the k~! scaling
as an intermediate asymptotic regime. Building on the spectrum modelling introduced in
Jetti et al. (2025b Z. Angew. Math. Physik. 74 (3), 123), we develop and apply an integral
formulation of the general velocity spectrum that reproduces the k~! regime observed
in field spectra, thereby bridging theoretical derivation and empirical observations. The
model is validated using wind data at a coastal site, and tidal data in a riverine environment
where the —1 scaling persists beyond the surface layer logarithmic region. The results
confirm the robustness of the model at various flow conditions, offering new insights into
the spectral energy distribution in geophysical and engineering flows.
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1. Introduction

The distribution of turbulent kinetic energy (TKE) across wavenumbers remains as a
central topic in fluid dynamics. The streamwise velocity spectrum of turbulent flows
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exhibits distinct canonical regimes: the energy-containing range at low wavenumbers,
dominated by large-scale eddies responsible for generating TKE; the inertial subrange
at intermediate wavenumbers, governed by Kolmogorov’s —5/3 scaling law; and the
dissipation range at sufficiently high wavenumbers, where viscosity fully suppresses TKE
(Kolmogorov 1941). In the classical Kolmogorov picture, the energy cascades without loss
between the energy-containing and dissipative scales. However, this canonical picture is
partial in wall-bounded flows and geophysical turbulence, where spectral scaling at large
scales deviates significantly. At low wavenumbers, the dynamics of turbulent boundary
layers is shaped by anisotropy and long-range dependencies, making it analytically
intractable. In particular, a k~! regime has been consistently observed, and debated
over the past few decades, within the energy-containing range of the velocity spectrum
sometimes referred to as the shear-production subrange (Tchen er al. 1985), where k is
the streamwise wavenumber. Empirical evidence for this scaling has been observed in the
inertial sublayer of laboratory turbulent boundary layers in pipes and wind tunnels (Nickels
et al. 2005) and in the atmospheric surface layer, typically defined as the lowest 10 % of
the atmospheric boundary layer (ABL) (Katul & Chu 1998).

Theoretical foundations for the k! scaling were first introduced by Tchen (1953) based
on a spectral budget. Subsequent developments connected this behaviour to Townsend’s
attached eddy hypothesis (AEH) (Townsend 1976; Marusic & Monty 2019), which
describes the energy-containing motions in the logarithmic region as arising from a
hierarchy of self-similar eddies attached to the wall. This concept was formalised by Perry,
Henbest & Chong (1986), who used dimensional arguments to predict a k! scaling in the
intermediate-wavenumber range, arising from the overlap between the inner (wall-normal
distance-based) and outer (boundary-layer height-based) scaling ranges at sufficiently high
Reynolds numbers.

Alternative explanations have been proposed as well. Nikora (1999) introduced a
conceptual model based on superimposed eddy cascades originating at various wall-
normal positions. Katul, Porporato & Nikora (2012) synthesised this view into a unified
framework that integrates Tchen’s spectral analysis, Nikora’s eddy cascade picture and
Heisenberg’s eddy viscosity concept. Fundamental arguments by Katul and colleagues
suggest that the k! scaling can be rationalised in the limit of infinite Reynolds number
and under certain boundary conditions (Katul et al. 2012). This scaling is attributed to
the balance between energy production by large eddies and energy transfer to smaller
scales, with the wall acting as a source of anisotropy and organisation. Experimental data
from ABL studies, including measurements over flat terrain and within canopy sublayers,
consistently support the presence of the k! regime (Katul e al. 1995; Cava & Katul 2012).

Perry et al. (1986) also linked the k~! region to the logarithmic variation of streamwise
turbulence intensity, although recent results by Hwang, Hutchins & Marusic (2022)
suggest that such a logarithmic trend can emerge even without a fully developed k!
range, particularly at moderate Reynolds numbers. Furthermore, experimental studies
by Rosenberg et al. (2013) and Deshpande, Monty & Marusic (2021) have shown that
non-self-similar contributions may mask the appearance of the k! region in the energy
spectrum. Davidson, Nickels & Krogstad (2006) and Davidson & Krogstad (2009) argued
that a hierarchy of space-filling eddies with kinetic energy scaling as ui necessarily leads
to a k~! spectral band, where u, is the friction velocity. However, their formulation
assumes scale-wise independence, a prescribed Gaussian correlation kernel for eddies of
a given size and does not account for long-range dependencies. In the physical space,
Davidson et al. (2006) and Davidson & Krogstad (2009) associated the k1 scaling with a
logarithmic form of the second-order structure function, consistent with field observations
in ABL turbulence (Chamecki et al. 2017; Ghannam et al. 2018).
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We show that a specific correlation structure is not a prerequisite for the emergence
of k~! scaling. Instead, we employ asymptotic theorems from random field theory,
which rigorously establish a direct link between covariance functions and their spectral
counterparts. Our formulation mixes clusters of correlated eddies, with each cluster
sharing a common integral length scale (cluster size), rather than isolated, uncorrelated
eddies. The only statistical premise is a log-uniform distribution of cluster sizes, a
continuous analogue of Townsend’s equal-population condition; no wall attachment,
Gaussianity or inertial-range k—>/3 scaling is imposed. We verify the theory with riverine
and coastal ABL data where Townsend’s AEH is not strictly applicable.

By identifying the minimal statistical requirement, a log-uniform distribution of energy-
containing scales, for the appearance of the k~! law, our theory offers a more general
approach that can inform sub-grid turbulence models and aid in interpreting spectra from
complex geophysical and environmental flows, such as those found in tidal channels
(Thomson et al. 2012). The proposed approach accounts for long-range correlations
and does not rely on Kolmogorov scaling in the inertial subrange as a foundational
premise. We further demonstrate its practical utility both within and beyond the surface
layer through analysis of experimental riverine and wind datasets, thereby relaxing the
assumptions of Townsend’s AEH. Section2 presents the stochastic formulation and
analytic derivation, § 3 validates the theory against tidal-channel acoustic Doppler current
profiler/acoustic Doppler velocimeter measurements, and a multi-level sonic-anemometer
array on the ABL at the Yucatdn coast, spanning a large range of Reynolds numbers and
§ 4 summarises key findings.

2. Proposed formulation

The central premise of our formulation is that there exists a hierarchy of eddy clusters
characterised by different integral length scales and that the statistical superposition of
these clusters results in the observed streamwise velocity fluctuations. Let the integral
length scale corresponding to a cluster be identified by a representative parameter ¢ and
that there is a continuous range of clusters with the parameter ¢ varying from cy to ¢
(see figure 1). The resulting streamwise (longitudinal) velocity fluctuation, u, at a point
x1 = (x1, ¥1, z1) can then be expressed as

u(xl,a))=/c2 u(xy, ¢, w)de, 2.1)

1

where u(xp, ¢, w) represents the contribution from eddy clusters of scale ¢, and w
denotes a specific realisation in the probability space. The streamwise covariance function
U(xy,x2) = (u(xq, w)u(xs, w)), with x5 = (x2, y1, z1) can be obtained as follows:

¥(xi,x7) =</C2 u(x, c, w)dc /62 u(xo, ¢, w) dc>

1 €1

¢ pea
= / / (u(x1, ¢, ®)u(xs, ¢’, w)) dedc’. (2.2)
c c

Here, (-) represents an ensemble average. Now, we assume that eddy clusters characterised
by different values of ¢ are uncorrelated, leading to

2

¢ pea
lI/(xl,xz)=/ / F(x1,x2,¢,c)8(c—¢) dcdc/=/ F(x1,x2,¢)de.  (2.3)
c1 Jey c

1
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Figure 1. Concept illustrating a superposition of eddy clusters with integral scale ¢, whose population is
inversely proportional to c¢. Smaller clusters cascade at higher wavenumbers, while larger ones contribute to
lower wavenumbers.

Here, F(x1,x7,c) is the covariance associated with eddy clusters of scale c¢. This
assumption differs from models that assume no correlation between eddies of different
sizes (e.g. Davidson et al. (2006)).

Let the streamwise velocity fluctuation be modelled as a wide-sense stationary and
isotropic random field. Under statistical isotropy, the streamwise covariance function
¥ (x1, x2) depends only on the distance x = ||x» — x1|| = |x2 — x1| > 0. For notational
simplicity, we refer to W(xy,x2) as W¥(x), with its spectral counterpart given by
W (k). Here, W (k) denotes the isotropic one-dimensional energy spectral density of
streamwise velocity fluctuations. Under these restrictions, F(x1, X2, ¢) has to be of the
form F(x, c¢). An ideal choice of F(x, ¢) would result in ¥ (x) such that lI/(k) exhibits
appropriate scaling characteristics across the full wavenumber spectrum. This includes
any long-memory-dependent scaling in the low-wavenumber regime, k! scaling in the
shear-production subrange (if present), Kolmogorov’s scaling in the inertial subrange
and the appropriate decay in the dissipation range. In this work, we propose a choice of
F such that all these scaling regions are accurately captured, with the exception of the
dissipative range.
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By extending Kolmogorov scaling beyond the inertial subrange and disregarding
dissipative effects, which is common in classical turbulence models (e.g. Von Kdrméan &
Lin 1951), the inertial subrange scaling can be interpreted in terms of the fractality of u.
The fractal behaviour is characterised by the fractal dimension D. At the same time, any
long memory dependence of u, which governs the scaling in the low-wavenumber regime,
is described by the Hurst parameter H € (0, 1). For an isotropic random field, D and H
can be estimated from the asymptotic behaviour of the covariance function. If

1 —w¥(x)~x%, x—0, (2.4)

for some o € (0, 2],then D =d + 1 — «/2, where d is the spatial dimension of the random
field. Since we characterise only one component of the velocity field in this work, we take
d =1 in this work, yielding 1 < D < 2. On the other hand, if

U(x)~xh, X — 00, (2.5)

for some B € (0, 1), then H =1 — /2. Here, g ~ h indicates that the function g behaves
like /2 under the specified asymptotic limit. The fractal dimension D determines the high-
wavenumber asymptotic behaviour lI/(k) ~ k?P=3_ For isotropic turbulence, D =5/3,
recovers the well-known Kolmogorov k—>/3 scahng Conversely, the Hurst parameter
H governs the low-wavenumber asymptotic behaviour, yielding (k) ~k'"2H k0.
These asymptotic properties are rigorously derived from the Abelian and Tauberlan
theorems within a measure-theoretic framework, as detailed in § 2.8 of Stein (2012). Note
that, in conventional random field models, D and H are linearly related through a self-
similarity condition. In this work, we relax this assumption based on recent covariance
models that treat the fractal dimension and the Hurst exponent as independent parameters
(e.g. Jetti, Porcu & Ostoja-Starzewski (2023)).

We now propose F to be of the form i (x/c)/c, with ¥ (0) = 1, and ¥ (x /c) reproduces
the same long- and short-range scaling properties as W (x). However, its_spectral
counterpart w(k) does not exhibit the —1 spectral scaling that may be present in lP(k) We
later demonstrate that this choice of F' accurately recovers the scaling behaviour across all
wavenumber regions, except in the dissipative range. In this choice of F', the contribution
of eddy clusters is weighted inversely with respect to their characteristic scale ¢, ensuring
that the larger eddies appear less frequently than the smaller ones. This scaling is in line
with Townsend’s AEH, which posits a hierarchy of self-similar eddies whose population
is inversely proportional to their size (Townsend 1976). Moreover, this scaling naturally
reflects the hierarchical organisation of turbulence and provides a way to capture the
statistical structure of velocity fluctuations. Building on this premise, we propose that the
covariance function ¥ (x) is given by the following integral formulation:

“ ¢(X/C)

v(x)= x>0. (2.6)

log (Cz/Cl) /

Note that 02/ log (c2/c1) serves as a normalisation term to ensure that the variance of u
is o2, This formulation models turbulent flow as an ensemble of eddy clusters that span
a hierarchy of scales, capturing the statistical structure of turbulence while allowing for
variability in eddy sizes (see figure 1). The weighting function follows 1/c dc =d(log ¢),
indicating that an alternative interpretation of the formulation involves eddy cluster sizes
being distributed logarithmically.

This process establishes a mechanism through which the —1 spectral scaling emerges
in the velocity spectrum. Specifically, when the range of integral scales satisfies ¢; # c2,
a finite —1 scaling region appears in the spectrum ¥ (k), as will be demonstrated next.
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In contrast, when c¢; = ¢, the formulation reduces to a single-scale covariance function,
¥(x)= GZW(x /c1), which does not exhibit —1 scaling, as ¥ (x/c) lacks this behaviour
inherently. The range of length scales is bounded by ¢ and c», flow-dependent parameters.
This scale distribution governs the emergence of the —1 spectral region, since eddy
clusters associated with smaller ¢ values contribute to higher wavenumbers, while those
with larger ¢ values populate the lower-wavenumber range (see figure 1). The bounds
c1 and ¢ may be associated with the characteristic scales of large-scale motions and
very-large-scale motions (VLSMs), which have been shown to roughly demarcate the k!
spectral regime (e.g. Kim & Adrian (1999)). While recent studies suggest that VLSMs may
not exhibit strict structural self-similarity with smaller-scale motions (e.g. Deshpande et al.
(2021)), this does not preclude the utility of scale-invariant assumptions as a leading-order
approximation. Nonetheless, the extent to which such deviations influence model fidelity
warrants further investigation in future work.

We assume that ¥ (x/c) retains the same long-range and short-range scaling
characteristics as ¥ (x). Specifically, the spectral counterpart W(k) follows the asymptotic
behaviour

¥ (k) = Cooc(ke)?,  k—0, 2.7)
¥ (k) — Crocke)?,  k — oo, (2.8)

where p=1—-2H,q=2D — 5, Cyo and Cyg are positive constants independent of c. In
1sotrop1c turbulence, Cjp = Cke€, where Ck is the universal Kolmogorov constant and €
is the mean energy dlss1pat10n rate. Physically, as kK — oo, W(k) should transition to
the dissipative scaling regime. However, the proposed formulation does not explicitly
incorporate dissipation effects and, instead, it assumes that the Kolmogorov scaling
extends beyond the inertial subrange, as noted earlier. A recently introduced parametric
family of isotropic covariance functions, ¥ (), has been shown to capture both the long-
range and short-range scaling characteristics required for turbulent flow characterisation
(Jetti et al. 2023, 2025b). Interestingly, a recent study by Jetti et al. (2025a) demonstrated
that, under statistically isotropic conditions, the fractal and Hurst characteristics of the
lateral velocity components are identical to those of the streamwise velocity component.
This provides a natural extension of the approach proposed here to the modelling of other
velocity components.
For analytical tractability, we approximate 1//(k) using a piecewise formulation

Cooc(kc)?, k <kr,

2.9
Ciocke)?, k>kr. (2.9)

VPP (k) = {

This approximation provides a practical means of capturing the dominant spectral trends
while preserving the essential scaling behaviour at both extremes.
The transition wavenumber, k7, where the two asymptotic forms of 1//(k) intersect, is

given by
1/C 1/(p—q)
k= - (ﬂ) . (2.10)
Coo

Physically, k7 represents the wavenumber at which energy transitions between the two
scaling regimes for a given eddy cluster characterised by c¢. As discussed earlier, larger
values of ¢ correspond to smaller k7, indicating that larger-scale eddy clusters cascade at
lower wavenumbers, while smaller ¢ values lead to higher k7, reflecting energy transfer at
finer scales.
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The approximate form of the spectrum ¥ (k), corresponding to the covariance function
in (2.6), can be derived using the piecewise approximation in (2.9). For k < k7 (c2), spectra
across c¢| < ¢ < ¢y exhibit low-wavenumber behaviour, leading to

ZCOOkp( I+p 11+p)
—~ | Cope (ke)? d(logc) = ~KP.
10g(02/0)/ o0 e (ke)Tdlog ) = = Setearen) o
1)

Conversely, for k>kr(c1), spectra across c¢] <c <cp exhibit high-wavenumber
behaviour, yielding

aPP (

. ) ZC kq q+1 Cq—i—l
lI’HPP(k):G—/ Cio ¢ (ke)? d(logc) = tok? (€5 ) ~ k4.
log(ca/c1) Je (g + 1) log(ca/c1)
2.12)
Within the transition region, k7 (c2) < k < k7(c1), we obtain
02 Ck (o)
GPP(fy = — (/ Coo ¢ (ke)? d(log c) —1—f Cio ¢ (ke)? d(log c))
log(cz/c1) ck
2 Lip q+1
_ o Coo <@>ﬁq . Cio (@)ﬂq i1
log(ca/c1) | 1+ p \ Coo qg+1\Coo
C C
— 0 Hrgr o 0 gt pa ], (2.13)
I+p qg+1

Within k7 (c2) <k <kr(cy), the dominant term is the coefficient of k™ . Since
yarp (k) =0, it follows that yap (k) ~ O™ in this range. For isotropic turbulence,
Kolmogorov’s scaling fixes D =5/3. The Hurst parameter H varies between 0.5 and 1,
where higher values indicate greater persistence (long-range dependence). As H increases,
the second term becomes significant and, in the limit H — 1, it also exhibits the k!
scaling, reinforcing the dominant behaviour. This result demonstrates the emergence of a
distinct —1 spectral scaling regime. Figure 2(a) illustrates wapp (k) for a representative
set of parameters (D =5/3, H =0.75), highlighting the —1 spectral scaling between
ki :=kr(cy) and kp := k7 (c2).

The real-space analogue of the —1 spectral scaling is the logarithmic dependence of the
structure function (Davidson et al. 2006). The second-order structure function, S;(x), is
defined as

$2(0) = ((u(x1) —u(x2)*) =2(* = ¥ (x)), (2.14)

where x =|x2 —x1||. The proposed formulation in (2.6) inherently produces this
logarithmic dependence, as illustrated in figure 2(b). The detailed derivations for the
logarithmic dependence follow similar steps to those used in the derivation of k! scaling.
Therefore, these derivations are provided in Appendix A. This result establishes that
the emergence of —1 spectral scaling directly results from the logarithmic variation of
¥ (x), as prescribed by (2.6). The interpretation of the —1 spectral scaling as an emergent
property of eddy interactions across multiple scales aligns with the perspective of Nikora
(1999). However, our formulation demonstrates that Townsend’s AEH, a fundamental
assumption in Nikora (1999), can be relaxed. Specifically, the occurrence of —1 spectral
scaling does not necessitate the strict presence of attached eddies but instead depends on
the statistical distribution of eddy sizes within a cluster, as described by (2.6). Since the
proposed model depends only on the distribution of integral-like scales and not on wall
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Figure 2. For a set of parameters (D =5/3 and H = 0.75) (a) the function garp (k) with —1 spectral scaling
between k; and k. (b) Structure function 2(o2 — ¥%P(x)) with logarithmic dependence between x| >~ 1/k;
and x; ~ 1/ k. Here, D = 5/3 corresponds to the Kolmogorov’s k—>/3 scaling at high wavenumbers (k > ki),
while H = 0.75 indicates long-range dependence and yields the k=% scaling at low wavenumbers (k < k).

attachment or mean shear, it may also apply to flows such as mixing layers and wakes at
high Reynolds numbers, where broad and self-similar eddy populations can produce an
intermediate k! range.

This relaxation of AEH is particularly relevant for modelling tidal and riverine flows,
where we show that the —1 velocity spectrum scaling can persist even outside the surface
layer, extending the applicability of the proposed framework to broader geophysical
settings.

3. Experimental validation

Next, we analyse a tidal current dataset to demonstrate the utility of the proposed model
beyond the overlap region where inner and outer scaling laws converge. The model remains
applicable in regions exhibiting a hierarchical structure of eddy clusters. The dataset
was collected at Nodule Point, located on the eastern side of Marrowstone Island, where
the U.S. Navy deployed a small array of Verdant Power ™ turbines. Velocity profiles
were recorded within 10-17 February 2011, using an acoustic Doppler current profiler
mounted on one of the legs of the tidal turbulence tripod. Also, velocity measurements
were obtained during the spring tide (17-21 February 2011) using an acoustic Doppler
velocimeter (ADV) positioned at the apex of the tidal turbulence tripod, 4.7 m above the
seabed. The site has a depth of 22 m, with a maximum hub-height current of 1.8 ms™!
(Thomson et al. 2012). The turbulent velocity fluctuation data undergo a series of
processing steps to ensure spectral consistency. First, the streamwise, u, and transverse, v,
velocity fluctuation components are extracted via coordinate transformation. To enforce
stationarity, a robust detrending approach based on empirical mode decomposition
is applied. This method effectively mitigates low-frequency trends while preserving
the integrity of the turbulence spectra by removing the residual component and the
largest-scale intrinsic mode function from the velocity fluctuations (Cheng et al. 2024a).
We analysed the mean velocity profile to identify the overlap region, where the —1
spectral scaling is typically observed. The ADV measurements were taken at 4.7 m
above the seabed, corresponding to approximately 0.255, where § is the boundary-
layer thickness. This places the measurements beyond the typical surface layer, which
is generally confined within ~ 0.18. Consequently, Townsend’s AEH no longer holds in
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Figure 3. (a—c) Streamwise velocity statistics for a tidal current 4.7 m above the seabed. (a) Spectrum
@, (f) with f], f, indicating the f~! region and shaded area marking saturation. (b) Compensated spectrum
S @y (f). (c) Structure function S () with lag normalised by plateau value 7. (d-f) Corresponding ABL wind
measurements. Black: experiment; red: proposed model; dashed: approximation from (2.9).

this region. This conclusion is further supported by an analysis of the shear stress profile,
which confirms that the measurement location lies outside the overlap region.

The experimental streamwise velocity spectra, @,(f), and their compensated
counterparts, f®,(f), at this location are presented in figure 3(a,b). We observe the
persistence of —1 spectral scaling beyond the overlap region, a finding of particular
significance. Since the data were collected in the temporal domain, time and frequency
arguments replace spatial and wavenumber counterparts in the formulation by using the
Taylor’s frozen field hypothesis. The turbulence intensity, defined as the ratio of the root-
mean-square velocity fluctuation to the mean flow, is around 9 %, a reasonable level for
using this hypothesis. For illustration, the function ¥ (+) in the model (2.6) is considered
to be a class of covariance functions proposed in Jetti et al. (2023, 2025b). The dashed-
line representation in figure 3(a,b) indicates garp (k) with the piecewise approximation
in (2.9). The proposed model, (2.6), captures both the low-frequency and high-frequency
spectral behaviours and, most importantly, reproduces the —1 spectral scaling region with
high fidelity. For comparison, we also present the structure function data in figure 3(c).
At small time lags 7, the data follow Kolmogorov scaling, and it plateaus at larger lags. It
also shows an intermediate region where a logarithmic behaviour emerges as indicated by
the grey line.
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We also analysed ABL wind turbulence measurements at a coastal interface of the
Yucatan Peninsula, where the convergence of land and ocean surfaces creates a diverse
range of surface roughness conditions. This site is particularly well suited to investigate
the emergence of the —1 spectral scaling. The proposed formulation accurately captures
the —1 spectral scaling when present and robustly models spectra that do not exhibit
this scaling, demonstrating the model’s versatility. Figure 3(d—f) presents the streamwise
velocity spectrum, compensated spectrum and second-order structure function from a
representative ABL wind dataset recorded on 11 May 2011 (22:07-23:54). The data
exhibit a clear Kolmogorov scaling at high frequencies and a plateau at low frequencies,
indicative of short-range dependence. An extended —1 spectral region is also present.
The proposed model accurately captures all three regimes, demonstrating its capacity to
represent multiscale behaviour in atmospheric turbulence. Details comparing additional
experimental data with the proposed formulation, along with a computationally efficient
method for determining its parameters, are provided in Appendix B. There, we illustrate
several cases that exhibit extended —1 spectral scaling regions, including data with both
short- and long-range dependences. We also examine cases where such scaling is absent.
Our results demonstrate the robustness of the model in accurately identifying the k!
region when present and correctly recognising its absence when unsupported.

4. Conclusions

We have presented a theoretical approach that derives the k~! spectral scaling in turbulent
velocity spectra using random field theory without relying on Kolmogorov’s inertial-
range assumptions, specific eddy correlation forms or Townsend’s AEH. By applying
asymptotic theorems, we establish a direct connection between the streamwise velocity
covariance and its spectral form, showing that the statistical mixing of eddy clusters with
distributed integral scales leads to k! scaling as an intermediate asymptotic. The model
also recovers the logarithmic form of the second-order structure function, consistent with
its spectral analogue. Validation against wind and riverine turbulence data confirms that
this scaling can persist beyond the surface layer and in the absence of geometrically
attached eddies. These insights suggest a more general mechanism for the emergence
of k~! scaling and motivate further investigation into the role of surface roughness,
stratification and unsteadiness in shaping spectral energy distributions in geophysical and
engineering flows.
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Appendix A. Logarithmic dependence of the structure function
The asymptotic behaviour of the covariance function for a fractal dimension D and Hurst

parameter H is
L= (x) = Soo(x /)~ "+, x>0, (A1)
Y(x) = Sio(x/c)" P x - oo, (A2)
Note that p=1—2H and ¢ =2D — 5, as defined in § 2. The constants Sop and Syo are

specific to the covariance function 1 (x) and are related to Cog and Cy9. To demonstrate
the logarithmic dependence of the combined structure function, we adopt an approximate
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form of ¢ (x) for analytical tractability

Soo(x/c) =+, x <xr,

I — PP (x) =
) 1 —Sio(x/e)~ U+ x> xp.

(A3)

Here, x7 is the transition point where the two asymptotic forms of ¥ (x) intersect,
satisfying

Soo(xr /€)™ =1 = S19(xr fe)~1FP, (A4)

The approximate form of the combined structure function, 2(c2 — ¥ (x)), is derived

using the piecewise approximation in (A3). For x <xr(c1), the behaviour of all the

structure functions corresponding to different ¢ values in the range ¢; < ¢ < ¢3 is dictated
by the fractal dimension D. Thus

202 €2 —(14q)
2(02 —WWPP(x)) = ;/ S00 ()—C)
log(c2/c1) Je, c

2028gox — 1+ (c}ﬂ — cé+q)
(1 +¢q)log(ca/c1)

For isotropic turbulence, where D = 5/3, it follows that Vx < x7(c1), 2(0% — gL (x)) ~
x2/3. Similarly, for x > x7(c3), the structure function behaviour is independent of the
fractal dimension and is instead determined solely by the Hurst parameter H. Thus

d(loge) = ~x~ D), (A5)

202 @
20— (x) = —/ (1 — So(x/c)~ 1P
log(ca/c1) c1
dloge) = 20%(1 — Ax~ TPy~ 262, (A6)
where A = Slo(c;ﬂ’ — c}ﬂ])/(l + p) log(ca/c1). For x7(c1) <x <xr(c2), the com-
bined structure function follows
202 Cx
202 - (x) = ——— ( f (1= Si(x/c)"1P)d(log c)
log(CZ/cl) cl
1)
+ / Soo(x/e)~T*Vd(log c)), (A7)
Cx

where ¢y is the value of ¢ for which x =xr from (A4). Since an explicit expression
for ¢, cannot be obtained from (A4), we approximate x7 >~1/kr (see (2.10)),
ensuring consistency between the spectral and real-space transition regions (ky <k <k
corresponding to x| < x < x3). This leads to

1+p
2 2 S C S—a —(1+p)
2o —wr = 27 10g<1)+ 10 (ﬂ) (1) 1
log(cz/c1) X1 1+p \Coo X

g+l
—a —(g+1)
_ Soo (Cio P _(x . (A8)
g+1 \Co X2

Here, we define x1 :=x7(c1) =~ 1/k; and x3 :=x7(c2) = 1/ ky, we note that for x; < x <
X3, the first and third terms in (A8) are positive, while the second term is negative.
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However, the overall expression remains positive, with the first term (logarithmic
dependence) dominating over the third term (power-law dependence). Thus, the structure
function in the transition region can be approximated as 2(o> — WP (x)) ~ B log x + A.
Equation (AS8) provides a close approximation to (A7). For isotropic turbulence,
Kolmogorov’s scaling fixes D =5/3. As the Hurst parameter approaches 1, the second
term in (A8) also begins to exhibit logarithmic dependence on x, as seen by examining its
asymptotic form

I+p I+p
S C - —(1+p) C I
10 (_10)1 ’ (1) 1) = =S (_10),, " Jog (i) (A9)
14+ p \Coo X1 Coo X1

This result follows from the Taylor series expansion

_ 132 _1\3
logz=(z—1)— & 21) + @ 31) o (A10)

which converges for [z — 1| < 1. As H — 1, we have (x/xl)_(1+p) = (x/xl)_z(l_H) — 1,
ensuring that the first-term approximation of the logarithm is highly accurate.

Appendix B. Field validation of k™! scaling

We introduce a model covariance class that captures fractal and Hurst-type behaviours
in ¥ (+), enabling robust validation of the proposed formulation (2.6) using experimental
data. To extract ¥ () from covariance data, we consider the first derivative of ¥ (x)

2

v’ (x) (W (x/c) =¥ (x/c2)), x=0. (B1)

x log (c2/c1)
Recovering v (+) from ¥'(x) is an ill-posed problem due to degeneracy in extracting
individual covariance functions from their superposition. To address this, we adopt
a covariance model from Jetti et al. (2023, 2025b) that accounts for the long-
range dependence and fractal properties. Unlike conventional spectral models (e.g. von
Karman, Kaimal), this formulation simultaneously captures both features, yielding a
more comprehensive representation of turbulence. Its validity is demonstrated through
comparisons with field data from tidal currents and ABL flows, reproducing the expected
asymptotic spectral scaling. We consider the isotropic covariance functions introduced in
Jetti et al. (2023): Yy, (x) =(1 — (1 + (x/c)"") "B, x> 0.

A constructive proof establishes that v/ g, (+) is a valid isotropic covariance function
in R? for all d = 1,2,...if ¢e€(0,1], >0 and y € (0, 2]. While our focus is on
the one-dimensional case (d =1), we present generalised formulas for completeness.
The function vy g, exhibits a short-range-dependence (SRD) when yf > d and long-
range-dependence (LRD) when y < d. The corresponding fractal dimension is given by
D=d+1—-((ya)/2), while the Hurst parameter is H =1 — ((y8)/2) for LRD cases
(yB>d). N

The spectral density ¥4, g, (k) exhibits the following asymptotic behaviour:

Low wavenumbers (k — 0)

7 B—d . d—1
Va,p.y (k) = Cooc(ke)’P™¢, ifype 5 d), (B2)
Vapy k) = Koc, 0<K <oo, ifyf>d. (B3)
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Figure 4. Streamwise velocity spectra of winds from the sea (SRD) on (a) 12 January 2011 (09:05-11:05),
and (b) 11 May 2011 (22:07-23:54).

High wavenumbers (k — 00): %,ﬁ,y(k) — Cipc(ke)~4=7r2 The constants Cqo, Ko and
C1o depend on «, B, y and d but remain independent of c¢. See details in Jetti et al.
(2023, 2025b). We adopt ¥4, g, (x) to solve (B1), reducing the optimisation problem to
determining the optimal values of «, 8, y, ¢1 and c;. The best-fit parameters for ¥'(x) are
obtained by

2
o
v (x) = m(%,ﬂ,y(xm) —VYapy(x/c2)), x=0. (B4)

Next, we first validate this approach using experimental ABL turbulence data from a
coastal environment.

We analyse a dataset from a meteorological tower at the coastal interface of the Yucatdn
Peninsula (90°02'47”W, 21°09'53”N). We found that sea winds consistently exhibit the
—1 scaling for all time scales and seasons, while land winds lack a clear —1 region.
We searched the three-year dataset for near-neutral, stationary wind segments with a
stable wind direction for at least 60 min. A coordinate transformation aligned the velocity
components with the mean wind direction, resulting in streamwise (#) and cross-wise (v)
components. Stationarity was enforced using empirical mode decomposition (Cheng et al.
2024a), which removes low-frequency trends by eliminating the residual and largest-scale
intrinsic mode function (Cheng et al. 2024b).

For a stationary streamwise velocity profile, the optimal parameters are determined
to satisfy (BI), ensuring the positive definiteness of ¥y g, (). Here, 7y and
replace ¢; and ¢ from the original formulation. Kolmogorov’s scaling is enforced by
setting yo =2/3 while optimising (B4). The spectra are then analysed for long-range
dependence, imposing ¥y > 1 for short-range-dependent velocity profiles.

We analyse sea and land winds across seasons, focusing first on stationary sea wind
datasets that exhibit a well-defined —1 spectral scaling. Figure 4 presents the streamwise
velocity spectra, @,(f), and the compensated spectra, f®,(f), for three periods. The
velocity profile shows short-range dependence, with a spectral plateau at low frequencies.
The spectral bounds, f:=1/t; and f> := 1/17, effectively define the —1 scaling region,
with f, marking the integral time scale. The optimisation relies only on the covariance
function’s first derivative, without explicitly imposing the —1 scaling, demonstrating its
natural emergence.

Next, we analyse long-range-dependent stationary sea winds exhibiting —1 spectral
scaling, shown in figure 5 for three periods. The estimated bounds f; and f> are slightly
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Figure 5. Streamwise velocity spectra of winds from the sea (LRD) (a) from 01 January 2012 (23:48) to 02
January 2012 (03:50), and (b) from 07 April 2012 (19:11) to 08 April 2012 (00:14).
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Figure 6. Streamwise velocity spectra of winds from the land on (a) 09 May 2011 (09:22-11:30), and
(b) 25 May 2011 (08:30-09:42).

less precise but still capture the dominant features of the k~! region. This reduced
accuracy probably stems from the difficulty in precisely defining the long-range-
dependence constraint and the smoother transition from the k~! regime to the inertial
subrange compared with previous cases.

Finally, we examine land winds with short-range dependence that lack significant —1
spectral scaling, shown in figure 6 for three periods. The optimisation yields nearly
identical f; and f, values, converging to the characteristic frequency f,, which
corresponds to the inverse of the integral time scale. This demonstrates the robustness
of the model in correctly identifying the k! region when present, as in sea winds, while
also accurately recognising its absence in land winds.
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