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ABSTRACT. The effect of spatial variations in ice thickness, accumulation rate and lateral flow
divergence on radar-detected isochrone geometry in ice sheets is computed using an analytical method,
under assumptions of a steady-state ice-sheet geometry, a steady-state accumulation pattern and a
horizontally uniform velocity shape function. By using a new coordinate transform, we show that the
slope of the isochrones (with a normalized vertical coordinate) depends on three terms: a principal term
which determines the sign of the slope, and two scale factors which can modify only the amplitude of
the slope. The principal term depends only on a local characteristic time (ice thickness divided by
accumulation rate minus melting rate) between the initial and final positions of the ice particle. For plug
flow, only the initial and final values have an influence. Further applications are a demonstration of how
the vertical velocity profile can be deduced from sharp changes in isochrone slopes induced by abrupt
steps in bedrock or mass balance along the ice flow. We also demonstrate ways the new coordinate
system may be used to test the accuracy of numerical flow models.
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NOTATION
Symbols used in this paper, listed in the order in which they are defined:

YðxÞ Flow-tube width
BðxÞ Bedrock elevation
SðxÞ Surface elevation
HðxÞ Total ice thickness
aðxÞ Surface accumulation rate
mðxÞ Basal melting rate
t Time
x Horizontal coordinate
z Vertical coordinate
uxðx; zÞ Horizontal velocity
uzðx; zÞ Vertical velocity
qðx; zÞ Partial horizontal flux (Equation (1))
QðxÞ Total horizontal flux
!ð�Þ Flux shape function (Equation (2))
� Normalized vertical coordinate
�UxðxÞ Average horizontal velocity
!0ð�Þ Horizontal velocity shape function
s ¼ !’(� ¼ 0) Basal sliding rate
u�ðx; �Þ = d�=dt Vertical velocity in � coordinate (Equations (17) and (19))
~aðxÞ ¼ aðxÞ=HðxÞ Relative surface accumulation rate
~mðxÞ ¼ mðxÞ=HðxÞ Relative basal melting rate
�ðxÞ ¼ mðxÞ=ðaðxÞ �mðxÞÞ Ratio relating basal melting to mass balance (Equation (18))
T ðxÞ Local characteristic time
�ðxÞ ¼ ln QðxÞ=Qrefð Þ Logarithmic-flux horizontal coordinate (Equation (20))
�ð�Þ ¼ ln ð!ð�Þ þ �Þ= 1þ �ð Þ½ � Logarithmic-flux vertical coordinate (Equation (21))
u�ð�; �Þ ¼ d�=dt Horizontal velocity in � coordinate (Equation (23))
 ð�Þ Time shape function (Equation (24))
u�ð�; �Þ ¼ d�=dt Vertical velocity in � coordinate (Equation (26))
� Age
� Non-plug-flow parameter (Equations (42) and (52))
� Slope-sign parameter (Equations (46) and (53))
� Horizontal amplification term (Equation (51))
p Deformation exponent
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1. INTRODUCTION

Radio-echo sounding of the cold Greenland and Antarctic
ice sheets dates back to the 1970s. Such observations not
only provide the ice thickness and basal conditions but also
show internal layering. Internal layers can be traced over
very long distances and are commonly regarded as
isochronal layers, i.e. layers with the same age (Bailey and
others, 1964; Robin and others, 1969). They are flow-
markers, and potentially provide significant information
about ice rheology and dynamics, ice boundary conditions
such as accumulation rate or basal sliding, ice flow
divergence or convergence, the effect of bedrock irregu-
larities, etc. They also provide a strong constraint on, and a
test of, ice-sheet models.

An immediate application was the qualitative descrip-
tion of the actual or past ice flow. Robin and others (1977)
first pointed out that internal layers often do not closely
follow the bedrock, and suggested that ice flow must be
diverted by subglacial valleys. The discovery of past local
disruption of layers observed in Kamb Ice Stream (Ice
Stream C), West Antarctica, allowed Jacobel and others
(1996) to conclude that there had been an abrupt stoppage
of the ice stream a few centuries ago. Ng and Conway
(2004) have deduced that the stagnant Kamb Ice Stream
flowed at velocities of over 350ma–1, from the internal
layer stratigraphy.

A second application has been the stratigraphic correl-
ation of ice cores, allowing the comparison of their
respective chronologies: Jacobel and Hodge (1995) linked
GRIP and GISP2 in Greenland, while Siegert and others
(1998) linked Vostok and Dome C in East Antarctica.

A third application has been the quantitative reconstruc-
tion of the parameters controlling ice flow. Basal layers
observed above Vostok subglacial lake, West Antarctica
(Bell and others, 2002) and Ellsworth subglacial lake
(Siegert and others, 2006), allowed evaluation of the basal
melting and refreezing. The varying depth of shallow
isochrones allowed reconstruction of the spatial variation
of the accumulation in various areas. For the near-surface
isochrones, ice-equivalent layer depth can be viewed as
directly proportional to local accumulation rate (e.g.
Pinglot and others, 2001). For slightly deeper layers, one
needs to correct for total strain rate with a one-dimensional
(1-D) model (Vaughan and others, 1999; Fahnestock and
others, 2001), and also sometimes for horizontal advection
of the ice with two- or three-dimensional models (Nereson
and others, 2000; Baldwin and others, 2003; Siegert and
others, 2003).

A fourth application has been the extraction of past divide
location histories exploiting the Raymond effect (Raymond,
1983), where the non-linear rheology of ice gives rise to
slower vertical velocities at the divide. These result in
anticlines in the radar echo layers, and are particularly
convincing evidence that the layers are isochrones (Conway
and others, 1999).

Theoretical investigations into the relation between
isochrone characteristics and ice flow boundary conditions
or dynamics have been carried out for three decades
(Weertman, 1976; Whillans, 1976). Quantitative studies
have tended to focus on one aspect of the processes
controlling isochrone geometry. This paper is particularly
concerned with investigating how the interaction of
accumulation rate, ice-thickness changes and deformation

style produce isochrone geometry. This is done with the
assumptions of a steady-state ice-sheet geometry and
accumulation pattern, and of spatially uniform flow condi-
tions (i.e. spatially uniform velocity shape functions). These
assumptions permit development of an analytical expression
that relates isochrone slope to spatial variations in accumu-
lation rate, ice thickness and lateral flow divergence. We
illustrate our model with a few instructive examples. Such
an analytical model shows the influence of each parameter
(accumulation, ice thickness, divergence) on isochrones,
and gives information about the general nature of the
influence. This is complementary to numerical models,
which are not necessarily limited by such simple physical
assumptions, but which give information about isolated
points in parameter space.

2. THE ð�; �Þ-COORDINATE SYSTEM
We consider a flow-tube of an ice sheet in steady state. The
use of this assumption is discussed in section 5.2. Time is
represented by t, and we write the equation in ðx, zÞ
coordinates, where x, the horizontal coordinate, is the
distance from the ice divide and z is the vertical coordinate.
We suppose that the direction of the flow does not depend
on the vertical coordinate, and we represent the horizontal
flow divergence by the varying flow-tube width, Y ðxÞ. The
ice-sheet geometry is given by BðxÞ the bedrock elevation,
SðxÞ the surface elevation and HðxÞ ¼ SðxÞ � BðxÞ, the total
ice thickness. We suppose that snow densifies instanta-
neously. Let aðxÞ be the surface accumulation of ice and let
mðxÞ be the basal melting rate at the ice–bedrock interface.
We denote uxðx, zÞ the horizontal velocity and uzðx±, zÞ the
vertical velocity of the ice particles. We further define
qðx, zÞ, the partial horizontal flux in the flow-tube, as the
flux transported below level z:

qðx, zÞ ¼ YðxÞ
Z z

B
uxðx, z 0Þ dz0, ð1Þ

with QðxÞ ¼ qðx, SÞ being the total horizontal flux.
We now define the flux shape function, !, as the function

defined on ½0; 1� such that the partial flux q is given by:

qðx, zÞ ¼ QðxÞ!ð�Þ, ð2Þ
where � ¼ ðz � BÞ=H is the normalized vertical coordinate.
Such shape functions have been used previously in glaci-
ology (Lliboutry, 1979; Reeh, 1988; Ritz, 1989). We assume
here that ! is a strictly increasing function (i.e. no reverse
flow), and that it is the same function all along the flow-tube
(i.e. the flux shape function is uniform). The use of this
assumption is discussed in section 5.2.

From Equation (1), the horizontal velocity ux is given by
uxðx, zÞ ¼ ð1=YÞð@q=@zÞ, leading to:

uxðx, zÞ ¼ �UxðxÞ!0ð�Þ, ð3Þ
where �Ux ¼ Q=YH is the average horizontal velocity and !0

is the derivative of ! with respect to �. In other words, !0 is
the shape function for the horizontal velocity. In the
following, we deduce the vertical velocity profile from the
ice mass conservation relationship.

Owing to the incompressibility of the ice, the ice mass
conservation can be written as:

1
Y
@ðYuxÞ
@x

þ @uz
@z

¼ 0: ð4Þ
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Multiplying Equation (3) by Y and differentiating with
respect to x leads to:

@Yux
@x

¼ @Y �Ux

@x
!0ð�Þ þ Y �Ux!

00ð�Þ @�
@x

, ð5Þ

and the definition � ¼ ðz � BÞ=H leads to:

@�

@x
¼ � 1

H
@B
@x

þ �
@H
@x

� �
: ð6Þ

Moreover, the ice mass conservation applied to a whole ice
column leads to:

@Q
@x

¼ Yða�mÞ: ð7Þ

Now

Q ¼ HY �Ux , ð8Þ
and therefore

@Q
@x

¼ @H
@x

Y �Ux þH
@Y �Ux

@x
: ð9Þ

Finally, replacing @�=@x and @Y �Ux=@x in Equation (5) using
Equations (6), (7) and (9) leads to:

@Yux
@x

¼ 1
H

a�m � @H
@x

�Ux

� �
Y!0ð�Þ

� 1
H
Y �Ux

@B
@x

þ �
@H
@x

� �
!00ð�Þ: ð10Þ

From Equation (4), uz can be written as:

uz ¼ uzðz ¼ BÞ �
Z z

B

1
Y
@ðYuxÞ
@x

dz 0: ð11Þ

Now uzðz ¼ BÞ is given by:

uzðz ¼ BÞ ¼ �m þ @B
@x

�Uxs, ð12Þ

where s ¼ !0ð� ¼ 0Þ is the sliding rate (s ¼ 0 if no sliding
and s ¼ 1 if full sliding, i.e. plug flow). Therefore

uz ¼ �m þ @B
@x

�Ux s � a�m � @H
@x

�Ux

� �
!ð�Þ

þ �Ux
@B
@x

!0ð�Þ � sð Þ þ �Ux
@H
@x

Z �

0
�0!00ð�0Þ d�0: ð13Þ

An integration by parts gives:
Z �

0
�0 !00ð�0Þd�0 ¼ �!0ð�Þ � !ð�Þ, ð14Þ

leading finally, with two cancellations, to

uz ¼ �m � a�mð Þ!ð�Þ þ �Ux
@B
@x

þ �
@H
@x

� �
!0ð�Þ: ð15Þ

The vertical velocity in the � coordinate, u� ¼ d�=dt, can be
written in terms of the vertical velocity in the z coordinate,
uz , using the chain rule, as:

u� ¼ 1
H

uz � @B
@x

þ �
@H
@x

� �
ux

� �
, ð16Þ

leading to

u� ¼ � ~m � ð~a� ~mÞ!ð�Þ, ð17Þ
with ~a ¼ a=H and ~m ¼ m=H the normalized accumulation
and melting rates. Notice that this form removes the
dependence of the vertical velocity in � coordinate on the
basal and surface slopes.

Defining the ratio �, relating basal melting to mass
balance, as:

�ðxÞ ¼ mðxÞ
aðxÞ �mðxÞ , ð18Þ

we can write

u� ¼ �!ð�Þ þ �ðxÞ
T ðxÞ , ð19Þ

where T ðxÞ ¼ HðxÞ= aðxÞ �mðxÞð Þ is called the local char-
acteristic time. We assume here that � is uniform all along
the flow-tube, which results in a spatially uniform shape
function for the vertical velocity, u� . To further the analysis
we change the coordinate system from ðx, �Þ to a new
system ð�, �Þ defined by:

�ðxÞ ¼ ln
QðxÞ
Qref

� �
, ð20Þ

�ð�Þ ¼ ln
!ð�Þ þ �

1þ �

� �
, ð21Þ

where Qref is a reference flux at a reference position xref. In
the following, we will call � the logarithmic-flux horizontal
coordinate and � the logarithmic-flux vertical coordinate.
Note that the change of variable from x- to �-coordinate
requiresQðxÞ to be an increasing function, which is the case
when the accumulation rate, a, is strictly positive all along
the flow-tube. Similarly, the change of variable from �- to
�-coordinate requires !ð�Þ to be a strictly increasing
function, which is the case when !0 is a strictly positive
function of �.

We then define the horizontal and vertical velocity
components in this new coordinate system as u� ¼ d�=dt
and u� ¼ d�=dt. The logarithmic-flux horizontal velocity u�
can be derived from the horizontal velocity in the standard
x-coordinate,

u� ¼ 1
Q
@Q
@x

dx
dt
: ð22Þ

Replacing Q using Equation (8), @Q=@x using Equation (7)
and dx=dt using Equation (3) leads to:

u� ¼ 1
T ð�Þ ð�Þ , ð23Þ

where  ð�Þ is the inverse of the horizontal-velocity shape
function !0 written in the �-coordinate,

 ð�Þ ¼  ln
!ð�Þ þ �

1þ �

� �� �
¼ 1
!0ð�Þ , ð24Þ

and is called the time shape function. We have used a
different notation here for 1=!0 to emphasize that it is the
derivative of ! with respect to �, and not with respect to �.

Similarly, we can derive the vertical velocity in the
logarithmic-flux vertical coordinate, �, from the corres-
ponding quantity in the normalized vertical coordinate, �,

u� ¼ 1
!þ �

@!

@�

d�
dt

, ð25Þ

and replacing d�=dt by its expression in Equation (17) leads
to the following expression:

u� ¼ � 1
T ð�Þ ð�Þ : ð26Þ
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We immediately remark that the expressions in Equa-
tions (23) and (26) sum to zero. This gives simple linear
trajectories for ice particles in this logarithmic-flux co-
ordinate system ð�, �Þ

d�
d�

����
c
¼ �1, ð27Þ

which is equivalent to:

� ¼ �0 � �, ð28Þ

where �0 ¼ lnðQ0=QrefÞ and Q0 is the total flux at the initial
position, x0, of the particle at the surface. Mathematically
minded readers will guess that we have used the notation
ðd�=d�Þjc because trajectories are the characteristics of the
(hyperbolic) age equation. Indeed, as shown in the Appen-
dix, we could have reached the same results for the
trajectories using the age equation:

D�
Dt

¼ 1, ð29Þ

where � is the age, and subsequently using standard theory
for solution of hyperbolic equations.

The fact that trajectories are linear in the logarithmic-flux
coordinate system ð�, �Þ is useful for solving the age
equation. We will see in the next sections that use of this
coordinate system allows analytical determination of the
slope of the isochrones everywhere in the ice sheet. It
also permits computation of the initial position of a particle
from its current position, by taking the exponential of
Equation (28)

Q0 ¼ Q
!þ �

1þ �
: ð30Þ

Similarly, the age, �, of a particle at a given position ð�, �Þ is
readily computed from

�ð�, �Þ ¼
Z �

�þ�
T ð�0Þ ð�� �0 þ �Þd�0: ð31Þ

For plug flow, by definition !0 � 1 (i.e. uniform horizontal
velocity along a vertical line). This situation corresponds
to 100% of the motion arising from basal sliding or,

equivalently, to ice deformation concentrated at the extreme
base of the ice sheet. In this case, the velocity field becomes:

u� ¼ 1
T �ð Þ , ð32Þ

u� ¼ � 1
T �ð Þ , ð33Þ

with Equation (27) also applying to plug flow. The formula
for the age simplifies to:

�ð�, �Þ ¼
Z �

�þ�
T ð�0Þ d�0: ð34Þ

3. SLOPE OF ISOCHRONES
3.1. General case
We will determine here an analytical formula for the slope
of the isochrones. The isochrone slope is dependent on the
coordinate system, and in the future it will be qualified
according to the coordinate system, and called, for example,
the ð�, �Þ slope, the x, �ð Þ slope or the ðx, zÞ slope. We will
focus in particular on the ðx, �Þ slope, which is an
observable, as the ðx, zÞ slope is strongly affected by the
local bedrock and surface slope.

Consider two particles initially at the upper surface of the
ice sheet at arbitrary neighbouring positions x0, x0 þ 	x0
(corresponding to �0,�0 þ 	�0). After time �t they will have
positions x, x þ 	x (corresponding to �, �þ 	�) with eleva-
tions �, � þ 	� (corresponding to �, �þ 	�). Our goal is to
derive an expression for the isochrone ðx, �Þ slope, but we
will first derive the ð�, �Þ slope. As indicated by the notation,
we will assume that 	�, etc. are small quantities.

As a consequence of Equation (27), the trajectories in the
ð�, �Þ space of both particles are two parallel lines with a
slope of –1. The vertical shift of the two lines is equal to
	�traj ¼ 	�0, and we have 	� ¼ 	�traj � 	� (see Fig. 1). This
leads to the following expression for the slope of the
isochrones (assuming that 	�0 ! 0):

d�
d�

����
�

¼ 	�

	�
¼ 	�0 � 	�

	�
: ð35Þ

The notation j� is used throughout this paper to define
constant age, i.e. an isochrone layer. To proceed further, we
must relate 	� to 	�0. Firstly, we need to evaluate the time,

Fig. 1. Scheme for the derivation of the formula for isochrone slope.
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	t�0 , required for the first particle to travel from �0 to
�0 þ 	�0 and the time, 	t�, for the second particle to travel
from � to �þ 	� (see Fig. 1). When 	�, 	�0 are small, these
quantities can be derived from Equation (23) as:

	t�0 ¼ T0 0	�0, ð36Þ
	t� ¼ T �ð Þ ð�Þ	�, ð37Þ

with T0 ¼ T ð�0Þ and  0 ¼  ð� ¼ 0Þ.
Secondly, we need to evaluate the difference in duration

between the two journeys of the particles from �0 þ 	�0 to �,
represented by 	t�0!�. In plug flow, 	t�0!� ¼ 0 because the
horizontal velocity does not depend on the vertical position
of the particle. In the general case, we can determine 	t�0!�

using Equation (23) to be:

	t�0!� ¼
Z �

�0þ	�0
T ð�0Þ  ð�Þ �  ð�� 	�trajÞ

� �
d�0, ð38Þ

or, if we differentiate the  function,

	t�0!� ¼ �
Z �

�0þ	�0
T ð�0Þ @ 

@�
ð�Þ	�traj d�0: ð39Þ

Using the fact that 	�traj is constant and equal to �	�0 as
illustrated in Figure 1, we find:

	t�0!� ¼ 	�0

Z �

�0þ	�0
T ð�0Þ @ 

@�
ð�Þd�0, ð40Þ

or, replacing � by �0 � � by Equation (28) and taking the
limit as 	�0 ! 0,

	t�0!� ¼ �	�0, ð41Þ
where

�ð�,�0Þ ¼
Z �

�0

T ð�0Þ @ 
@�

ð�0 � �0Þ
� �

d�0: ð42Þ

Note for plug flow that � ¼ 0 as  � 1. This is why we call �
the non-plug-flow parameter.

Now, by construction, both particles have the same age:

	t� ¼ 	t�0 � 	t�0!�, ð43Þ
and replacing 	t�0 and 	t� by Equations (36) and (37), we get:

T 	� ¼ T0 0	�0 � �ð�,�0Þ	�0, ð44Þ
or

	� ¼ ð1� �Þ	�0, ð45Þ
with

� ¼ 1� 1
T 

T0 0 � �ð�,�0Þ½ �: ð46Þ

Finally we replace 	� by ð1� �Þ	�0 in Equation (35) to
reach the first goal of deriving an expression for the
ð�, �Þ isochrone slope:

d�
d�

����
�

¼ �

1� �
: ð47Þ

The ð�, �Þ slope depends on the value of the characteristic
time T ¼ H=ða�mÞ at the initial and final positions of the
particle, �0 and �, and depends also on the value of T
between �0 and � through the function �. The initial position
of the particle can be evaluated from Equation (30) and the
slope of the isochrone can be estimated directly by
integrating Equation (42). Because the changes of coordin-
ates x ! � and � ! � are monotonic, the signs of the ðx, �Þ
and ð�, �Þ slopes are the same. Moreover, assuming that !00 is
positive, � is negative and thus, from Equation (46), ð1� �Þ

is positive. We will thus call � the slope-sign parameter,
because its sign determines the sign of the isochrone slope.

From Equations (20) and (21), we see that d� ¼ dQ=Q,
d� ¼ d!=ð!þ �Þ and we also use the identity d! ¼ !0d�.
With dQ ¼ ða�mÞY dx from Equation (7), we deduce the
ðx, �Þ slope,

d�
dx

����
�

¼ �

1� �

aðxÞ �mðxÞ
QðxÞ YðxÞ!þ �

!0 : ð48Þ

In this formula, note that Q=Y represents the local flux �Q,

�Q ¼ Q
Y

¼
Z S

B
uxðzÞ dz: ð49Þ

Now, since Q ¼ R x
0 ða�mÞYdx 0 we can write the isochrone

slope as:

d�
dx

����
�

¼ �

1� �
�ðxÞ!ð�Þ þ �

!0ð�Þ , ð50Þ

with �ðxÞ defined by:

�ðxÞ ¼
Z x

0

aðx 0Þ �mðx 0Þð ÞYðx 0Þ
ðaðxÞ �mðxÞÞYðxÞ dx 0

� ��1

: ð51Þ

Note that �ðxÞ is simply 1=x when accumulation rate, a,
melting rate, m, and flow-tube width, Y , are all independent
of x.

A second, related, expression for �, which illustrates
different aspects of the problem, can be derived as follows.
Integrating Equation (42) by parts, � can be expressed as:

� ¼ T0 0 � T þ
Z �

�0

@T
@�

 ð�0 � �0Þ d�0, ð52Þ

leading, with Equation (46), to

� ¼ 1
T 

Z �

�0

@T
@�

 ð�0 � �0Þ d�0: ð53Þ

The interest of this formula is that the new integral term in �
contains the derivative of T with respect to �, instead of the
derivative of  with respect to �. It can now be seen
immediately that the ðx, �Þ slope of the isochrones is zero
when the particle has experienced constant T conditions
along its journey, which is not obvious from the previous
formulation. We will use the term �-flat to qualify these
isochrones, because it is equivalent to having a zero slope in
the ðx, �Þ-, ðQ, �Þ- or ð�, �Þ-coordinate systems. Similarly, we
will use z-flat for isochrones with a zero slope in the ðx, zÞ-,
ðQ, zÞ- or ð�, zÞ-coordinate systems.

3.2. Plug flow as a special case
In plug flow, ! ¼ �, !0 � 1 and  � 1, lead to � ¼ 0. Thus

� ¼ 1� T0
T

, ð54Þ
and the ð�, �Þ and ðx, �Þ slopes, respectively, become

d�
d�

����
�

¼ �

1� �
, ð55Þ

and

d�
dx

����
�

¼ �

1� �

aðxÞ �mðxÞ
QðxÞ YðxÞð� þ �Þ, ð56Þ

or

d�
dx

����
�

¼ �

1� �
�ðxÞð� þ �Þ: ð57Þ
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The remarkable aspect of Equation (56) is that the ðx, �Þ
slope depends only upon the elevation, the initial
(through �) and final positions of the particle, and the local
flux �Q ¼ Q=Y ¼ R S

B uxðzÞ dz. The intervening bedrock
geometry does not affect the isochrone slope.

4. ILLUSTRATIONS
We illustrate the effect of various parameters on the slope of
the isochrones with three different cases, which are
combinations of steps and plateaux associated with plug
flows and flows with distributed internal deformation. These
examples are presented because they are simple. For
example, the T ð�Þ parameter takes only two different values,
because the bedrock elevation takes only two different
values, separated by steps. As a consequence, the solutions
are entirely analytical.

It is clear that at the steps ice particles are moving
upwards at infinite speed. In reality, horizontal deviator
stress gradients would prevent this, but act over length scales
comparable with the ice thickness. Without these stress
gradients, the predicted ðx, zÞ slope is infinite, but the ðx, �Þ
slope remains well behaved, as it depends upon the integral
of the parameters it experiences through its journey. Thus,
after any step, the isochrones emerge with unchanged �.
Indeed, we can see that Equation (17) still holds when, at
some points, @B=@x and @H=@x tend to infinity and the ~a
and ~m functions are discontinuous. The derivation for the
slope of the isochrones is consequently not affected. This
example can be seen as the limit of cases when the bedrock
slope tends to infinity.

It should also be noted that, at short horizontal length
scales, the assumptions regarding the spatially constant
velocity shape function do not hold in cases with abrupt
bedrock reliefs. These illustrations are only intended to
show the use of our analytical solution to understand the
geometry of isochrone layers on long horizontal length
scales.

However, we do not want to give the impression that our
approach only holds for steps in bedrock topography or
accumulation rate. The results for plug flow – that the slope
depends only on initial and final conditions – holds for any
intermediate variation. For a given flux shape function, !,
the isochrone slopes can be computed as follows. First, for

every x column, we can compute the corresponding total
flux Q (by an integration of the mass balance from the ice
divide), the logarithmic-flux horizontal variable � (directly
deduced from Q) and the x-dependent scale factor (also by
an integration from the ice divide). Second, for every � level,
we can compute the logarithmic-flux vertical variable, �, the
!0 value and the depth-dependent scale factor. Third, for
every ðx, �Þ node, we can compute the spatial origin of the
particle from Equation (28) or (30), the � term from the
convolution-type Equation (42) (by a simple numeric
integration against the horizontal � variable) and the
principal term �=ð�� 1Þ (deduced directly from �). We
expect this numerical method to be significantly faster and
more accurate than a brute-force method of back-tracking
the trajectories of the particles by a finite-difference
approach.

4.1. Step in H=a, plug flow
In this first experiment, we assume (1) plug flow and no
lateral divergence (Y ¼ constant), (2) accumulation rate to
be constant and equal to 3 cma–1 of ice, (3) no basal melting
all along the flow-tube (� ¼ 0) and (4) ice thickness equal to
H1 ¼ 4000m from the divide to 30 km downstream (pos-
ition x ¼ x1, corresponding to � ¼ �1; see Fig. 2), then
decreasing abruptly to H2 ¼ 2000m, and keeping this value
downstream. The ice surface is flat.

Results are plotted in Figure 2, where we can distinguish
three different areas, depending on the initial and final
horizontal positions of the ice particles:

Area A1, before the bedrock step. The ice particles in this
zone have trajectories entirely in this area, and have thus
experienced constant accumulation, bedrock and sur-
face elevation conditions during their motion. Hence,
the isochrones are flat from Equations (54) and (56) (or
even simply by the integration of Equation (17), because
the rate of elevation change is independent of the
horizontal coordinate).

Area A2 represents particles whose trajectory starts
upstream of the bedrock step but which have experi-
enced the bedrock step. In this case, applying Equa-
tion (55) with � ¼ 1� ðH1=H2Þ gives the ð�; �Þ slope of
the isochrones as a constant of –1/2. Equation (57) gives

Fig. 2. Isochrones over a step change in bedrock elevation at x ¼ x1 (corresponding to � ¼ �1Þ, marked by a thick grey vertical line. Ice is in
plug flow. (a) ðx; zÞ-coordinate system. (b) ð�; �Þ-coordinate system. In both panels, thin black lines (plain and dot–dashed) are isochronous
layers, and the thick dashed line is the trajectory of a particle deposited immediately upstream of the bedrock step (see section 4.1 for a
complete description of the zones).
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the ðx; �Þ slope of the isochrones as:

d�
dx

����
�

¼ � �

2x
: ð58Þ

The position of the step does not appear as might be
expected because x is proportional to the total flux Q.

Area A3 represents particles whose trajectory starts
downstream of the bedrock step. As with area A1, these
particles have experienced constant accumulation and
ice-thickness conditions, and thus the slope of the
isochrones is zero.

The dashed line separating areas A2 and A3 is a trajectory of
ice particles (or characteristic, if we follow the formalism of
the hyperbolic equations; see Appendix). It is clear from the
illustrations that when considering a step in bedrock
elevation the age solution is non-differentiable across these
trajectories or characteristics. Such non-differentiability does
not indicate the invalidity of the solutions, since such a
property is expressly known to be a possible feature of
solution fields across characteristics of hyperbolic equations
(Rubinstein and Rubinstein, 1998). This is also true for the
following examples.

Finally, the solution shows where the 1-D approximation
is invalid. This approximation, where horizontal advection is
neglected, is often used in the study of isochrones. The non-
zero ðx, �Þ slopes in this example are a consequence of
horizontal advection; the equivalent 1-D solution would
have computed the isochrones in area A3 to have filled the
whole zone downstream of the bedrock step, and the
isochrones would have been flat; in other words, area A2
would not have existed.

4.2. Plateau in H=a, plug flow
In this example, the assumptions are the same as in
section 4.1, except that the bedrock elevation decreases
abruptly from 2000m to 0m at 60 km (position x ¼ x2,
corresponding to � ¼ �2; see Fig. 3), creating a plateau in
the bed.

We can distinguish several different areas:

Areas A1–A3 are identical to the corresponding cases in
the example of section 4.1.

Area A4 represents particles whose trajectory starts
before the first bedrock step and finishes after the second

step. From Equation (54), � ¼ 0 and the isochrones are
consequently �-flat and z-flat. This is not a priori trivial to
understand, and we see here a concrete application of
the formula of isochrone slope derived in section 3. In
the next example we will see that isochrones are not
�-flat in area A4 when there is internal deformation.

Area A5 represents particles whose trajectory starts
between the two bedrock steps but continues to an area
downstream of the second step. If we apply Equation (47)
with � ¼ 1� ðH2=H1Þ, we find that the slope of the
isochrones in the logarithmic-flux coordinate system
ð�; �Þ is constant and equal to 1, and Equation (57) gives
the slope of the isochrones in the ðx; �Þ-coordinate
system as:

d�
dx

����
�

¼ �

x
: ð59Þ

Area A6 represents particles whose trajectory begins
downstream of the second bedrock step. As with
area A1, these particles experience constant accumu-
lation and ice-thickness conditions, and thus the slope of
the isochrones is zero and the depth of the isochrones is
the same as in A1.

Similarly to the previous example, areas A2, A4 and A5
would not be computed correctly by the 1-D approximation.

4.3. Plateau in H=a, distributed deformation
In this example we use the same profiles for accumulation,
bedrock and surface elevations and lateral divergence as in
the previous example, but a different flux shape function, !,
which permits internal deformation,

! ¼ �p , ð60Þ
!0 ¼ p�p�1, ð61Þ

with p ¼ 1:5 chosen in our example. We call p the
deformation exponent. For 1 � p � 2, these simulate typical
velocity profiles for simple shear. This shape function is
qualitatively similar to standard glaciological forms:

! ¼ 1
n þ 1

ð1� �Þnþ2 þ ðn þ 2Þ� � 1
h i

, ð62Þ
leading to

!0 ¼ n þ 2
n þ 1

1� ð1� �Þnþ1
h i

, ð63Þ

Fig. 3. Isochrones over a bedrock plateau delimited at x ¼ x1 and x ¼ x2 (corresponding to � ¼ �1 and � ¼ �2). See section 4.2 for a
complete description of the experiment. Ice is in plug flow. Details as for Figure 2.
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but is analytically more tractable. A difference that requires
comment is the fact that !00 (which is a multiple of the shear
rate) presents a singularity at � ¼ 0 (it tends to þ1 at � ¼ 0),
while !00 was used during the analytical development in
section 2. This singularity is not important, because only the
non-singular integrated forms

R
!00 or

R
�!00 appear in the

analytical development.
Using our additional assumption that � ¼ 0, it is

straightforward to show that  is given by:

 ð�Þ ¼ 1
p
exp

1� p
p

�

� �
: ð64Þ

The slope of the isochrones in the logarithmic-flux co-
ordinate system ð�, �Þ is given by Equation (47), with � given
by Equation (53),

� ¼ 1
 T

Z �

�0

@T
@�

 ð�0 � �0Þ d�0: ð65Þ

As in section 4.2, we can distinguish the same six areas, A1–
A6, with respect to the initial and final horizontal positions
of the ice particles (see Fig. 4). Isochrones are still flat in
areas A1, A3 and A6 because these ice particles have
experienced constant accumulation and ice-thickness con-
ditions during their trajectories. For area A2, @T=@� ¼ 0
between initial and final horizontal positions (�0 and �),
except for the bedrock step �B at � ¼ �1 which leads to a
step �1T ¼ T2 � T1 in the T parameter. Thus, replacing �0
using Equation (28), we obtain:

� ¼ �1T
T2

 �þ ð�� �1Þ½ �
 ð�Þ , ð66Þ

and

� ¼ �exp
1� p
p

ð�� �1Þ
� �

, ð67Þ

giving the following expression for the slope of the
isochrones:

d�
d�

����
�

¼ �
exp 1�p

p ð�� �1Þ
h i

1þ exp 1�p
p ð�� �1Þ

h i : ð68Þ

Immediately downstream of the bedrock step at � ¼ �1, the
ð�, �Þ slope is –1/2 and decreases with � (with a minimum
value of –1).

Similarly, one can show that in area A5 the ð�, �Þ slope of
the isochrones is given by:

d�
d�

����
�

¼
exp 1�p

p ð�� �2Þ
h i

2� exp 1�p
p ð�� �2Þ

h i , ð69Þ

where �2 is the horizontal coordinate of the second bedrock
step (see Fig. 4). Again, the ð�, �Þ slope is 1 just after the
bedrock step �2 and decreases toward 1/2 as � increases.

For area A4, one can also show, from Equation (65), that:

� ¼ �2T
T1

 �þ ð�� �2Þ½ � �  �þ ð�� �1Þ½ �
 ð�Þ , ð70Þ

with �2T ¼ T3 � T2. This leads to

� ¼ 1
2
exp

1� p
p

ð�� �1Þ
� �

� 1
2
exp

1� p
p

ð�� �2Þ
� �

, ð71Þ

giving the following formula for the ð�, �Þ slope of the
isochrones:

d�
d�

����
�

¼
exp 1�p

p ð�� �2Þ
h i

� exp 1�p
p ð�� �1Þ

h i

1� exp 1�p
p ð�� �2Þ

h i
� exp 1�p

p ð�� �1Þ
h i : ð72Þ

Unlike the previous example, isochrones are not �-flat in this
area (see Fig. 4), as a result of the distributed deformation in
the flow. It suggests that, in this case, we might be able to
reconstruct the flux shape function, !, from the isochrone
geometry.

5. DISCUSSION
5.1. Influence of accumulation, ice thickness and
lateral flow-tube divergence
The analytical solution for the slope of the isochrones where
the velocity shape functions are spatially uniform allows us
to study the influence of the spatial variation of accumu-
lation, ice thickness and lateral flow-tube divergence on the
slope of the isochrones. Two primary controls on isochrones
are the bedrock and surface elevation variations: an
isochronic layer has an approximately constant relative
depth in the ice sheet, so that plotting the isochrones with
the normalized coordinate, �, eliminates this primary effect.
In other words, the ðx, �Þ slope informs us about the
processes governing ice flow.

Fig. 4. Isochrones over a bedrock plateau delimited at x ¼ x1 and x ¼ x2 (corresponding to � ¼ �1 and � ¼ �2). See section 4.3 for a
complete description of the experiment. Ice is experiencing internal deformation. Details as for Figure 2.
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From Equation (50), the ðx, �Þ slope is the product of three
terms: one principal term, and two scale factors. The scale
factors can modify the amplitude of the ðx, �Þ slope but not
its sign.

One scale factor, �ðxÞ, depends upon the horizontal
position of the particle, and the other, ð!ð�Þ þ �Þ=!0ð�Þ,
depends upon the normalized elevation, �, of the particle.
The x-dependent scale factor tends to zero as the distance
from the ice divide increases. It also depends on the flow-
tube mass-balance term (accumulation rate minus melting
rate multiplied by the flow-tube width) at the local position
compared to its values upstream. If the accumulation
increases downstream, or if the flow-tube width increases
downstream, the scale factor decreases more slowly with
distance, x, from the ice divide.

The depth-dependent scale factor depends on the flux
shape function, !. For plug flow, it simply increases linearly
from � at the bedrock to 1þ � at the surface. When there is
no melting, the depth-dependent scale factor tends to zero
as � tends to zero. That does not mean, however, that
the isochrones approach a horizontal orientation as they
approach the bedrock interface, because the principal
term, �=ð1� �Þ, may tend to þ1. When there is melting
but no sliding, the depth-dependent scale factor tends to
þ1. That does not mean, however, that the isochrones
approach a vertical orientation as they approach the
bedrock interface, because the slope-sign term, �, tends
to zero.

The principal term �=ð1� �Þ depends on the character-
istic time T ¼ H=ða�mÞ (ice thickness divided by accumu-
lation rate minus melting rate) between the initial and final
horizontal positions of the particle. Changes in mass
balance (accumulation minus melting) or in ice thickness
have exactly the same influence on this term. Lateral flow-
tube divergence does not impact this principal term and
thus the sign of the ðx, �Þ slope, but only the x-dependent
scale factor. For plug flow, the situation is even simpler,
because this term depends only upon the ratio between the
initial and the final values of this local characteristic time
(and not the values at intermediate locations along the
particle trajectory); if it is larger at the final position, the
ðx, �Þ isochrone slope is positive and, conversely, if it is
smaller the ðx, �Þ slope is negative. For general flow, the
basic pattern remains the same, but the values of the
characteristic time in between enter in the � parameter in
Equation (46) through �, the latter being defined in
Equation (42). It should be emphasized here that through
our analytical solution we can now assess the influence of
the bedrock geometry and spatial accumulation rate vari-
ations on isochrone layers. Such a formulation would have
been rather more difficult to detect with numerical
experiments with a finite number of bedrock geometry and
accumulation rate scenarios.

5.2. Limitations of assumptions
In the derivation of our analytical model, we made several
assumptions.

Firstly, we assumed that the ice sheet is in steady state.
This assumption implies that our results should apply with
least adjustment to the central parts of the ice sheets, where
thickness changes are subdued compared with the margins.
For Greenland or for West Antarctica, the stable Holocene
period occupies a large part of the ice-sheet thickness, and
thus this assumption should not be too constraining

providing we do not consider isochrones too close to the
bedrock. However, for central East Antarctica, the Holocene
period occupies only a small fraction of the total ice
thickness. Counteracting this is the fact the ice thickness
conditions have been relatively stable, with changes of the
order of 200m (Ritz and others, 2001), i.e. less than 10%.
There are hints from numerical calculations (Nereson and
others, 2000) that even severe changes in geometry do not
affect the isochrone geometry enormously, at least where the
flow is horizontally uniform.

The fact that the accumulation rate changed between
interglacial and glacial periods is not so important, because
the isochrone slope depends only on the relative spatial
variations of the accumulation. Indeed, if we assume that
spatial and temporal variations of accumulation and melting
can be separated as:

aðx, tÞ ¼ �aðxÞRðtÞ, ð73Þ
mðx, tÞ ¼ �mðxÞRðtÞ, ð74Þ

(with RðtÞ a non-negative multiplication factor) we can
come back to the steady-state problem with melting rate
�mðxÞ and accumulation rate �aðxÞ by changing the time
variable from t to �t defined by:

�t ¼
Z t

0
RðtÞ dt : ð75Þ

Because of the bijection between t and �t (for every value of
t there is one unique value of �t) isochrones in t are
equivalent to isochrones in �t. The true age, �, can simply be
deduced from the normalized age, ��, with Equation (73).
This technique to include transient accumulation rates has
been used by previous workers (Schøtt and others, 1992;
Nereson and others, 1996). With this hypothesis, the
particles follow the same paths regardless of the time-
dependent term RðtÞ and they go faster or slower as RðtÞ
increases or decreases, respectively. There is no surface
adjustment and no delay in velocity response to mass-
balance changes.

Secondly, we assumed a uniform ratio, � ¼ m=ða�mÞ,
relating basal melting to mass balance. This assumption
applies in particular if there is no basal melting. If there is
significant basal melting, it is very unlikely that � is uniform
and thus our analytical model is not valid. However, at
shallow depths, the velocity field is almost unaffected by
basal melting, and thus the error implied by our assumption
should be small.

Thirdly, we assumed a uniform flux function, !. Although
we have not explicitly made any mechanical assumptions,
relying purely on kinematics, we are clearly motivated by
the shallow-ice approximation (SIA), because the assump-
tion of the velocity shape function is consistent with the SIA
(Lliboutry, 1979; Hutter, 1983). More discussions on this can
be found in Hindmarsh (2001). Near bedrock steps, the SIA
will not hold over short distances, much shorter than those
of an appreciable fraction of the ice-sheet extent that we are
concerned with here. In these narrow zones, the shape
function will not be uniform. Over longer distances, the
assumption of a horizontally uniform flux shape function, !,
will hold as long as (1) the basal conditions are constant (e.g.
no subglacial lakes which permit increased sliding) and (2)
the temperature profile does not change too much (e.g. no
change in geothermal heat flux, only small changes in ice
thickness).
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5.3. Inference of velocity shape functions from
observed layers
Bedrock steps lead to traceable, propagating discontinuities
in isochrone slopes which correspond to ice particle
trajectories and which must have ð�, �Þ slope of –1. The
relationship between the logarithmic-flux vertical coordin-
ate, �, and the normalized vertical coordinate, �, depends on
the velocity shape function. The shape function does enter
into the formal definition of the coordinate transform so, if
all the other relevant parameters are known, we can
compute or invert for the shape function.

To change the horizontal coordinate from x to �, we need
to know the mass-balance term a�m (or just the accumu-
lation rate a if basal melting is negligible). This could be
done by reconstructing the accumulation rate from the
shallow isochrones, which have experienced negligible
strain. An alternative way would be to measure the surface
velocity; the gradient in surface strain rate gives the
accumulation rate. To do that we need, in principle, to
know the ratio between the surface velocity and the average
velocity !0ð� ¼ 1Þ. However, if we suppose that the flux
shape function, !, is uniform, gradients in surface velocity
still give spatial variations in accumulation, which is
sufficient to compute the isochrone slope and the x ! �
change of coordinate.

To transform the vertical coordinate from � to �, we need
to know the flux shape function, !, and the ratio (relating
basal melting to mass balance), �. Assuming that we restrict
our consideration to an area where there is no melting, and
taking the flux shape function, !, from section 4.3,

! ¼ �p , ð76Þ
we obtain

� ¼ p lnð�Þ: ð77Þ
Because the flux shape function ! is unknown, the measured
isochrone layers cannot be plotted in the ð�, �Þ-coordinate
system. As an alternative, we can use a trial coordinate
~� ¼ lnð�Þ as the vertical coordinate. In ð�, ~�Þ space, particle
trajectories now have a slope of 1=p, giving an estimate of
the deformation parameter p.

More generally, i.e. with an arbitary flux shape function,
!, we can write:

d� ¼ d!
!þ �

, ð78Þ

d~� ¼ d�
�
, ð79Þ

and thus, if we define Sð�Þ as the slope of the trajectories in
ð�, ~�Þ space, writing d!=d� ¼ ðd!=d�Þðd�=d�Þðd�=d~�Þðd~�=
d�Þ leads to the following differential equation for the flux
shape function, !:

d!
d�

¼ � 1
Sð�Þ

!þ �

�
: ð80Þ

In this case, it is therefore, in principle, possible to deduce
the flux shape function, !, from a discontinuity in the slope
of the isochrones in the ð�, ~�Þ space characteristic of a
particle trajectory.

5.4. Test for numerical age models
With any numerical model, it is essential to test how the
discretization of the physical equations affects the results.
Our analytical expression may be used to test numerical

methods for the age equation in various ways. In particular,
the trajectories of ice particles in the logarithmic coordinate
system ð�, �Þ should be as close as possible to lines of slope
equal to –1. These logarithmic coordinates give more weight
to the particles close to the bedrock, which tests the
accuracy of the solutions at depths where there may be
large gradients in age between, for example, finite-differ-
ence points. Also, the extent to which abrupt horizontal
changes of bedrock or accumulation rate affect the numer-
ical solutions can be readily investigated.

6. CONCLUSIONS AND PERSPECTIVES
Our analytical model allows us to understand the first-order
variations of isochrone slope: where the velocity shape
function is uniform we can characterize how downstream
changes in accumulation, ice thickness and lateral flow-
tube divergence impact the isochrone slope in the ðx, �Þ-
coordinate system (x being a horizontal, along-flow co-
ordinate and � being the normalized vertical coordinate).
The ðx, �Þ slope of the isochrone at a given point depends on
the whole mechanical history of the particle, and thus not
only on local but also on upstream accumulation and flow
conditions.

By using a new ‘logarithmic-flux’ coordinate system, we
show that the ðx, �Þ slope of the isochrones depends on three
terms: one principal term, and two non-negative scale
factors which modify the amplitude of the slope but not its
sign. The principal term depends only on the characteristic
time (ice thickness divided by accumulation rate minus
melting rate) between the initial and final positions of the ice
particle. For plug flow, only the initial and final values of the
characteristic time have an influence. For example, im-
mediately after an upward step in the bedrock, isochrones
dip downstream. Increases in accumulation rate have the
same effect. Downward steps and decreases in the accumu-
lation rate have the opposite effect on isochrone ðx, �Þ slope.
The effects of these changes can be detected over distances
that are an appreciable fraction of the ice-sheet extent.

The downstream regions of influence of changes in the
bed topography or accumulation rate are clearly bounded.
The boundaries, indicated by discontinuities of isochrone
ðx, �Þ slope, ultimately relate to the bed topography or
accumulation rate regime experienced by a trajectory. We
sketched how these slope discontinuities may be used to
estimate the vertical profile of velocity, a parameter of
primary interest when studying ice flow, but difficult to
measure.

We used a steady-state assumption to derive the expres-
sion for isochrone ðx, �Þ slope, but in fact it can be relaxed
for the accumulation rate as long as the spatial pattern of
accumulation remains constant. This is of primary import-
ance when looking at isochrone profiles for Greenland and
Antarctica, because these ice sheets have experienced large
changes in accumulation rate between glacial and inter-
glacial periods.

We have used an assumption of spatially uniform velocity
shape function, but we expect that similar analyses can be
applied to the case when the velocity shape functions vary
with position, x. For example, how do horizontal variations
in basal sliding affect isochrone slope (Weertman, 1976)? Or
changes in the ratio relating basal melting to surface
accumulation? An interesting further step would be to
extend the analysis to examples that are not in steady state.
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We hope that such analytical expression will help
glaciologists qualitatively understand the geometry of
isochrones in ice sheets. It may also help define the more
appropriate data to invert in a quantitative inverse method
based on a physically more sophisticated ice-flow model. In
such a refined inverse method, it may also be used as a first
guess.
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APPENDIX
THE HYPERBOLIC AGE EQUATION
The characteristic Equations (23), (26) and (27) could have
been obtained using the formalism of the hyperbolic
equations instead of calculating the horizontal and vertical
velocities. Indeed, Hindmarsh (1999) shows that the
Lagrangian derivation operator Dð�Þ=Dt in � coordinates
can be written as:

Dð�Þ
Dt

¼ @ �ð Þ
@t

þ urH �ð Þ þ �rHQ �rHq � a� �m 1� �ð Þ
H

@ �ð Þ
@�

,

ðA1Þ
where rH is the horizontal gradient in � coordinate and �ð Þ
represents the field being advected. In steady-state condi-
tions and with a uniform flux shape function, !,

rHQ ¼ a�m, ðA2Þ
rHq ¼ !rHQ ¼ ! a�mð Þ: ðA3Þ

The age equation D�=Dt ¼ 1 may therefore be written as:

urH �� ! a�mð Þ þm
H

@�

@�
¼ 1: ðA4Þ

The solution to the age equation gives the age of the ice, and
its isolines give isochrones. In particular, note that if the age
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solutions are non-differentiable, there will be discontinuities
in the slope of the isochrones.

In plane flow

ux
@�

@x
� ! a�mð Þ þm

H
@�

@�
¼ 1, ðA5Þ

and

Q
@�

@Q
� !þ �ð Þ @�

@!
¼ H

 a�mð Þ , ðA6Þ

where


 ! �ð Þð Þ ¼ !0 �ð Þ: ðA7Þ
This hyperbolic equation has characteristic equations

d!
!þ �

¼ � dQ
Q

¼ 

a�m
H

d�: ðA8Þ

The fact that the characteristics are the trajectories can be

demonstrated by showing that they are identical to the
characteristics of the pure advection equation, which are
known to be particle trajectories.

The first equality in Equation (A8) leads to:

d ln !þ �ð Þ ¼ �d lnQ, ðA9Þ
which gives linear trajectories in the ð�, �Þ-coordinate
system, as obtained in section 2.

The second equality in Equation (A8) gives the rate of
change of age with the vertical coordinate, !,

d�
d!

����
c
¼ T

!þ �ð Þ
 !ð Þ ¼  
T

!þ �ð Þ : ðA10Þ

The theory of hyperbolic equations tells us that disconti-
nuities in the boundary condition (e.g. accumulation rate)
propagate into discontinuities along these characteristics (in
this case in the slope of the isochrones).
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