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Abstract

Extending earlier duality results for multiobjective programs, this paper defines
dual problems for convex and generalised convex multiobjective programs without
requiring a constraint qualification. The duals provide multiobjective extensions
of the classical duals of Wolfe and Schechter and some of the more recent duals of
Mond and Weir.

1. Introduction

Ben-Israel, Ben-Tal and Zlobec [2] have given necessary and sufficient condi-
tions for a vector to be an optimal solution of a convex (scalar) programming
problem without the need for a constraint qualification. Mond and Zlobec
[12] utilised the optimality conditions of [2] to define a dual problem to the
(scalar) convex programming problem and established duality without the
need for a constraint qualification. Earlier duality results of e.g. Wolfe [18]
and Schechter [13] were shown to be special cases of the Mond and Zlobec
duality formulation.

Some of the first-order results in [2] were extended to generalised convex-
ity by Ben-Israel and Mond [3]. Following {3], Weir and Mond [16] defined
dual problems for the scalar-valued programming problems where the usual
convexity requirements for duality were relaxed and where a constraint qual-
ification was not needed. Some of the previous duality results of Mond and
Weir [11] involving generalised convex rather than convex functions were
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deduced as special cases of the dual formulations given in [16].

Characterisations of optimality without constraint qualification for multi-
objective programming problems were developed first by Ben-Israel, Ben-Tal
and Charnes [1]; their characterisations were presented in terms of systems
of inequalities. Characterisations in terms of Lagrangians were developed by
Zlobec in [19, 20]; Zlobec’s Lagrangian characterisations are closely related
to the classical scalarisation results in multiobjective programming of Geof-
frion [7] and Karlin [8]. Based on Geoffrion’s concept of proper efficiency
and the scalar-valued programming optmality conditions of Ben-Israel, Ben-
Tal and Zlobec [2], Weir and Mond [17] have defined dual problems for the
convex multiobjective programming problem and established duality without
the need for a constraint qualification.

As in [17], the aim of this paper is to define dual problems for multiobjec-
tive programming problems where a constraint qualification is not assumed;
however the approach here differs from that in [17] by focussing on efficiency
rather than proper efficiency. This approach has the advantage of being suit-
able to define duals to nonconvex programming problems. The treatment
here will provide multiobjective analogues of the classical duality results of
Wolfe [18] and Schechter [13] and the more recent results of Mond and Weir
[11].

2. Notation and preliminaries

Consider the multiobjective programming problem:
minimise (fl (x), fz(x) y .oy SI(x)) subject to x € F (Fy)

where F C R” and f":R" >R, ieQ={1,2,...,q}. Apoint x" € F
is an efficient point if there is no other x € F such that f'(x) < f i(x*) ,
i € Q, with at least one strict inequality. For a fixed r € Q and x* € R"
denote

Q" =0Q\{r}={keQ:k#r};
Fi(x)={x: f(x)< f(x"), i€ Q};
Q" (x")={ieQ: fi(x)=f(x"),¥x e F'(x")},

Q" (xH=JO(x")={ieQ:x¢ F'(x")= f{(x) = f{(x") for some re Q}.
reQ

For a function f*, the cone of directions of constancy at x* € R" is

DI (x")={d:3T > 05 f*(x" +1d) = f*(x"), vt € (0, T]}.

https://doi.org/10.1017/50334270000007219 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000007219

31 Duality without constraint qualification 533

For an index set K we denote

[ Dy (x") by Dg(x").

kek
For an arbitrary set U c R" its polar or dual is defined by
U'={ueR":u'x>0,Vx € U}.
Now consider the multiobjective programming problem

minimise (f'(x), f(x), ..., f4(x))
subjecttog(x)gO,zeP={1,2,...,p}.

(MP)

F will again denote the feasible set: F = {x: g'(x) < 0,i € P}.

x* € F andlet P(x*) = {i € P: g'(x*) = 0} denote the index set of binding
constraints at x* . The minimal index set of binding constraints for F is
denoted by P~ = {i€ P: x € F = g'(x) = 0} . We also denote

PS(x")=P(x"\P ={ieP(x"): 3x e F3 g'(x)) < 0}.

Consider the problem (MP) where now all functions are assumed to be
convex but not necessarily differentiable. The following lemma was origi-
nally proved for scalar valued mathematical programs [12], but as it does
not depend on the objective function it remains valid for the multiobjective
programming problem (MP).

LEMMA 2.1. (a) The set {x € R": gp-(x) = 0} is convex.
(b) If x is feasible for (MP) and g,-(u) =0, then (x — u)'y >0 forall
y € [Dp-(w)]".

LEMMA 2.2. If x is feasible for (MP), g,-(u) =0 and fQ ) (x)= fQ ()
then (x —u)'y >0 forall y e [D}(u)w,:(u)]* .

Proor. Firstly observe that the set {x € R": Sorw®) = fpy(W)} may
be redefined as {x € R": hQ=(u)(u) = 0} where, for fixed u, hQ=(u)(x) =
Jorw)*) = fo=(y(#) . Thus, from Lemma 2.1, the set {x € R": fj-,\(x) =
fQ=(u)(u)} is convex. Therefore the set {x € R": g,-(x) = 0, fQ=(u)(x) =
fQ=(u)(u)} is convex, being the intersection of two convex sets. Following
[12], it is enough to show that

g(x+(1-u)=0
Fax+1=du) =
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forall 0 <A< 1, i€ P™, j€ Q (u), because this implies that (x —u) €
Dy +yup-(x") - If this were not true, then either g'(Ayx + (1 - Ay)u) <0,

for some 0 < 4, <1 andsome i € P~ ;or fj(20x+(1 —Ap)u) < 0, for some
0 <45 <1 and some j € Q (u). But this contradicts the convexity of the
set

{xe R": gp-(x) =0, fQ=(u)(x) = fQ=(u)(u)}-
The result follows from the definition of polars.

3. Necessary and sufficient optimality conditions

Consider the nonlinear programming problem
minimise f°(x) subject to g'(x) <0, i € P. (SP)

When f0 and gi are scalar, not necessarily differentiable, convex functions,
Ben-Israel, Ben-Tal and Zlobec [2] established the following necessary and
sufficient conditions for a feasible point to be optimal in (SP).

THEOREM 3.1. The feasible point x* is an optimal solution for (SP) if and
only if there exist scalars y, >0, i € P<(x"), such that

af' (x+ Y 08 (x") e Dp-(x")'.
ieP<(x*)
For differentiable functions the convexity conditions of the above theorem

may be weakened as shown by Weir and Mond [16].

THEOREM 3.2. Let jo and gi(x) <0, i€ P, be pseudoconvex. The feasible
point x* is an optimal solution for (SP) if and only if there exist scalars
y; >0, i € PS(x"), such that

V") + Yo yve(xN)e [D;(x*)] .
iEeP<(x")
Now consider the multi-objective program

minimise (f'(x), £(x), ..., f4(x)) (MP)
subject to gi(x) <0,ieP
The following result is a well-known characterisation of the efficient solutions
of (MP).
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LEMMA 3.3. A feasible solution x* in (MP) is efficient if and only if x* is
optimal for each of the scalar optimisation problems:
minimise f’(x) (P"(x"))
subject to f'(x) < f/(x*), je @,
g'(x)<0,ieP
forr=1,2,...,q.

Theorem 3.1 and Lemma 3.3 can be used to derive necessary and sufficient
optimality conditions without constraint qualification for the multiobjective
programming problem (MP).

We firstly consider the case where all functions are assumed to be not
necessarily differentiable convex functions.

THEOREM 3.4. The feasible point x* is an efficient solution for (MP) if and
only if there exist scalars A; > 0, i € Q, with Eite; =1and y; >0,
i € P<(x"), such that

S aarxh+ > yiogx) e [D}(x.)uf(x‘)] _ (3.1)
i€eQ ieP<(x")
ProoF. (Necessity) Since x* is efficient for (MP), it follows from Lemma
3.3 that x" is optimal for each of the scalar nonlinear programming problems

(P"(x")), r € Q. Applying Theorem 3.1 to each (P'(x")), r € Q, gives the
existence of scalars 4, >0,and y, >0, i € P<(x"), such that

afx+ Y. Aaf )+ Y y08(x")e [D;,=(x.)u,,= (x*)}
E€QN\Q™(x") IEPS(x")
for each r € Q. Now summing the above over r € Q, scaling appropriately,
and using the properties of polars implies the necessary condition.
(Sufficiency) Suppose there exists scalars l; >0, ie @, and yi' >0,

i € P<(x"), such that (3.1) is satisfied but that x* is not efficient for (MP).
Then there exist v, € 8/ (x"), i=1,2,...,4q, z,€0g'(x"), i € P<(x")
and d € [Dye(,) p- (x™)]* such that

Savi+ Y yiz=d,

ieQ iEP<(x*)
and there exists # € F such that

i) < f'(x*) for some i, and

)< f(x") forall j#i.

https://doi.org/10.1017/50334270000007219 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000007219

536 R. R. Egudo et al. [6]

It follows that ) )
SES W) <D A f(xD). (3.2)
i€Q i€eQ
By convexity
PITACIEDIFWAE
i€Q i€eQ
> (u-x")"Y Ay,
ieQ

=wu-x")" (d— > yz)
i€EP<(x")

> —(u—x")" > y/z; byLemma 22
ieP<(x‘)
> - Z y g+ Z y g x") by convexity
i€P<(x*) iEP(x")
3" ¥/&'(w) by definition of P<(x")
ieP<(x")
> 0 since u is feasible for (MP).
This clearly contradicts (3.2); hence x” is efficient.
Although the above theorem may be specialised to differentiable convex func-
tions (by replacing subgradients with gradients), a stronger result for prob-

lems involving differentiable functions is available. Assume now that all
functions appearing in (MP) are differentiable pseudoconvex functions.

THEOREM 3.5. The feasible point x* is an efficient solution for (MP) if and
only if there exists scalars l: >0, ie€Q, with ¥ A; =1 and y; >0,
i € PX(x"), such that

AV + Y ¥V (x") € D gy (X (3.3)

i€Q iePi(x")

ProoF. (Necessity) This follows in exactly the same manner as for Theorem
3.5 but using Theorem 3.2 rather than Theorem 3.1.
(Sufficiency) Suppose there exist scalars /1;‘ >0, i€ @, and yi' >0,

i € P°(x"), such that (3.3) is satisfied but that x* is not efficient for (MP).
Then there exists u € F such that

Fi(u) < fi(x*) for some i, and
Fu)<fi(x") forallj#i.
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The pseudoconvexity of each f* implies that
(u-x")VF(x*)<0 fori, and
(u-x")'v(x")<0 forall j#i.

Multiplying each of these inequalities by l; and summing over all | € Q

gives .
u-x")" 3 Avf(x")<o0.
i€Q
Therefore, by (3.2) and Lemma 2.2,
@-x"" Y yive'x')>o. (3.4)
ieP<(x")

For i € P<(x"), gi(u) - gi(x*) < 0 and since each gi is pseudoconvex and
hence quasiconvex, it follows that

(u~x"vg(x") <o.
Thus .
(u-x")' Y yivex<o.
ieP<(x")
This is a contradiction to (3.4); hence x" is efficient.

REMARKS. (i) If the constraints of problem (MP) satisfy the Slater constraint
qualification, then P~ is empty. In this case the optimality conditions sim-
plify as the constraints of (MP) do not appear in the dual cones in (3.1) and
(3.3).

(ii) If further, the constraints of (P"(x")) satisfy the Slater constraint
qualification, then the dual cones in (3.1) and (3.3) contain only the zero
vector. In this case the optimality conditions reduce to those of Geoffrion [7]
in the convex case (and x* is properly efficient) and to those of Weir [15]
for the pseudoconvex case (in this case x* satisfies Kuhn and Tucker’s [9]
definition of proper efficiency).

(iii) Note that if g = 1, then the optimality conditions of Theorems 3.4
and 3.5 reduce to those of Ben-Israel, Ben-Tal and Zlobec [2] and Weir and
Mond [16] respectively. _

(iv) Consider the special case where the functions f*, i € Q, are pseudo-
linear, i.e. pseudoconvex and pseudoconcave. Note that for i € Q7 (x"),

D;(x")={d:3T>05 f(x*+1d) = f(x"), vt € (0, TI}
={d:vfx")d=0} '
={d: Vf(x")'d <0} by Lemma 3.9(e) of [2].
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Thus .
[Df(x*)] = {-A,Vf(x"): 4, >0}, ieQ (x",

and, since each D] (x") is polyhedral (see e.g. [2]),

[D}(x.)(x*)]*={— > Aini(x*):).izO}.

i€Q™(x")
The optimality condition appearing in Theorem 3.5 may then be expressed
as: there exist scalars 2 >0, i€ Q, 4, >0, i € @7(x"), and y; > 0,
i € P<(x"), such that

S v+ Y yveeh+ S z,.Vf"(x*)e[D;(x*)].
i€eQ ieP<(x") i€Q™(x")

That is, there exist scalars 4, > 0, i € Q, and y; >0, i € P<(x"), such
that

Suvre+ X yiveee Do)
ieQ i€EP(x"*)

If in addition the functions gi , i € P, are also pseudolinear, then the op-
timality conditions may be expressed as: there exist scalars u;, >0, i € @,
and y, >0, i € P(x") such that

SuvrEh+ ), yvext)=o.
ieQ i€P(x*)
The latter condition has been derived in Chew and Choo [4]; note that the

condition on the constraints gi is the weak reverse convex constraint quali-
fication [10].

4. Duality

Based on the optimality condition without constraint qualification given
in Theorem 3.5, we may relate (MP) to the following dual problem:

maximise (f (u) + ' g(), ..., fA(u) +y" gw)) (D1)
subject to

Y raf @+ yog' () e [DZ=(u)UP=(u)] ,

i€eQ iepP
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y’ZO, i=1$2"",p’
Al>0’ i=172:'-':q’

gp=(u) =0,
Sa=1
i€Q

Here the functions f d , 1€ @, and gi , [ € P, are scalar, not necessarily
differentiable convex functions. Let H denote the set of feasible solutions
to (D1).

THEOREM 4.1 (Weak Duality). Let x € F and (u,A,y) € H. Then the
Jollowing cannot occur-

fi(x) < fi(u)+yTg(u) Jor some i, and

P < w+ygw) allj#i.

ProoF. There exist v; € affw), i =1,2,...,4q; z; € og'm), i =
1,2,...,p,and d € [D}(u)Up:(u)]‘ such that

Y Av+d) vz, =d.

i€eQ ieP
Now ;
S AL - (@) +y g =Y 4. x) = YA, 1 w) -y g(w)
i€Q i€Q i€Q
>(x—u)' Y A -y gu)
ieQ
=—(x-u)' Y. y,z;-y gw)+(x—uw)'d
ieQ
>Y yilg'(w) - g~y g
ieP
=-y'g(x)>0.
This shows that for feasible x of (MP) and (u, 4, y) of (D1)
ST AL () = (Ff(w) + ¥ g(u))] 2 0. (4.1)
ieQ

If, for some x feasible for (MP) and (u, A, y) feasible for (D1),

fi(x) < fi(u) +yTg(u) for some i, and
Fx) < fj(u) +y g(u) allj#i
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then _ ) ;
S 4L - (W) +y gw)] <0,
i€Q

which is a contradiction to (4.1).

THEOREM 4.2 (Strong Duality). If x* is efficient for (MP) then there exist
y;20,i=1,2,...,p; 4 >0, i=1,2,...,q such that (x",y;,i=
1,2,...,p,A7,i=1,2,..., q) isefficient for (D1) and the objective values
of (MP) and (D1) are equal.

ProoF. If x* is efficient for (MP) then by Theorem 3.4 there exist 4; >0,
i€Q,and y;, 20, i € PS(x"), and d € [Dp-(,+),p-(x")]" such that
(3.1) is satisfied. Setting y; =0 for i ¢ P~(x") implies that (x*, y;, i €
P,J;,i € Q) is feasible for (D1). If (x*,y/,i € P,4;,i € Q) was not
efficient for (D1) there would exist (u, y, 4) feasible for (D1) such that
Fuy+y gw) > f(x*)+y " g(x*) forsome i, and
Sy +yTgw) > F/(x")+y"g(x") all j# i
however, since y* g(x*) = 0, this would contradict weak duality. The objec-
tives of (MP) and (D1) are clearly equal at their respective efficient points.

REMARKS. (i) If the constraints of (MP) satisfy the Slater constraint qualifi-
cation, then P~ is empty. The dual problem (D1) then reduces to

maximise (f' () +y' g(4), ..., f*(w) + v  g(w)) (D2)
subject to

> 1,01 )+ X p08'0) € [DGe,®)]

i€eQ iepP

If additionally, for each u, Q (u) is empty, then the results of [17] are
recovered; however duality must then be expressed in terms of proper effi-
ciency. . _

(ii) If the functions f* and g’ are differentiable then subgradients may
simply be replaced in (D1) and (D2) by gradients. In the case of Q™ (u)UP~
being empty, the duality results of [S], [6] and [14] are recovered.
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(iil) Note that if ¢ = 1, then (D1) is the Mond and Zlobec dual to the
scalar nonlinear programming problem. In this case, if the constraints of
(MP) satisfy the Slater condition, the dual becomes the formulation due to
Schechter [13]; if the functions are differentiable then Wolfe’s [18] duality
results are recovered.

We will now construct a dual problem and develop duality theorems with-
out constraint qualification for (MP) where the functions of (MP) are not
assumed convex but are differentiable. Consider the problem,

maximise (/' (), ..., f2(«)) (D3)
subject to

S AL W)+ Yy, Ve (1) € [Dgrup- )],

i€Q ieP

inO, i=l’29-"’p7

4,>0, i=1,2,...,q,

gp-(u) =0,

y;8(u) >0, i=1,2,...,p,

d oA=L

i€Q
Here the functions f i, I € Q, and gi , i € P, are scalar, pseudoconvex
functions. H will denote the set of feasible solutions to (D3).

THEOREM 4.3 (Weak Duality). Let x € F and (u,A,y) € H. Then the
Jollowing cannot occur:

fi(x) < fi(u) SJor some i, and
L)< allj#i.
PROOF. For i€ P, ) _
y,8'(x)-y,8'(w) <0,
Since each gi is pseudoconvex and hence quasiconvex, it follows that
(x—u)'yve'(u) <0

and so .
(x—u)' S yve'w<o.
i€P
From the constaints of (D3), it follows for some d € [D}(u)u p()1° that

(x—w) YAV )2 (x-w)'d;
i€Q
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and by Lemma 2.2

(x-u)" Y 4V f (u) 2 0. (4.2)
ieQ

If for some x feasible for (MP) and (u, A, y) feasible for (D2)
fi(x) < fi(u) for some i, and
L allj#i.

then

(x-u)' Y 49f (u) <0.
i€eQ

This is a contradiction to (4.2).

THEOREM 4.4 (Strong Duality). If x* is efficient for (MP) then there exist
y;20,i=1,2,...,p; 4 >0, i=1,2,...,q, such that (x*,y;,i=
1,2,...,p; ,1:.' ,i=1,2,...,q) isefficient for (D3) and the objective values
of (MP) and (D3) are equal.

ProoF. If x* is efficient for (MP) then by Theorem 3.4 there exists 4; > 0,
i€Q,and y, >0, i € P(x"), and d € [Dp(y),p-(x")]" such that
(3.1) is satisfied. Setting y; =0 for i ¢ P~(x") implies that (x*,y;, i €
P,1;,i € Q) is feasible for (D3). If (x*,y!,i€ P, A, i€ Q) was not
efficient for (D3) there would exist (u, y, A) feasible for (D3) such that

fi(w) > fi(x") forsome i, and
fluyz f(x7) allj+i;
however, since x* is feasible for (MP), this would contradict weak duality.

The objectives of (MP) and (D3) are clearly equal at their respective efficient
points.

REMARKS. (i) If the constraints of (MP) satisfy the Slater constraint qualifi-
cation, then P~ is empty. The dual problem (D3) then reduces to
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maximise (f (%), ..., f2(u)) (D4)

subject to

Z/linl(u) + Zyngl(u) € [D(=2=(u)(u)]*,
i€eQ iepP

inO’ i=l’2""’p’

A;>0, i=1,2,...,q,

v,gw>0, i=1,2,...,p,

doa=1

ieQ

If additionally, for each u, Q™ (u) is empty, then the results of Egudo [5, 6]
and Weir [14] are recovered; duality in [14] was expressed in terms of proper
efficiency.

(ii) Note that if ¢ = 1, then (D3) is the formulation of the Weir and
Mond [16] dual to the scalar nonlinear programming problem. In this case,
if the constraints of (MP) satisfy the Slater condition, the dual becomes a
variant of the formulation due to Mond and Weir [11].

(iii) Note that in the special case where the functions f*, i=1,2,...,4,
are pseudolinear the dual (D3) may be expressed as

maximise (f («), ..., f2(u)) (D5)
subject to

S 49w+ Y yve'w e Dyl

i€eQ i€eP

inO, i=1,2,...,p,
A,‘>0, i=l,2,...,q,
y,8' ()20, i=1,2,...,p,

Y4 =1

i€Q

If, in addition, the functions g’ are pseudolinear the dual reduces to that
given in Weir [15].

(iv) Note that the dual (D3) and Theorems 4.3 and 4.4 are directly applica-
ble to multiobjective fractional programming problems where the objectives
take the form f' =k /h' where k' and —h' are differentiable convex func-
tions (and hence f " is pseudoconvex).
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