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Dichotomy for generic supercuspidal

representations of G2

Gordan Savin and Martin H. Weissman

Abstract

The local Langlands conjectures imply that to every generic supercuspidal irreducible
representation of G2 over a p-adic field, one can associate a generic supercuspidal
irreducible representation of either PGSp6 or PGL3. We prove this conjectural
dichotomy, demonstrating a precise correspondence between certain representations
of G2 and other representations of PGSp6 and PGL3. This correspondence arises
from theta correspondences in E6 and E7, analysis of Shalika functionals, and spin
L-functions. Our main result reduces the conjectural Langlands parameterization of
generic supercuspidal irreducible representations of G2 to a single conjecture about the
parameterization for PGSp6.
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Introduction

Let k be a finite extension of Qp, p a prime number; we work here with the k-points of algebraic
groups. In this paper, we prove a precise correspondence between the generic supercuspidal
irreducible representations (abbreviated to ‘irreps’) of the exceptional group G2 and certain
generic supercuspidal irreps of the classical groups PGL3 and PGSp6. This correspondence is
phrased as a dichotomy, in which to every generic supercuspidal irrep τ of G2 we associate
either a generic supercuspidal irrep σ of PGSp6 whose spin L-function has a pole at s= 0 or
a contragredient pair (or self-contragredient singleton) of generic supercuspidal irreps {ρ, ρ̃} of
PGL3. Symbolically, we write this dichotomy as a function ∆:

∆ : Irr◦g(G2)→ Irr◦g,Spin(PGSp6) t
Irr◦g(PGL3)

Contra
.

After constructing this function ∆, we prove that it is bijective when p 6= 2. When p= 2, we can
prove that ∆ is injective, but there is a subtlety involving self-dual supercuspidal irreps of PGL3

which prevents a proof of bijectivity for now.

This main result is suggested by Langlands’ conjectural parameterization of the generic
supercuspidal irreps of these groups G2, PGL3, and PGSp6. For this reason, we demonstrate
the precise dichotomy at the level of Langlands parameters in the first section. The results on
Langlands parameters depend essentially on the structure theory of the complex simple groups
G2(C), SL3(C), and Spin7(C): embeddings of SL3(C) into G2(C), embeddings of G2(C) into
Spin7(C), and classification of parabolic and other subgroups.

The second section is devoted to the structure theory of certain algebraic groups over the
p-adic field k, including constructions and embeddings of exceptional groups and their parabolic
subgroups. At different times in this paper, we require different embeddings of groups. As Jacquet
modules play a crucial role, we describe in detail two kinds of parabolic subgroups: minuscule
parabolics (arising from Jordan algebras) and two-step parabolic subgroups arising from the
structurable algebras of Allison [All78, All79].

The third section provides the definition of the dichotomy map ∆. Specifically, the dichotomy
is realized via theta correspondences using dual pairs G2 × PGL3 ⊂ E6 and G2 × PGSp6 ⊂ E7,
and the minimal representations (see [GS05]) of E6 and E7. Such theta correspondences have
been studied in the literature; we mention the results of Ginzburg–Jiang [GJ01], Gan–Savin
[GS03, GS04], Savin [Sav99], Magaard–Savin [MS97], Loke–Savin [LS07], and Gross–
Savin [GS98]. We refine results of Ginzburg–Rallis–Soudry [GRS97], who first considered the
‘tower of theta correspondences’ for G2. Using extensive analysis of Jacquet modules for
the minimal representations of E6 and E7, we are able to demonstrate that this pair of theta
correspondences determines a dichotomy function ∆, taking a generic supercuspidal irrep of G2

either to a (unique, up to isomorphism) generic supercuspidal irrep of PGSp6 or to a (unique,
up to isomorphism and contragredient) generic supercuspidal irrep of PGL3.
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The fourth section is devoted to proving the injectivity of the dichotomy map ∆, through a
study of Whittaker and Shalika functionals. When considering a generic supercuspidal irrep ρ
of PGL3, the fibre ∆−1({ρ, ρ̃}) has cardinality at most equal to the dimension of a space of
Whittaker functionals on ρ. The uniqueness of Whittaker functionals immediately yields
injectivity of the dichotomy map in this case. However, when considering a generic supercuspidal
irrep σ of PGSp6, the fibre ∆−1(σ) has cardinality equal to the dimension of a space of Shalika
functionals on σ. Here, the ‘Shalika subgroup’ is nearly isomorphic to GL2(k[ε]/ε3), embedded
appropriately in GSp6. This subgroup is a cubic analogue of the Shalika subgroup GLn(k[ε]/ε2)
studied by Jacquet–Rallis [JR96] and others (see [JNQ08] for a recent example). In this fourth
section, we prove a result of some independent interest; the uniqueness of such Shalika functionals
for arbitrary supercuspidal irreps of GSp6. It almost immediately follows that the dichotomy map
is injective.

The fifth section is devoted to characterizing the image of the dichotomy map ∆, finishing
the proof of a bijection when p 6= 2. The dichotomy map surjects onto the set of generic non-self-
contragredient (an automatic condition when p 6= 2) supercuspidal irreps of PGL3. When p= 2,
we cannot yet exclude the possibility that a generic self-contragredient supercuspidal irrep of
PGL3 occurs in the theta correspondence with a generic supercuspidal irrep τ of G2, and also
a generic supercuspidal irrep of PGSp6 occurs in the theta correspondence with the same τ .
In other words, we cannot yet prove that a ‘second occurrence’ in a tower of theta lifts is not
supercuspidal in residue characteristic two. From the way that we define our dichotomy map ∆,
we cannot therefore prove that the image of ∆ includes all self-contragredient supercuspidal
irreps of PGL3, though all such irreps of PGL3 occur in a theta correspondence with a generic
supercuspidal irrep of G2.

The fifth section focuses on the set of generic supercuspidal irreps of PGSp6 in the image of ∆.
Precisely those generic supercuspidal irreps of PGSp6 with non-vanishing Shalika functional occur
in this image. However, Langlands’ conjectures predict another characterization of the image of
dichotomy: a generic supercuspidal irrep σ of PGSp6 should occur in the image of dichotomy if
and only if its degree-eight spin L-function has a pole at s= 0. Thus, to characterize the image
of dichotomy, we prove that σ has a non-vanishing Shalika functional if and only if L(σ, Spin, s)
has a pole at s= 0. This is a local version of the main result of Ginzburg–Jiang [GJ01]. One
direction, that a non-vanishing Shalika functional implies that the L-function has a pole, requires
an analysis of the minimal representation of E8(!), the construction of Shahidi [Sha90] of the
spin L-function, and connections to reducibility points for representations of F4 parabolically
induced from GSp6. The other direction, that if L(σ, Spin, s) has a pole at s= 0, then σ has a
non-vanishing Shalika functional, requires the Bump–Ginzburg [BG92] integral representation of
the spin L-function, results of Vo [Vo97] on this L-function, and global methods to demonstrate
that the Bump–Ginzburg construction agrees (in its poles) with Shahidi’s for the spin L-function.

The dichotomy proven in this paper comes close to proving Langlands’ conjectural
parameterization of generic supercuspidal irreps of G2 by parameters (representations of the Weil
group) with values in G2(C). Indeed, the dichotomy reduces this parameterization (when p 6= 2)
to a conjecture related to Langlands’ parameterization for PGSp6. While Langlands parameters
for generic irreps of PGSp6 are now known (by functoriality for classical groups, due to Cogdell
et al. [CKPS04] and the local Langlands correspondence for GL7 by Henniart [Hen84b, Hen00],
Kutzko–Moy [KM85], and for GL8 as well by Harris–Taylor [HT01]), it remains to be proven
that the currently understood parameterization for PGSp6 is compatible with the degree-eight
spin L-functions. Thus, the local Langlands’ parameterization of generic supercuspidal irreps of
G2 is reduced to a single question about the classical group PGSp6 when p 6= 2.
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Of course, a complete parameterization of supercuspidal irreps of G2 satisfying Langlands’
conjectures would require also an analysis of the non-generic supercuspidal irreps, and
the partition of all supercuspidal irreps into L-packets. For example, many non-generic
representations arise from inner forms PD× of PGL3 (see [SG99]), but we do not address such
phenomena in this paper.

0.1 Conventions

The letter k will always denote a finite extension of Qp, where p is a prime number. A k-algebra
will always mean a unital (except for Lie algebras, of course), finite-dimensional k-algebra. An
involution on a k-algebra will always mean an anti-automorphism of order two, which fixes every
element of k. We do not assume k-algebras to be commutative or associative; in fact, non-
associative algebras play a central role. For a k-vector space A, we write Endk(A) for the Lie
algebra of k-linear endomorphisms of A.

We fix a split Cayley algebra O over k, in what comes later. We also fix a smooth, non-trivial,
additive character ψk of k. From ψk, we may define a smooth additive character ψO by

ψO(ω) = ψk(Tr(ω)) for all ω ∈O.

We use a boldface letter, such as G, to denote an algebraic group over k. We use an ordinary
letter, such as G, to denote the k-points of G, viewed naturally as a topological group. All repre-
sentations of such groups G will be assumed to be smooth representations on complex vector
spaces. An irrep of G will mean a smooth irreducible representation of G on a complex
vector space. If G→G′ is a surjective group homomorphism, and π is a representation of G′, we
often also write π for the representation of G arising by pullback.

If H ⊂G is a closed subgroup, and π is a representation of H on a complex vector space V ,
then we write IndGH for the representation of G obtained by smooth (unnormalized) induction:

IndGH π = {f ∈ C∞(G, V ) : f(hg) = π(h)f(g) for all h ∈H}.

Here, C∞(G, V ) denotes the space of uniformly locally constant functions from G to V . Induction
is adjoint to restriction, by the appropriate version of Frobenius reciprocity:

HomG(τ, IndGH π)∼= HomH(τ, π)

for every smooth representation τ of G and every smooth representation π of H.

When H\G is non-compact, it is often more useful to consider the smooth compact induction:

c-IndGH π = {f ∈ IndGH π : Supp(f)⊂H ·K for some compact subset K ⊂G}.

Then c-IndGH π is again a smooth representation of G, and is a subrepresentation of IndGH π.

If π is a representation of G, and ρ is an irrep of G, then we say that ρ is a constituent of π if
ρ is isomorphic to a quotient of a subrepresentation of π. However, we almost exclusively work
with supercuspidal constituents in this paper; the injectivity and projectivity of supercuspidal
irreps, in the category of smooth representations, imply that when supercuspidal irreps occur as
constituents, they also occur as subrepresentations and as quotients.
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1. Dichotomy of parameters

1.1 The local Langlands conjectures
Recall that k is a finite extension of Qp, fix an algebraic closure k̄ of k, and let Γ = Gal(k̄/k).
Let kunr denote the maximal unramified extension of k in k̄. There is a unique continuous
isomorphism from Gal(kunr/k) to the profinite group Ẑ which sends the geometric Frobenius
to 1. This isomorphism yields a surjective homomorphism from Γ to Ẑ. The preimage of Z is the
subgroup Wk ⊂ Γ, called the Weil group of k.

The Weil group contains Gal(k̄/kunr), and Wk is given the coarsest topology for which
Gal(k̄/kunr) is an open subgroup endowed with the subspace topology from Gal(k̄/k). Thus,
there is a short exact sequence of topological groups and continuous homomorphisms:

1→Gal(k̄/kunr)→Wk→ Z→ 1.

Let G be a semisimple, split, adjoint algebraic group over k, and let G= G(k). Let Irr(G)
denote the set of isomorphism classes of irreducible smooth representations of G on a complex
vector space, hereafter called irreps of G. Let Irr◦(G) denote the subset consisting of isomorphism
classes of supercuspidal irreps. Let Irrg(G) be the subset consisting of isomorphism classes of
generic irreps; the adjective ‘generic’ is well defined, since we assume that G is adjoint and split
over k. Finally, define Irr◦g(G) = Irrg(G) ∩ Irr◦(G) to be the set of isomorphism classes of generic
supercuspidal irreps.

Let Ĝ denote the complex dual group of G; thus, Ĝ is a semisimple, simply connected
complex Lie group. A parameter for G is a continuous homomorphism η: Wk→ Ĝ such that
η(w) is semisimple for all w ∈Wk. We do not require the extra structure provided by the Weil–
Deligne group here. A parameter η is called cuspidal if Im(η) is not contained in any proper
parabolic subgroup of Ĝ. Let Par(G) denote the set of parameters and Par◦(G) the set of cuspidal
parameters for G. Note that Ĝ acts on the sets Par(G) and Par◦(G) by conjugation, denoted Ad.

An expectation of the local Langlands conjectures (refined by Arthur [Art89] and
Vogan [Vog93]) is that there is a ‘natural’ bijective parameterization

Φ(G) : Irr◦g(G)→ Par◦(G)
Ad(Ĝ)

,

whereby the generic supercuspidal irreps of G are parameterized precisely by the Ĝ-conjugacy
classes of cuspidal parameters. Indeed, suppose that π is a generic supercuspidal irrep of G. It
is expected that π has an Arthur parameter whose restriction is a Langlands parameter:

α :Wk × SL(1)
2 (C)× SL(2)

2 (C)→ Ĝ,

λ :Wk × SL(1)
2 (C)→ Ĝ,

where the isomorphic groups SL(1)
2 (C) and SL(2)

2 (C) are written with different superscripts for
the reader to distinguish them. The Aubert involution [Aub95] sends π to its contragredient π̃.
On the other hand, it was conjectured by Hiraga [Hir04], and proven for G= SO2n+1 by Ban
and Zhang [BZ05], that the Arthur parameter α̃ of π̃ is obtained from α by swapping the two
SL2-factors.

If α(SL(1)
2 (C)) were not trivial, then Hiraga’s conjecture would imply that α̃(SL(2)

2 (C)) 6= 1, so
that π̃ belongs to a non-tempered Arthur packet. But, as the generic member of a non-tempered
Arthur packet, π̃ should arise as a Langlands quotient, from a parabolic subgroup which can be
described from α̃(SL(2)

2 (C)). This contradicts the fact that π̃ is supercuspidal.
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Hence, it is expected that a generic supercuspidal irrep π of G has an Arthur parameter which
is trivial on both copies of SL2; its Langlands parameter should be elliptic and trivial on SL(1)

2 ,
yielding the expectation of the map Φ(G) described above. We expect Φ(G) to be bijective since
every L-packet with elliptic parameter should contain exactly one generic irrep [Art89, § 6].

1.2 The dichotomy
When G2 is a simple split algebraic group of type G2 over k, Ĝ2 =G2(C) is the simple complex Lie
group of type G2. In this case, the Langlands conjectures predict that the generic supercuspidal
irreps of G2 are parameterized by Ĝ2-conjugacy classes of cuspidal parameters. However, the
latter can be related to classical groups as follows.

Let O denote an octonion algebra (also called a Cayley algebra) over C. Let O◦ denote the
subset of trace zero octonions, and realize G2(C) as the group of C-algebra automorphisms
of O. Thus, we find an embedding G2(C) ↪→ SO7(C) = SO(O◦, N), where N denotes the
quadratic norm form on O◦. As G2(C) is simply connected, this embedding extends to an
embedding G2(C) ↪→ Spin7(C). As Spin7(C) is the complex dual group to PGSp6, we find a
natural map

Par◦(G2)→ Par(PGSp6).

To determine when the image of a cuspidal parameter for G2 is a cuspidal parameter for
PGSp6, we discuss the maximal parabolic subgroups of G2(C) and Spin7(C). A nil-space in O◦
is a linear subspace V ⊂O◦ such that, for all α, β ∈ V , α · β = 0. An isotropic subspace in O◦ is
a linear subspace V ⊂O◦ such that N(α) = 0 for all α ∈ V . While for one-dimensional subspaces
of O◦, nil-spaces coincide with isotropic spaces, this does not hold in higher dimension.

It is known that every maximal parabolic subgroup of G2(C) is the stabilizer of a one-
dimensional or two-dimensional nil-space in O◦ (Aschbacher [Asc87, Theorem 3]). It is also
known that every maximal parabolic subgroup of Spin7(C) is the stabilizer of a one-, two-, or
three-dimensional isotropic subspace in O◦.

Proposition 1.1. Suppose that P is a maximal parabolic subgroup of Spin7(C). Then either
P ∩G2(C) is contained in a maximal parabolic subgroup of G2(C) or P ∩G2(C) is contained in
a subgroup of G2(C) isomorphic to SL3(C).

Proof. There are three cases to consider, depending on whether P stabilizes a one-, two-, or
three-dimensional isotropic subspace V ⊂O◦.

Case dim(V ) = 1. If dim(V ) = 1, then any vector in V has norm zero and trace zero, from which
it follows that any vector α ∈ V satisfies α2 = 0. It follows that V is a nil-space in O◦. Thus,
P ∩G2(C) is the maximal parabolic subgroup of G2(C) stabilizing this nil-space.

Case dim(V ) = 2. If dim(V ) = 2, then every vector α ∈ V satisfies α2 = 0. If V is a nil-space, then
P ∩G2(C) is the maximal parabolic subgroup of G2(C) stabilizing this nil-space. If V is not a
nil-space, then there exists a basis {α, β} ⊂ V such that α · β = γ 6= 0. It follows that V · V ⊂ Cγ.
Therefore, if g ∈ P ∩G2(C), then g stabilizes not only V , but also the line spanned by γ.

Observe that γ2 = (αβ) · (αβ) = α(βα)β by Moufang identities, and βα=−αβ since (α+
β)2 = 0. Hence, γ2 = 0. Therefore, P ∩G2(C) is contained in the maximal parabolic subgroup
stabilizing the nil-line Cγ.

Case dim(V ) = 3. If dim(V ) = 3, then we begin by choosing a basis {α, β, γ} of V . There
are two possibilities to consider. First, if γ ∈ C(α · β), then V · V ⊂ Cγ, and γ2 = 0. In this
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case, P ∩G2(C) stabilizes the nil-line Cγ, and hence is contained in a maximal parabolic
subgroup of G2(C).

If γ 6∈ C(α · β), then [α, β, γ] 6= 0, where the bracket denotes the associator:

[α, β, γ] = (αβ)γ − α(βγ).

In this case, we find that [V, V, V ]⊂ C · [α, β, γ]. Therefore, P ∩G2(C) stabilizes the line
C · [α, β, γ]. The stabilizer of a line in G2(C) is either a maximal parabolic subgroup (if the
line is a nil-line) or else a subgroup isomorphic to SL3(C). Thus, P ∩G2(C) is contained
in a maximal parabolic subgroup of G2(C) or else is contained in a subgroup isomorphic
to SL3(C). 2

Proposition 1.2. Suppose that Q is a proper parabolic subgroup of SL3(C). Then, for any
embedding of SL3(C) in G2(C), the image of Q is contained in a maximal parabolic subgroup
of G2(C).

Proof. By the theory of Borel and De Siebenthal [BD49], every embedding of the full rank
subgroup SL3(C) in G2(C) arises from a pair of long roots in the root system of type G2. It
follows that a parabolic subgroup Q⊂ SL3(C) arises from a single long root in the root system
of type G2; it follows that Q will be contained in the maximal parabolic subgroup of G2(C)
corresponding to this long root. 2

The previous propositions now yield the following dichotomy for parameters.

Theorem 1.3. Suppose that η ∈ Par◦(G2) is a cuspidal parameter for G2. Let η′ be the
associated parameter for PGSp6 obtained by composing η with the inclusion G2(C) ↪→ Spin7(C).
Then either η′ ∈ Par◦(PGSp6), i.e., η′ is a cuspidal parameter, or else there exists a cuspidal
parameter η′′ ∈ Par◦(PGL3) such that η is obtained from η′′ via an inclusion SL3(C) ↪→G2(C).

Proof. If η′ is not a cuspidal parameter, then there exists a maximal parabolic subgroup
P ⊂ Spin7(C) such that Im(η′)⊂ P . It follows that Im(η)⊂ P ∩G2. Since η was assumed
cuspidal, we find that P ∩G2 is not contained in any maximal parabolic subgroups of G2. It
follows from Proposition 1.1 that P is the stabilizer of a three-dimensional isotropic subspace
of O◦, and P ∩G2(C) is contained in a subgroup isomorphic to SL3(C).

Hence, if η′ 6∈ Par◦(PGSp6), then we find that there exists an embedding ι : SL3(C) ↪→G2(C)
and a parameter η′′ ∈ Par(PGL3) such that η = ι ◦ η′′. If η′′ were not cuspidal, its image would
be contained in a maximal parabolic subgroup of G2(C) by Proposition 1.2, contradicting the
cuspidality of η. Hence, η′′ ∈ Par◦(PGL3). 2

This theorem demonstrates that to each η ∈ Par◦(G2), one may associate a cuspidal parameter
η′ ∈ Par◦(PGSp6) or else a cuspidal parameter η′′ ∈ Par◦(PGL3). Since all embeddings of G2(C)
in Spin7(C) are Spin7(C)-conjugate, we find that η′ is uniquely determined (up to Spin7(C)-
conjugacy) by η (up to G2(C)-conjugacy).

Similarly, a cuspidal parameter η ∈ Par◦(G2), which composes to yield a non-cuspidal
parameter for PGSp6, yields a cuspidal parameter η′′ ∈ Par◦(PGL3) unique up to G2(C)-
conjugacy. Note that all embeddings of SL3(C) into G2(C) are G2(C)-conjugate; moreover, the
G2(C)-conjugacy class of a cuspidal parameter η determines the cuspidal parameter η′′ uniquely,
up to SL3(C)-conjugacy and outer automorphism. Namely, the outer automorphism of SL3(C)
sending g to (gT)−1 is realized by conjugating by an element of G2(C). The normalizer N(SL3(C))
in G2(C) is generated by SL3(C) and an element inducing this outer automorphism.
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Putting these observations together, we find the following theorem.

Theorem 1.4 (Dichotomy of parameters). There is a natural injective dichotomy for the set of
cuspidal parameters for G2, modulo G2(C)-conjugacy:

Par◦(G2)
Ad(G2(C))

↪→ Par◦(PGSp6)
Ad(Spin7(C))

t Par◦(PGL3)
Ad(N(SL3(C)))

.

The image of this dichotomy can also be characterized. First, we observe the following.

Proposition 1.5. Suppose that η′′ ∈ Par◦(PGL3). Then, for any embedding ι : SL3(C) ↪→
G2(C), ι ◦ η′′ ∈ Par◦(G2).

Proof. It is clear that ι ◦ η′′ ∈ Par(G2). If P is a maximal parabolic subgroup of G2, then P
stabilizes a nil-line in O◦ or a nil-plane in O◦. As a representation of SL3(C), the vector space
O◦ decomposes into the direct sum of two irreducible three-dimensional representations, and one
trivial representation arising from a SL3(C)-fixed line in O◦. Since there is no nil-line or nil-plane
fixed by SL3(C), we find that P ∩ SL3(C) fixes a line or plane in one of the irreducible three-
dimensional representations of SL3(C). Hence, P ∩ SL3(C) is contained in a maximal parabolic
subgroup of SL3(C). The proposition follows immediately. 2

We find that the natural dichotomy for cuspidal parameters for G2 includes all cuspidal
parameters for PGL3. However, not all parameters for PGSp6 occur in this dichotomy. Perhaps
the most convenient way of characterizing the parameters for PGSp6 is through the following.

Proposition 1.6. Suppose that η′ ∈ Par◦(PGSp6). Let L(η′, Spin, s) denote the Artin–Weil
L-function associated to η′ and the eight-dimensional spin representation of Spin7(C). Then
L(η′, Spin, s) has a pole at s= 0 if and only if the image of η′ is contained in a subgroup of
Spin7(C) isomorphic to G2(C).

Proof. Let V be an eight-dimensional vector space, on which Spin7(C) acts via the spin
representation. The order of the pole of L(η′, Spin, s) at s= 0 is precisely the multiplicity of
the trivial representation of Wk for its action on V . Thus, we find that L(η′, Spin, s) has a pole
at s= 0 if and only if V has a non-zero vector fixed by Wk.

Now, the stabilizer of any non-zero vector v ∈ V in Spin7(C) is either a proper parabolic
subgroup of Spin7(C) or else a group isomorphic to G2(C). Since we assume that η′ is a cuspidal
parameter, its image in not contained in any proper parabolic subgroups of Spin7(C). Thus,
L(η′, Spin, s) has a pole at s= 0 if and only if η′(Wk) lies in an embedded G2(C) in Spin7(C). 2

Define Par◦Spin(PGSp6) to be the set of cuspidal parameters η′ for PGSp6, for which
L(η′, Spin, s) has a pole at s= 0. Then we find the following perfect dichotomy of parameters.

Theorem 1.7. There is a bijective dichotomy for the set of cuspidal parameters for G2, modulo
G2(C)-conjugacy:

Par◦(G2)
Ad(G2(C))

↔
Par◦Spin(PGSp6)
Ad(Spin7(C))

t Par◦(PGL3)
Ad(N(SL3(C)))

.

1.3 Dichotomy for irreps of G2

The dichotomy for parameters in Theorem 1.7 suggests, via the local Langlands conjectures,
a dichotomy for the generic supercuspidal irreps of G2. Recall that Irr◦g(G) denotes the set of
isomorphism classes of generic supercuspidal irreps of a (semisimple, adjoint, split) group G.
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Define Irr◦g,Spin(PGSp6) to be the subset of Irr◦g(PGSp6), consisting of those irreps σ for which
Shahidi’s degree-eight L-function L(τ, Spin, s) has a pole at s= 0. The main result of this paper
is the following.

Theorem 1.8. Dual pair correspondences in the simple split adjoint groups E6 and E7

determine a dichotomy function ∆, which is bijective when p 6= 2 and injective when p= 2:

∆ : Irr◦g(G2)→ Irr◦g,Spin(PGSp6) t
Irr◦g(PGL3)

Contra
,

where Contra denotes the equivalence relation given by contragredience.

The existence of such a bijection is directly implied by Langlands conjectures and the
dichotomy of parameters in Theorem 1.7. The realization of this bijection through theta
correspondences is a result of additional interest, and follows many previous realizations of
‘Langlands functoriality’ in theta correspondences. Conversely, this result can be used to
parameterize the generic, supercuspidal representations of G2 over a p-adic field, using known
and perhaps soon-to-be known parameterizations for PGL3 and PGSp6.

Specifically, the local Langlands conjectures have been proven for PGL3 (for GL3 in fact) by
Henniart [Hen84a], in the following sense.

Proposition 1.9. There is a natural (compatible with L-functions and ε-factors, among other
properties) bijection

Φ(PGL3) :
Irr◦g(PGL3)

Contra
→ Par◦(PGL3)

Ad(N(SL3(C)))
.

In particular, the contragredient on irreps corresponds to the change in parameter given by the
outer automorphism of SL3(C).

While parts of the local Langlands conjectures are open for PGSp6, it appears likely that the
following will be proven in the not so distant future.

Conjecture 1.10. There is a bijection

Φ(PGSp6) : Irr◦g(PGSp6)→ Par◦(PGSp6)
Ad(Spin7(C))

,

in which Shahidi’s degree-eight spin L-function on irreps corresponds to the Artin–Weil degree-
eight L-function associated to the spin representation of Spin7(C).

The main theorem of this paper implies the following theorem.

Theorem 1.11. Assuming a parameterization Φ(PGSp6) satisfying the previous conjecture,
and assuming that p 6= 2, there is a bijective parameterization

Φ(G2) : Irr◦g(G2)→ Par◦(G2)
Ad(G2(C))

.

Of course, there are further properties of this parameterization Φ(G2) that should be proven;
for example, one hopes that Φ(G2) is compatible with L-functions and ε-factors of various twists.

2. Structure theory

There are many constructions of exceptional Lie algebras and algebraic groups. The construction
of Allison [All79] using structurable algebras [All78] (with similarities to earlier constructions of

743

https://doi.org/10.1112/S0010437X10005178 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005178


G. Savin and M. H. Weissman

Kantor [Kan72]) is well suited to some needs of this paper. The construction of Koecher [Koe67]
using Jordan algebras is well suited to other needs of this paper. We recall these constructions
of Lie algebras, and associated algebraic groups, in this section. The constructions here are valid
whenever k is a field of characteristic zero (and, most likely, when char(k) 6= 2, 3).

2.1 Composition, Jordan, and structurable algebras
2.1.1 Composition algebras.

Definition 2.1. A composition algebra (sometimes called a Hurwitz algebra) over k is a pair
(C, N), where C is a k-algebra and N : C→ k is a non-degenerate quadratic form which satisfies
N(xy) =N(x)N(y) for all x, y ∈ C.

Given a composition algebra (C, N) over k, we write N also for the associated symmetric
bilinear form:

N(x, y) =N(x+ y)− (N(x) +N(y)).

The standard involution on C is given by

x̄=N(x, 1)− x.

The norm and trace can be recovered from the standard involution:

N(x) = xx̄ and Tr(x) = x+ x̄.

According to classification results originating with Hurwitz, composition algebras over k
have dimension one, two, four, or eight as vector spaces over k. A composition algebra of
dimension eight will be called a Cayley algebra. Composition algebras of dimensions one and
two are commutative and associative. Composition algebras of dimension four are associative.
Composition algebras of dimension eight are alternative: if C is a Cayley algebra, and x, y ∈ C,
then

(xx)y = x(xy) and (yx)x= y(xx).

Although Cayley algebras are non-associative, the map (x, y, z) 7→ Tr(xyz) defines a trilinear
form on a Cayley algebra C; the associative law is not required here since

Tr(x(yz)) = Tr((xy)z) for all x, y, z ∈ C.

2.1.2 Algebras with involution. Suppose that A is a k-algebra with involution (denoted a 7→
ā). For x, y, z ∈A, we define the following: first, the left- and right-multiplication endomorphisms
are defined by Lx(y) = xy and Rx(y) = yx. Thus, Lx, Rx ∈ Endk(A). Also, [x, y] = xy − yx is
the commutator, and [x, y, z] = (xy)z − x(yz) is the associator. The involution yields a ternary
composition

{x, y, z}= (xȳ)z + (zȳ)x− (zx̄)y.

This ternary composition yields the endomorphism Vx,y ∈ Endk(A), given by Vx,y(z) =
{x, y, z}. Finally, define the endomorphism Tx ∈ Endk(A), given by Tx = Vx,1. Then

Tx = Lx +Rx−x̄.

Given a k-algebra A with involution, one may consider the hermitian and skew-hermitian
elements of A. The skew-hermitian (or trace zero) elements of A are

A◦ = {a ∈A such that a+ ā= 0}.
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The hermitian elements of A are denoted

A+ = {a ∈A such that a= ā}.

As a k-vector space, one may clearly decompose A as a direct sum: A=A◦ ⊕A+.
There is a natural alternating A◦-valued k-bilinear form on A, defined by

〈x, y〉= xȳ − yx̄= (xȳ)− xȳ.

From this form, one may construct the two-step nilpotent Lie algebra

h(A, A◦) =A⊕A◦,

whose brackets are given by

[(x, r), (y, s)] = (0, 〈x, y〉) = (0, xȳ − yx̄) for all x, y ∈A, r, s ∈A◦.

One may also directly construct a two-step unipotent algebraic group

H(A, A◦) =


1 x z

0 1 x̄
0 0 1

 : x, z ∈A Tr(z) =N(x)

,
where composition is given by the usual rules for matrix multiplication and the composition in
the algebra A.

2.1.3 Jordan algebras. Let C be a composition algebra over k. Without reviewing the
general theory of Jordan algebras, we mention and describe the Jordan algebra JC of Hermitian-
symmetric three-by-three matrices with entries in C:

C =


a γ β̄
γ̄ b α
β ᾱ c

 : a, b, c ∈ k, α, β, γ ∈ C

.
On JC , there is the Jordan composition

j1 ◦ j2 = 1
2 · (j1j2 + j2j1),

where ordinary matrix multiplication is used on the right-hand side above.
But more importantly for our purposes are the quadratic adjoint, cubic determinant, and

cross product. The quadratic adjoint is defined by (following notation of [Kru07, § 2.4])a γ β̄
γ̄ b α
β ᾱ c

] =

bc−N(α) β̄ᾱ− cγ γα− bβ̄
αβ − cγ̄ ca−N(β) γ̄β̄ − aα
ᾱγ̄ − bβ βγ − aα ab−N(γ)

.
The cross product is the linearization of this quadratic adjoint:

j1 × j2 = (j1 + j2)] − (j]1 + j]2).

There exists a unique cubic form N : JC → k, for which

j × j] = N(j) · j for all j ∈ JC .

There is a natural non-degenerate trace pairing

T (j, j′) = Tr(j ◦ j′).

745

https://doi.org/10.1112/S0010437X10005178 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005178


G. Savin and M. H. Weissman

2.1.4 Structurable algebras. We define and discuss structurable algebras here, following the
foundational work of Allison [All78] very closely.

Definition 2.2. A k-algebra A with involution is called a structurable algebra if, for all
x, y, z ∈A, the following (quartic polynomial) identity holds:

[Tz, Vx,y] = VTzx,y − Vx,Tz̄y.

Such an algebra satisfies

[r, x, y] = [x, y, r] =−[x, r, y] for all x, y ∈A, r ∈A◦.
Let Der(A) denote the Lie algebra over k, consisting of derivations of A which commute with
the involution. These are k-endomorphisms D of A, which satisfy the following identities:

D(xy) = (Dx)y + x(Dy) and D(x̄) =Dx for all x, y ∈A.

Important examples of structurable algebras include tensor products of composition algebras.
These have been studied extensively by Allison [All88], who proved the following proposition.

Proposition 2.3. Suppose that B and C are composition algebras. Then B ⊗k C, with the
tensor product algebra structure and involution, is a structurable algebra.

When A=B ⊗k C is a tensor product of two composition algebras, as above, one may check
directly that

A◦ = (B◦ ⊗k k)⊕ (k ⊗k C◦)∼=B◦ ⊕ C◦.
In this way H(A, A◦) has central subgroup B◦ ⊕ C◦ and abelian quotient B ⊗k C.

Another important example of a structurable algebra, from [All78, § 8], is given by a
construction of Freudenthal. From a composition algebra C, and the resulting Jordan algebra JC ,
consider the k-vector space

FC =
{(

a j
j′ d

)
: a, d ∈ k and j, j′ ∈ JC

}
.

This space has a natural k-algebra structure given by(
a1 j1
j′1 d1

)
·
(
a2 j2
j′2 d2

)
=
(

a1a2 + T (j1, j′2) a1j2 + d2j1 + j′1 × j′2
a2j
′
1 + a2j

′
2 + j1 × j2 T (j2, j′1) + d1d2

)
.

An involution on FC is given by (
a j
j′ d

)
=
(
d j
j′ a

)
.

In [All78], Allison proved (in fact, he proved much more) the following proposition.

Proposition 2.4. If C is any composition algebra, then FC , with product and involution given
above, is a structurable algebra.

Note that the trace zero elements of FC form a one-dimensional subspace

(FC)◦ =
{(
a 0
0 −a

)
: a ∈ k

}
.

2.2 Lie algebras
From Jordan algebras and structurable algebras, we may follow constructions of Tits–Koecher
and Allison to construct certain Lie algebras over k. We review these constructions here.
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2.2.1 Lie algebras from Jordan algebras. Suppose that J is a semisimple Jordan algebra.
Then constructions of Tits, Kantor, or Koecher [Koe67] (whom we follow here) yield a graded
Lie algebra

gJ = g
(−1)
J ⊕ g

(0)
J ⊕ g

(1)
J ,

where g
(0)
J = Str(J) is the subalgebra of Endk(J) generated by derivations of J and left Jordan

multiplications Lj (for j ∈ J) and g
(±1)
J is identified with J as a k-vector space. The Lie bracket

on gJ is given by the following.

• For all j ∈ J , let α±(j) denote the element of g
(±1)
J associated to j. The Lie algebras g

(±)
J

are abelian, i.e.,

[α+(j), α+(j′)] = [α−(j), α−(j′)] = 0 for all j, j′ ∈ J.

• For all X ∈ g
(0)
J and all j ∈ J , we define Lie brackets by

[X, α+(j)] = α+(X(j)), recalling that X ∈Str(J)⊂ End(J).

Also, we define

[X, α−(j)] = α−(−X∗(j)),
where X∗ denotes the adjoint endomorphism of J , with respect to the trace pairing on J .

• For all j, j′ ∈ J , we define

[α+(j), α−(j′)] = 2(Lj◦j′ + [Lj , Lj′ ]) ∈Str(J) = g
(0)
J .

In this way, the Lie algebra gJ is naturally endowed with a parabolic subalgebra pJ =
g

(0)
J ⊕ g

(1)
J with abelian nilradical uJ = g

(1)
J = J .

2.2.2 Lie algebras from structurable algebras. Suppose that A is a structurable algebra.
Following Allison [All79], let Strl(A) be the k-subspace of Endk(A) spanned by Der(A) and endo-
morphisms of the form Ta for a ∈A. Then Strl(A) is a Lie subalgebra of Endk(A), and contains
Der(A) as a Lie subalgebra. Given X ∈Strl(A), X ∈Der(A) if and only if X(1) = 0.

Many elements of Strl(A) arise from ‘inner’ endomorphisms, i.e., endomorphisms arising
directly from the composition and involution on A.

• For all r ∈A, Tr ∈Strl(A) by definition.
• For all x, y ∈A, define a derivation of A by

Dx,y(z) = 1
3 [[x, y] + [x̄, ȳ], z] + [z, y, x]− [z, x̄, ȳ],

for all z ∈A. From [All79, § 1], Dx,y ∈Der(A)⊂Strl(A)⊂ Endk(A).
• For all x, y ∈A, one has

Vx,y = 1
3T2xy+ȳx−x̄y+yx̄ +Dx,ȳ.

Hence, Vx,y ∈Strl(A).
• For all r, s ∈A◦,

LrLs = Trs − Vr,s.
Hence, LrLs ∈Strl(A).
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Following [All78, All79], we write Instrl(A) for the subspace of Strl(A) spanned by Vx,y
for all x, y ∈A. We write Inder(A) for the subspace of Der(A) spanned by Dx,y for all
x, y ∈A. Then Instrl(A) is an ideal in Strl(A), and Inder(A) is an ideal in Der(A). The
subspace L(A) spanned by LrLs for all r, s ∈A◦ is an ideal in Strl(A), and there is a chain of
inclusions

L(A)⊂ Instrl(A)⊂Strl(A).

For all X ∈Strl(A), define Xε and Xδ by

Xε =X − T
X(1)+X(1)

and Xδ =X +R
X(1)

.

Then X 7→Xε is an automorphism of the Lie algebra Strl(A) of order two. The element
Xδ ∈ Endk(A) preserves the subspace A◦ ⊂A, and the resulting map X 7→Xδ is a Lie algebra
representation:

Strl(A)→ Endk(A◦).

From a structurable algebra A, Allison [All79] constructed a Lie algebra, with similarities
to earlier work of Kantor [Kan72]. This Lie algebra, gA, is constructed with a Z-grading,
vanishing outside degrees −2,−1, 0, 1, 2. In these degrees, the Lie algebra is constructed as
follows.

• In degree ±2, we define g
(±2)
A =A◦. For all r ∈A◦, we write ζ±(r) for the corresponding

element of g
(±2)
A .

• In degree ±1, we define g
(±1)
A =A. For all x ∈A, we write η±(x) for the corresponding

element of g
(±1)
A .

• In degree zero, we define g
(0)
A = Instrl(A).

The brackets on the Lie algebra gA =
⊕2

i=−2 g
(i)
A are defined by the following identities:

• the space uA = g
(1)
A ⊕ g

(2)
A =A⊕A◦ is identified as a Lie algebra with h(A, A◦). In other

words,

[η+(x) + ζ+(r), η+(y) + ζ+(s)] = ζ+(xȳ − yx̄),

for all x, y ∈A and r, s ∈A◦. The bracket on g
(−1)
A ⊕ g

(−2)
A is defined in the same way:

[η−(x) + ζ−(r), η−(y) + ζ−(s)] = ζ−(xȳ − yx̄);

• the elements X ∈ g
(0)
A = Instrl(A) are endomorphisms of the k-vector space A. For such

elements, Xδ is an endomorphism of the k-vector space A◦. Hence, for all X ∈ g
(0)
A , it

makes sense to define

[X, η+(x) + ζ+(r)] = η+(X(x)) + ζ+(Xδ(r)).

Recalling that ε is an automorphism of Instrl(A) of order two, it makes sense to define

[X, η−(x) + ζ−(r)] = η−(Xε(x)) + ζ−(Xεδ(r));

• for x, y ∈A and r, s ∈A◦, define

[η+(x) + ζ+(r), η−(y) + ζ−(s)] =−η−(sx) + (Vx,y + LrLs) + η+(ry).
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These identities suffice to determine the Lie algebra structure on all of gA. Note that gA is
naturally endowed with a parabolic subalgebra

pA = g
(0)
A ⊕ g

(1)
A ⊕ g

(2)
A ,

with unipotent radical uA with center zA. Furthermore, zA is identified with A◦, and uA/zA is
identified with A.

2.3 Algebraic groups

Consider a Jordan algebra J , and the Koecher Lie algebra gJ constructed earlier. Define an
algebraic group GJ over k as the algebraic subgroup of GL(gJ) preserving the Lie bracket
and a Killing form. The three-term grading on gJ yields a parabolic subgroup PJ with abelian
unipotent radical UJ , whose k-points are identified with J itself.

If J ⊂K is an embedding of Jordan algebras (i.e., J and K are Jordan algebras, and J is
embedded as a sub-k-algebra of K), then gJ is naturally a graded Lie subalgebra of gK . This
follows quickly from the fact, proven by Jacobson [Jac49], that all derivations of the semisimple
Jordan algebras considered are inner derivations; hence, these derivation algebras extend to
derivations of larger semisimple Jordan algebras.

Since GK is an algebraic group with Lie algebra gK , and gJ is a semisimple Lie subalgebra
of gK , there are an algebraic subgroup G′J ⊂GK and an isogeny ι : G′J →GJ (where GJ is the
adjoint algebraic group associated to gJ). Let P′J = ι−1(PJ) and let U′J be the neutral component
of ι−1(UJ).

The embedding of algebraic groups G′J ⊂GK , is compatible with parabolics:

PK ∩G′J = P′J and UK ∩G′J = U′J .

Similarly, consider a structurable algebra A, and Allison’s Lie algebra gA constructed
previously. Define an algebraic group GA over k as the algebraic subgroup of GL(gA) preserving
the Lie bracket and a Killing form. The five-term grading on gA yields a parabolic subgroup PA

with two-step unipotent radical UA ⊃ ZA. The k-points of the center ZA can be identified with
A◦, and the k-points of the quotient UA/ZA can be identified with A itself.

If A⊂B is an embedding of structurable algebras (i.e., A and B are structurable algebras,
and A is embedded as a sub-k-algebra with involution into B), then gA is naturally a graded
Lie subalgebra of gB (since elements of Instrl(A)⊂ Endk(A) extend naturally to elements of
Instrl(B)⊂ Endk(B)). As before, one obtains an algebraic subgroup G′A ⊂GB together with an
isogeny ι : G′A→GA. This embedding is compatible with parabolics:

PB ∩G′A = P′A, UB ∩G′A = U′A, ZB ∩G′A = Z′A.

2.3.1 Automorphisms of composition algebras. Fix a ‘complete chain’ of composition
algebras k ⊂K ⊂B ⊂ C, where K, B, C are composition algebras of k-dimension two, four, eight,
respectively. Some interesting algebraic groups arise as automorphism groups of extensions of
composition algebras. Namely, if H ⊂ E is an embedding of composition algebras over k, then let
AutE/H denote the algebraic subgroup of GL(E) preserving the algebra structure and fixing the
subalgebra H element-wise. For example, AutC/k is an absolutely simple group of type G2 and
AutC/K is a simply connected absolutely simple group of type A2. And, AutB/k is an adjoint
absolutely simple group of type A1 and AutC/B is a simply connected absolutely simple group
of type A1.
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2.3.2 Groups from Jordan algebras. The chain of composition algebras k ⊂K ⊂B ⊂ C
yields a chain of Jordan algebras Jk ⊂ JK ⊂ JB ⊂ JC . The associated algebraic groups GJ with
parabolic subgroup PJ = LJUJ are tabulated below.

Composition algebra k K B C

Dimension of J 6 9 15 27
Type of GJ C3 A5 D6 E7

Type of Levi LJ A2 A2 × A2 A5 E6

Given an embedding H ⊂ E of composition algebras, we find an embedding of Jordan algebras
JH ⊂ JE , and a subgroup G′JH

of GJE
together with an isogeny G′JH

→GJH
. Moreover, the

subgroup G′JH
commutes with AutE/H , naturally embedded in GJE

. In this way we find
many commuting pairs of subgroups. We label them only by their type, leaving the precise
determination of isogeny type up to the reader.

H E AutE/H ×G′JH
GJE

k C G2 × C3 E7

K C A2 × A5 E7

k B A1 × C3 E6

B C A1 × E6 E7

2.3.3 Tensor products of composition algebras. The chain of Hurwitz algebras yields
embeddings of structurable algebras, from which we examine

k ⊗B ⊂ k ⊗ C ⊂K ⊗ C ⊂B ⊗ C ⊂ C ⊗ C.

This yields embeddings (up to isogeny) of algebraic groups GA, compatible with two-step
parabolic subgroups PA = LAUA. We tabulate some possibilities in the following.

A k ⊗B k ⊗ C K ⊗ C B ⊗ C C ⊗ C

Type of GA C3 F4 E6 E7 E8

Type of Levi LA A1 × A1 B3 A1 × A2 × A2 D5 × A1 D7

Dimension of UA/ZA 4 8 16 32 64
Dimension of ZA 3 7 8 10 14

This construction also realizes some well-known dual reductive pairs. Consider three
composition algebras H, H ′, E, such that H ⊂ E. Then AutE/H naturally acts on the Lie algebra
gE⊗H′ and AutE/H fixes the elements of the subalgebra gH⊗H′ . This yields a homomorphism of
algebraic groups:

AutE/H ×G′H⊗H′ ↪→GE⊗H′ .

In particular, we find many commuting pairs of subgroups.

H E H ′ AutE/H ×G′H⊗H′ GE⊗H′

k C C G2 × F4 E8

K C C A2 × E6 E8

B C C A1 × E7 E8

k C B G2 × C3 E7

B C k A1 × C3 F4
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While such exceptional dual pairs occur often in the literature, this construction is convenient
for at least two reasons: first, it gives dual pairs of non-split subgroups which may be otherwise
difficult to construct. Second, the embeddings are compatible with a distinguished parabolic
subgroup, which is convenient later for computation of Jacquet modules.

2.3.4 Freudenthal structurable algebras. Finally, we recall that associated to the chain of
composition algebras k ⊂K ⊂B ⊂ C, there is a chain of Jordan algebras Jk ⊂ JK ⊂ JB ⊂ JC ,
and thus a chain of structurable algebras of Freudenthal type:

Fk ⊂ FK ⊂ FB ⊂ FC .

Each one of these structurable algebras h as a one-dimensional subspace of trace zero elements.
Allison’s construction yields embeddings of algebraic groups (up to some isogeny)

G′Fk
⊂G′FK

⊂G′FB
⊂GFC

,

compatible with two-step ‘Heisenberg’ parabolic subgroups PF = LFUF . We tabulate the
possibilities in the following.

Jordan algebra Jk JK JB JC

Dimension of F 14 20 32 56
Type of GF F4 E6 E7 E8

Type of Levi LF C3 A5 D6 E7

3. Theta correspondence

The main result to be proven in this paper is a bijective dichotomy:

Irr◦g(G2)↔ Irr◦g,Spin(PGSp6) t
Irr◦g(PGL3)

Contra
.

In this section, we begin the proof of this main result. We use theta correspondences in E6 and
E7 to describe maps for the above dichotomy. We begin with a generic supercuspidal irrep τ
of G2.

• We will define
−→
Θ6(τ), a representation of PGL3, and

−→
Θ7(τ), a representation of PGSp6.

• If
−→
Θ6(τ) = 0, then

−→
Θ7(τ) has a unique generic supercuspidal irreducible subrepresentation.

• Otherwise, and if p 6= 2, then
−→
Θ6(τ) has a unique, up to contragredience, generic super-

cuspidal irreducible subrepresentation. Even if p= 2,
−→
Θ6(τ) is a multiplicity-free

supercuspidal representation of PGL3.

By establishing these facts, we establish a map in this section, when p 6= 2:

∆ : Irr◦g(G2)→ Irr◦g(PGSp6) t
Irr◦g(PGL3)

Contra
,

where ∆(τ) is either the unique (up to isomorphism) generic supercuspidal subrepresentation
of
−→
Θ7(τ) or the unique (up to isomorphism and contragredience) generic supercuspidal

subrepresentation of
−→
Θ6(τ).
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3.1 Minimal representations
Let Π6 and Π7 denote the minimal representations of the adjoint simple split groups E6 and
E7, respectively (we refer to [GS05] for definitions and properties of minimal representations).
Let σ be a supercuspidal irrep of PGSp6, let τ be a supercuspidal irrep of G2, and let ρ be a
supercuspidal irrep of PGL3. We define the following:

←−
Θ7(σ) = HomPGSp6

(σ,Π7) and
−→
Θ7(τ) = HomG2(τ,Π7).

Of course, we view
←−
Θ7(σ) as a representation of G2, and

−→
Θ7(τ) as a representation of PGSp6,

via the dual pair (see § 2.3.3):

PGSp6 ×G2→E7.

Observe here that we consider embeddings of σ and τ as subrepresentations rather than the
more commonly used quotients; however, the injectivity and projectivity of supercuspidals in
the category of smooth representations imply that nothing is lost. Note that σ �

←−
Θ7(σ) is

naturally a (PGSp6, σ)-isotypic subspace of Π7, and
−→
Θ7(τ)� τ is naturally a (G2, τ)-isotypic

subspace of Π7.
Similarly, we define

←−
Θ6(ρ) = HomPGL3(ρ,Π6) and

−→
Θ6(τ) = HomG2(τ,Π6).

Here, we view
←−
Θ6(ρ) as a representation of G2 and

−→
Θ6(τ) as a representation of PGL3, via the

dual pair

PGL3 ×G2 ↪→E6.

Observe that ρ�
←−
Θ6(ρ) is naturally a (PGL3, ρ)-isotypic subspace of Π6, and

−→
Θ6(τ)� τ is

naturally a (G2, τ)-isotypic subspace of Π6.

3.2 Whittaker functionals
Let N2 and N3 be the unipotent radicals of Borel subgroups of G2 and PGSp6, respectively. Let
ψ2 :N2→ C× and ψ3 :N3→ C× be generic (principal) characters. Since G2 and PGSp6 are of
adjoint type, these characters are unique up to conjugation by the tori of the respective Borel
subgroups. For this reason, τ and σ are unambiguously called generic (rather than ψ2-generic
and ψ3-generic) if τN2,ψ2 6= 0 and σN3,ψ3 6= 0, respectively.

More generally, when G is a split adjoint semisimple group over k, and π is a smooth
representation of G, we write WhG(π) for the space of Whittaker functionals on π, with respect
to some maximal unipotent subgroup N of G and principal character ψ of N :

WhG(π) = HomN (π, ψ).

Thus, τ is called generic if WhG2(τ) 6= 0 and σ is called generic if WhPGSp6
(σ) 6= 0.

It is important to recall a few equivalent formulations of Whittaker functionals and genericity.
While well known, a good treatment can be found in the work of Casselman and Shalika [CS80].
First, since πN,ψ is the maximal quotient on which N acts via ψ, we find canonical isomorphisms

WhG(π) = HomN (π, ψ)∼= HomN (πN,ψ, ψ)∼= HomC(πN,ψ, C).

In particular, dim(WhG(π)) = dim(πN,ψ) if one of these vector spaces is finite dimensional.
Next, by Frobenius reciprocity, observe that

WhG(π) = HomN (π, ψ)∼= HomG(π, IndGN ψ).
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If π is a generic irrep of G, and so WhG(π) is non-zero, then π embeds as a subrepresentation
of IndGN ψ. The image of π via such an embedding is uniquely determined by π; it is called the
Whittaker model of π.

On the other hand, we often consider the Gelfand–Graev representation c-IndGN ψ; since this
is a submodule of IndGN ψ, we find an injective linear map

HomG(π, c-IndGN ψ) ↪→HomG(π, IndGN ψ)∼= WhG(π).

In particular, the only irreps of G which occur as subrepresentations of a Gelfand–Graev
representation are generic irreps, and moreover the uniqueness of Whittaker models implies
that

dim HomG(π, c-IndGN ψ)6 1,
for any irrep π of G.

While perhaps not all generic irreps occur as subrepresentations of the Gelfand–Graev
representation, we can say more about generic supercuspidal irreps. Corollary 6.5 of [CS80]
directly implies the following.

Proposition 3.1. Suppose that π is a generic supercuspidal irrep of G. Then π occurs as a
subrepresentation of c-IndGN ψ.

Namely, the Whittaker model of a generic supercuspidal irrep of G, a priori a G-submodule
of IndGN ψ, is in fact a G-submodule of c-IndGN ψ.

3.3 Useful facts
We will be proving that certain smooth representations of G2 have no generic supercuspidal
subrepresentations. To this end, it is useful to have a few criteria that exclude such
representations of G2.

Proposition 3.2. Let π be a smooth irrep of G2. Let H be a subgroup of G2, such that H is
isomorphic to SL3 over an algebraic closure k̄ of k. If πH 6= 0 (there exists a non-zero H-invariant
linear functional), then π is not generic.

Proof. Every such A2 subgroup H of G2 is conjugate over k̄ (by the theory of Borel and
De Siebenthal [BD49]). All such subgroups arise as stabilizers of quadratic subalgebras of O.
Lemma 4.10 of [GS98] now implies the result. 2

For n> 4, consider the commuting pair of split groups over k:

B3 ×Bn−4 ↪→Dn,

where B3 = SO7, Bn−4 = SO2n−7, and Dn = SO2n are split classical groups labeled by their
type. We regard B0 as the trivial group. Embed G2 into B3 via the action of G2 on O◦.

Proposition 3.3. Let Πn denote the minimal representation of Dn for n> 4. Then, as a smooth
representation of G2, Πn does not have any generic supercuspidal subrepresentations.

Proof. We prove this by induction on n. For the base step, when n= 4, the proposition follows
directly from [HMS98, Corollary 5.2].

When n > 4, consider a maximal parabolic subgroup P = MN of Dn whose Levi component
M satisfies

G2 ⊂B3 ⊂Dn−1 ⊂M∼= GL1 × SO2n−2.
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The adjoint representation of M on N is a standard representation of GL1 × SO2n−2; N is
a (2n− 2)-dimensional vector space over k with non-degenerate symmetric bilinear form. Let
Ω⊂N be the set of isotropic vectors in N . By [MS97, Theorem 1.1], there is a filtration of the
minimal representation Πn, as a representation of P :

0→ C∞c (Ω)→Πn→ (Πn−1 ⊗ |det|1/(2n−2))⊕ |det|(n−2)/(2n−2)→ 0.

By induction, the minimal representation Πn−1 of Dn−1 does not support any generic
supercuspidal representations of G2. The character |det|(n−2)/(2n−2) supports nothing but the
trivial representation of G2.

Finally, the representation C∞c (Ω) of G2 arises from the action of G2 on the set of isotropic
vectors in N . The stabilizer of such a vector in G2 is a subgroup of type A2 as discussed in
the previous proposition, a subgroup isomorphic to [Q, Q] for a maximal parabolic Q⊂G2, or
else all of G2. By the previous proposition, no generic supercuspidal irreps of G2 have vectors
fixed by an A2 subgroup. No supercuspidal irreps have vectors fixed by [Q, Q]. No non-trivial
irreps have vectors fixed by all of G2. Hence, no generic supercuspidal irreps of G2 occur (as
subrepresentations) in the restriction of Πn to G2. 2

3.4 Analysis of the correspondences
Here, we begin the analysis of the theta correspondences in E6 and E7, focusing on generic
supercuspidal representations. We start with the following proposition, which is primarily a
consequence of results in the literature.

Proposition 3.4. Let σ be a generic supercuspidal irrep of PGSp6. Then
←−
Θ7(σ) is a

supercuspidal and multiplicity-free representation of G2. Every irreducible subrepresentation

of
←−
Θ7(σ) is generic.

Proof. First, we prove that
←−
Θ7(σ) is supercuspidal. There are two maximal parabolic subgroups

(up to conjugacy) of G2 which must be considered.

(Heisenberg) Suppose first that Q2 = L2U2 is the Heisenberg parabolic subgroup of G2. If
←−
Θ7(σ)U2 6= 0, then σ occurs in (Π7)U2 . The structure of (Π7)U2 as a PGSp6 × L2-module has been
described in [MS97, Theorem 7.6]. More precisely, one can pick a maximal parabolic subgroup
Q7 = L7U7 in E7 such that Q7 ∩G2 = Q2 and PGSp6 × L2 is contained in the Levi factor L7

(using the construction of § 2.3.4). Then we have a natural map

(Π7)U2 → (Π7)U7 .

By [MS97, Theorem 7.6], the kernel of this map does not support any supercuspidal representa-
tions of PGSp6. In particular, σ must occur in (Π7)U7 . By the same result of [MS97], the repre-
sentation (Π7)U7 , as a representation of L7, has constituents with wave front set supported in the
closure of the minimal nilpotent orbit; the constituents are essentially a minimal representation
and a trivial representation of L7. Note that L7 is a split reductive group GSpin12 of type D6.

The dual pair PGL2 × PGSp6 in a group of type D6 is addressed in [Sav94, § 8], and no
generic supercuspidal representations of PGSp6 can occur. Thus, no generic supercuspidal irreps
of PGSp6 occur in (Π7)U7 . Therefore,

←−
Θ7(σ)U2 = 0.
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(Three-step) Now, suppose that Q2 = L2U2 is the three-step parabolic subgroup of G2. The
structure of (Π7)U2 as a PGSp6 × L2-module has been described in [SG99, Proposition 6.8]. If
←−
Θ7(σ)U2 6= 0, then σ occurs in (Π7)U2 .

One can pick a maximal parabolic subgroup Q7 = L7U7 in E7 such that Q7 ∩G2 = Q2 and
PGSp6 × L2 is contained in the Levi factor L7. Such a parabolic subgroup is discussed
and called P1 in [SG99, § 4]. Then we have a natural map

(Π7)U2 → (Π7)U7 .

The results of [SG99, Proposition 6.8] imply that the kernel does not support any supercuspidal
representations of PGSp6. In particular, if σ occurs in (Π7)U2 , then σ occurs in (Π7)U7 . L7 is
isogenous to GL2 × PGL6.

By considering the Iwahori-fixed vectors, any L7 constituent of the representation (Π7)U7

is an Iwahori-spherical representation of GL2 × PGL6 associated to the reflection or trivial
representation of the Iwahori Hecke algebra of PGL6. Thus, (Π7)U7 , as a representation of PGL6,
has all constituents appearing in degenerate principal series representations. Such degenerate
principal series representations restrict to degenerate principal series representations of PGSp6,
which are not generic.

It follows that σ cannot occur in (Π7)U7 . Therefore,
←−
Θ7(σ)U2 = 0.

Thus,
←−
Θ7(σ) is a supercuspidal representation of G2. It follows that

←−
Θ7(σ) is semisimple; a

direct sum of supercuspidal irreps.

Next, we recall that WhPGSp6
(Π7) = (Π7)N3,ψ3 is the Gelfand–Graev module for G2 [GS04,

Proposition 17]:

WhPGSp6
(Π7)∼= c-IndG2

N2
(ψ2).

Since σ is a generic irreducible supercuspidal representation of PGSp6, WhPGSp6
(σ) is one

dimensional, and the embedding σ �
←−
Θ7(σ) into Π7 gives an embedding of

←−
Θ7(σ) into the

Gelfand–Graev module for G2.

Since generic (and only generic) supercuspidal irreps appear as subrepresentations of the
Gelfand–Graev module, and each appears with multiplicity one, we have shown that

←−
Θ7(σ) is

a multiplicity-free (though, at this point, possibly empty) direct sum of generic supercuspidal
irreps of G2. 2

To summarize the previous proposition, we have found that if σ is a generic supercuspidal
irrep of PGSp6, then

←−
Θ7(σ) =

⊕
i∈I

τi,

where the right-hand side denotes a (possibly empty and possibly infinite) direct sum of distinct
(pairwise non-isomorphic) generic supercuspidal irreps of G2.

Next, we consider
−→
Θ6(τ), when τ is a generic supercuspidal irrep of G2, using the same

methods as the previous proposition.

Proposition 3.5. Let τ be a generic supercuspidal irrep of G2. Then
−→
Θ6(τ) is a supercuspidal

and multiplicity-free representation of PGL3.
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Proof. First, we demonstrate that
−→
Θ6(τ) is supercuspidal. There are two maximal parabolic

subgroups (up to conjugacy) of PGL3 which must be considered.

(Plane stabilizer) Let Q2 = L2U2 be the maximal parabolic subgroup of PGL3 stabilizing a plane
in the standard (projective) representation on k3. There exists a parabolic subgroup Q6 = L6U6

of E6 for which Q6 ∩PGL3 = Q2 and U6 ∩PGL3 = U2.

Theorem 4.3 of [MS97] describes (Π6)U2 as a GL2 ×G2-module; in particular, the kernel
of (Π6)U2 → (Π6)U6 does not support any supercuspidal representations of G2. It follows that
−→
Θ6(τ)U2 � τ is a (GL2 ×G2)-submodule of

(Π6)U6
∼= (Π5 ⊗ |det|)⊕ (1⊗ |det|2),

where Π5 is the minimal representation of the Levi component L6 of type D5. But no
generic supercuspidal representations of G2 occur in the restriction of the minimal (or trivial)
representation of Spin10 by Proposition 3.3. Thus,

−→
Θ6(τ)U2 = 0.

(Line stabilizer) Now let Q′2 = L′2U
′
2 be the maximal parabolic subgroup of PGL3 stabilizing a

line in the standard representation. Although Q′2 is not conjugate to a plane-stabilizing parabolic
Q2, there exists an outer automorphism of PGL3 which exchanges these two types of maximal
parabolic subgroups. Furthermore, this outer automorphism extends to an outer automorphism
of E6. The uniqueness of the minimal representation of E6 now demonstrates that

−→
Θ6(τ)U ′2 = 0

as well.

Hence, we find that
−→
Θ6(τ) is supercuspidal. Let N′2 denote the unipotent radical of a Borel

subgroup of PGL3, and let ψ′2 be a generic character of N ′2. Let N2 be the unipotent radical of a
Borel subgroup of G2. By [GS04, Proposition 17], it is known that the G2-Whittaker functionals
of Π6 yield the Gelfand–Graev representation of PGL3:

WhG2(Π6) = (Π6)N2,ψ2
∼= c-IndPGL3

N ′2
Cψ′2

.

Thus, since τ is a generic supercuspidal irrep of G2, the same arguments as in Proposition 3.4
imply that

−→
Θ6(τ) is a multiplicity-free semisimple representation of PGL3:

−→
Θ6(τ) is a direct sum

of pairwise non-isomorphic (automatically generic) supercuspidal irreps. 2

It is more complicated to analyze
−→
Θ7(τ) when τ is a generic supercuspidal irrep of G2, since

−→
Θ7(τ) may or may not be supercuspidal as a representation of PGSp6. But we may consider the
maximal supercuspidal (as a representation of PGSp6) submodule

−→
Θ◦7(τ), which fits into a split

short exact sequence:

0→
−→
Θ◦7(τ)→

−→
Θ7(τ)→

−→
Θns

7 (τ)→ 0.

Proposition 3.6. Let Q3 denote the Siegel parabolic subgroup of PGSp6 (a maximal para-

bolic subgroup with abelian unipotent radical). Then the PGSp6-module
−→
Θns

7 (τ) is a submodule

of IndPGSp6
Q3

−→
Θ6(τ)⊗ |det|. In particular,

−→
Θns

7 (τ) is a (possibly empty and possibly infinite) direct

sum of finite-length representations of PGSp6. If
−→
Θ6(τ) = 0, then

−→
Θ7(τ) is supercuspidal.
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Proof. We consider the Jacquet modules of
−→
Θ7(τ), for the three (conjugacy classes of) maximal

parabolic subgroups in PGSp6.

The global analogues of the following computations are carried out in Case (4) of the proof of
Theorem 3.1 of [GRS97].

(Heisenberg) First, let Q3 = L3U3 be the ‘Heisenberg parabolic’, whose Levi component L3 is
a split group GSpin5

∼= GSp4. We find that σU3 � τ is a quotient of (Π7)U3 as representations
of L3 ×G2. The unipotent group U3 is five dimensional, with one-dimensional center Z3; there
exists a parabolic subgroup Q7 = L7U7 of E7 such that L7 is isomorphic to GSpin12, and U7

is a Heisenberg group of dimension 33 (with one-dimensional center Z7). Furthermore, one may
choose this parabolic subgroup in such a way that Q7 ∩PGSp6 = Q3, U7 ∩PGSp6 = U3, and
Z7 = Z3. Furthermore, this gives an embedding L3 ×G2 ↪→ L7 = GSpin12.

Now,
−→
Θ7(τ)U3 � τ is a subrepresentation of (Π7)U3 . To study (Π7)U3 , we examine a

commutative diagram with exact rows and columns.

0

��

0

��
0 // W //

��

(Π7)Z3
//

��

(Π7)U3

��

// 0

0 // C∞c (Ω) // (Π7)Z7
//

��

(Π7)U7
//

��

0

0 0

Here, Ω denotes the smallest non-trivial L7-orbit in the 32-dimensional vector space U7/Z7;
this can be identified with the 15-dimensional quotient GSpin12/Q6, where Q6 is a minuscule
maximal parabolic subgroup (with Levi subgroup of type A5) of GSpin12. Geometrically, Ω can
be viewed as a Grassmannian of isotropic 6-spaces in the 12-dimensional standard representation
V of Spin12.

From [MS97, Theorem 6.1], the kernel of (Π7)Z7 → (Π7)U7 can be identified, as a Q7-module,
with C∞c (Ω). We are led to consider the action and orbits of G2 × Spin5 on Ω. It helps to study
the action of Spin7 × Spin5 on Ω. Here, the embedding of Spin7 × Spin5 in Spin12 corresponds
to a decomposition V = V7 ⊕ V5 of the standard representation of Spin12.

Such actions were studied by Kudla [Kud86, Proposition 3.4]. If ω ∈ Ω corresponds to an
isotropic 6-space Λω, then the projection of Λω onto V7 is at least one dimensional. It follows
that ω is stabilized by some maximal parabolic subgroup Q of Spin7.

It follows that the stabilizer Sω of ω in G2 contains a maximal parabolic subgroup of G2, or Sω
contains a subgroup of type A2 (by the arguments of Proposition 1.1). If Sω contains a maximal
parabolic subgroup of G2, then C∞c (G2/Sω) does not support any supercuspidal representations
of G2. If Sω contains a subgroup of type A2, then C∞c (G2/Sω) does not support any generic
supercuspidal representations of G2 by Proposition 3.2. Thus, C∞c (Ω) does not support any
generic supercuspidal representations of G2.
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Since Ker((Π7)U3 → (Π7)U7) is a quotient of C∞c (Ω) (by the snake lemma), we find that
−→
Θ7(τ)U3 � τ is a subrepresentation of (Π7)U7 . But this implies that τ occurs in the restriction
of the minimal representation of Spin12 or else

−→
Θ7(τ)U3 = 0. By Proposition 3.3, no generic

supercuspidal representations of G2 occur in this restriction. It follows that
−→
Θ7(τ)U3 = 0.

(Other) Next, let Q3 = L3U3 denote the ‘other parabolic’, with L3 isogenous to GL2 × SL2. The
unipotent radical U3 has three-dimensional center Z3 and four-dimensional quotient U3/Z3.
Z3 can be identified with the space M◦ of two-by-two matrices with trace zero, and U3/Z3 can
be identified with the space M of all two-by-two matrices.

We find that
−→
Θ7(τ)U3 � τ is a subrepresentation of (Π7)U3 , as representations of L3 ×G2.

There exists a parabolic subgroup Q7 = L7U7 such that L7 is isogenous to GSpin10 × SL2,
U7 is a two-step unipotent group with 10-dimensional center Z7, Q7 ∩PGSp6 = Q3, and
L7 ∩PGSp6 = L3. Z7 can be identified with the space M◦ ⊕O◦ of pairs (m, ω), and U7/Z7

can be identified with the (32-dimensional) space M ⊗O. This arises from the construction of
§ 2.3.3. This parabolic arises in a similar computation in [SG99], and our Q7 corresponds to the
parabolic called P and associated to the vertex α4 in [SG99].

There are natural short exact sequences which we describe and analyze below:

0→ C∞c (Ω, S)→ (Π7)→ (Π7)Z7 → 0,
0→ C∞c (Ω′)→ (Π7)Z7 → (Π7)U7 → 0.

Here, Ω is the set of non-trivial characters ω of Z7 for which (Π7)Z7,ω 6= 0. On Ω, S is a
Q7-equivariant sheaf whose fibre over ω ∈ Ω is an irreducible representation of U7 with central
character corresponding to ω. One can compare this to [SG99, § 6].

Similarly, Ω′ is the set of non-trivial characters of U7 for which (Π7)U7,ω 6= 0. Identifying
characters of U7 with O⊗M , a minuscule representation of L7, Ω′ can be identified with the
quotient L7/P6, where P6 is a minuscule parabolic subgroup of L7.

Taking U3 coinvariants in each of the short exact sequences, we are led to consider C∞c (Ω, S)U3

and C∞c (Ω′)U3 . In the first case, we find that C∞c (Ω, S)U3 is a quotient of C∞c (Ω, S)Z3 . We
compute

C∞c (Ω, S)Z3
∼= C∞c (Ω⊥Z3 , S),

where Ω⊥Z3 can be identified:

Ω⊥Z3 = {(m, ω) ∈M◦ ⊕O◦ :N(ω)−N(m) = 0 and m= 0}
= {ω ∈O : ω2 = 0}.

It follows that

C∞c (Ω, S)Z3
∼= IndG2

Pω
Sω,

where Sω is the fibre of S over ω ∈O, which satisfies ω2 = 0, and Pω is the maximal parabolic
subgroup of G2 stabilizing ω. The representation Sω of Pω factors through the Levi quotient
Lω ∼= GL2 of Pω. It follows that C∞c (Ω, S)Z3 and hence C∞c (Ω, S)U3 does not support any
supercuspidal representations of G2.

Next we are led to consider C∞c (Ω′). Every point of Ω′ corresponds to an isotropic 5-plane
Λ in O◦ ⊕M◦ (the standard representation of GSpin10 ⊂ L7), since GSpin10 acts via the spin
representation on U7/Z7. The projection of Λ onto O◦ is at least two dimensional; hence,
Λ is stabilized by a maximal parabolic subgroup of Spin7 ⊂ Spin10. Hence, Λ is stabilized by
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a maximal parabolic subgroup of G2, or by a subgroup of type A2 in G2. It follows that C∞c (Ω′)
does not support any generic supercuspidal representations of G2 using Propositions 3.2 and 3.3.

By the snake lemma argument as before, we find that
−→
Θ7(τ)U3 � τ occurs as a

subrepresentation of (Π7)U7 . The representation (Π7)U7 of L7 has wave front set supported in
the minimal orbit. If

−→
Θ7(τ)U3 were non-trivial, then τ would occur in a theta correspondence

G2 × (Spin(3)× SL2)⊂GSpin10 × SL2. But no generic supercuspidal representations of G2 occur
in such a correspondence, by Proposition 3.3. Hence,

−→
Θ7(τ)U3 = 0.

(Siegel) Finally, let Q3 = L3U3 denote the ‘Siegel parabolic’, with L3
∼= GL3. We find that

−→
Θ7(τ)U3 � τ is a subrepresentation of (Π7)U3 , as representations of GL3 ×G2. Let Q7 denote a
maximal parabolic subgroup of E7 whose Levi component has derived subgroup E6, such that
Q7 ∩PGSp6 = Q3. These embeddings and parabolics arise from the construction of § 2.3.2.
By [MS97, Theorem 5.3], the kernel of (Π7)U3 � (Π7)U7 does not support any supercuspidal
representations of G2. It follows that

−→
Θ7(τ)U3 � τ is a subrepresentation of (Π7)U7 .

By [MS97, Theorem 5.3] again, there is a G2 ×GL3-module isomorphism

(Π7)U7
∼= (Π6 ⊗ |det|)⊕ (1⊗ |det|2).

Taking (G2, τ)-isotypic components, we find an isomorphism of GL3-modules:
−→
Θ7(τ)U3

∼=
−→
Θ6(τ)⊗ |det|.

For the rest of the proof, let Q3 = L3U3 denote the Siegel parabolic subgroup of PGSp6. The
previous computations and Frobenius reciprocity yield a morphism of PGSp6-modules:

−→
Θ7(τ)→ IndPGSp6

Q3

−→
Θ6(τ)⊗ |det|.

Moreover, the kernel of this morphism is a submodule of
−→
Θ7(τ) whose U3-coinvariants vanish.

But since all other (with respect to the Heisenberg parabolic and ‘other’ parabolic) Jacquet
modules of

−→
Θ7(τ) vanish, the kernel of this morphism is a supercuspidal PGSp6-submodule of

−→
Θ7(τ). Conversely, every supercuspidal PGSp6-submodule of

−→
Θ7(τ) is contained in the kernel

of the morphism, since supercuspidals do not occur as subrepresentations of parabolically induced
representations.

It follows that there is an injective morphism of PGSp6-modules:
−→
Θns

7 (τ) ↪→ IndPGSp6
Q3

−→
Θ6(τ)⊗ |det|.

The previous proposition implies that there exists a set of pairwise non-isomorphic supercuspidal
irreps {ρi}i∈I of PGL3, such that

−→
Θ6(τ)∼=

⊕
i∈I

ρi.

It follows that there is an injective morphism of PGSp6-modules:
−→
Θns

7 (τ) ↪→
⊕
i∈I

IndPGSp6
Q3

ρ⊗ |det|.

Although there may be an infinite number of summands on the right-hand side above, only
finitely many lie in any given Bernstein component for PGSp6. We find that

−→
Θns

7 (τ) is a (possibly
infinite and possibly empty) direct sum of finite-length representations of PGSp6. Moreover, if
−→
Θ6(τ) = 0, then

−→
Θns

7 (τ) vanishes, and so
−→
Θ7(τ) is supercuspidal. 2
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To synthesize the previous propositions, we find that for any generic supercuspidal irrep τ
of G2, there are a set {σj}j∈J of supercuspidal irreps of PGSp6, a set {ρi}i∈I of supercuspidal
irreps of PGL3, and a set of finite-length PGSp6 modules {πi}i∈I satisfying

−→
Θ6(τ)∼=

⊕
i∈I

ρi,

−→
Θ7(τ)∼=

⊕
j∈J

σj ⊕
⊕
i∈I

πi and πi ⊂ IndPGSp6
Q3

ρi for all i ∈ I.

The above decomposition refines the decomposition of
−→
Θ7(τ) into supercuspidal and non-

supercuspidal parts:
−→
Θ◦7(τ)∼=

⊕
j∈J

σj and
−→
Θns

7 (τ)∼=
⊕
i∈I

πi.

Proposition 3.7. Let τ be a generic supercuspidal irrep ofG2. Let {σj}j∈J , {ρi}i∈I , and {πi}i∈I
be the representations of PGSp6, PGL3, and PGSp6 in the above decomposition. Then

−→
Θ7(τ) is

non-trivial (so I t J 6= ∅). Moreover, exactly one of the following statements holds.

(i) There exists exactly one j ∈ J such that σj is generic. There does not exist i ∈ I such that
πi is generic.

(ii) There exists exactly one i ∈ I such that πi is generic. There does not exist j ∈ J such that
πj is generic.

Proof. For τ a generic supercuspidal irrep of G2, τ occurs with multiplicity one in the Gelfand–
Graev module:

dim(HomG2(τ, c-IndG2
N2
ψ2)) = 1.

But, using [GS04, Proposition 17] again,

WhPGSp6
(Π7) = (Π7)N3,ψ3

∼= c-IndG2
N2

(ψ2).

Thus, we find that

dim(HomG2(τ, (Π7)N3,ψ3)) = dim(HomG2(τ,Π7))N3,ψ3 = 1.

Thus, WhPGSp6
(
−→
Θ7(τ)) is one dimensional. In particular,

−→
Θ7(τ) is non-trivial.

Now, we apply the decomposition
−→
Θ7(τ)∼=

⊕
j∈J

σj ⊕
⊕
i∈I

πi and πi ⊂ IndPGSp6
Q3

ρi for all i ∈ I.

Taking Whittaker functionals, we find that

WhPGSp6
(
−→
Θ7(τ))∼=

⊕
j∈J

WhPGSp6
(σj)⊕

⊕
i∈I

WhPGSp6
(πi).

Since the left-hand side is one dimensional, precisely one summand on the right-hand side is
one dimensional and all other summands on the right-hand side vanish. The result follows
immediately. 2

When the residue characteristic p is odd, the representations IndPGSp6
Q3

(ρ⊗ |det|) are
irreducible and generic, whenever ρ is a supercuspidal irrep of PGL3. This significantly simplifies
the analysis of the theta correspondence, in the following way.
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Proposition 3.8. Suppose that p 6= 2. Let τ be a generic supercuspidal irrep of G2. Then, if−→
Θ6(τ) 6= 0,

−→
Θ6(τ) has a unique irreducible subrepresentation, up to contragredience:

−→
Θ6(τ) =

ρ⊕ ρ̃ for some supercuspidal irrep ρ of PGL3.

Proof. If ρ is an irreducible subrepresentation of
−→
Θ6(τ) (and hence ρ is generic and

supercuspidal), then ρ� τ occurs as a quotient (by the injectivity and projectivity of
supercuspidals) of the minimal representation Π6 of the adjoint group E6. But we have seen
that if Q3 = L3U3 is the Siegel parabolic subgroup of PGSp6, then there is a surjective map of
GL3-modules:

−→
Θ7(τ)U3 � (ρ⊗ |det|).

By Frobenius reciprocity, we find a non-trivial map of PGSp6-modules:
−→
Θ7(τ)→ IndPGSp6

Q3
(ρ⊗ |det|).

Let π denote this induced representation, π = IndPGSp6
Q3

(ρ⊗ |det|). Since p 6= 2, the representation
ρ is not self-contragredient, and so π is an irreducible generic representation of PGSp6.

Thus, π must be the unique generic summand of
−→
Θ7(τ) in the decomposition

−→
Θ7(τ)∼=

⊕
j∈J

σj ⊕
⊕
i∈I

πi.

By the geometric lemma and Frobenius reciprocity (using the fact that ρ is supercuspidal), the
only representations of GL3 which parabolically induce to give this representation π of PGSp6

are ρ and its contragredient ρ̃. Hence,
−→
Θ6(τ) contains a unique irreducible subrepresentation up

to contragredience, and this irrep and its contragredient are supercuspidal. This demonstrates
that

ρ⊂
−→
Θ6(τ)⊂ ρ⊕ ρ̃.

Lastly, note that the map
−→
Θ7(τ)→ π is surjective, from which it follows that the map

−→
Θ7(τ)U3 → πU3

is also surjective. But both ρ⊗ |det| and ρ̃⊗ |det| occur in πU3 . Since
−→
Θ7(τ)U3

∼=
−→
Θ6(τ)⊗ |det|,

we find that both ρ and ρ̃ occur in
−→
Θ6(τ). 2

Using the previous propositions, we find (regardless of residue characteristic) the following.

Theorem 3.9. Suppose that τ is a generic supercuspidal irrep of G2. Then either there exists

a unique generic supercuspidal irreducible subrepresentation σ of
−→
Θ7(τ) or else there exists a

unique, up to contragredience, generic supercuspidal irreducible subrepresentation ρ of
−→
Θ6(τ)

for which the generic summand of IndPGSp6
Q3

(ρ⊗ |det|) occurs in
−→
Θ7(τ).

In this way, the theta correspondences yield a map:

∆ : Irr◦g(G2)→ Irr◦g(PGSp6) t
Irr◦g(PGL3)

Contra
,

τ 7→ σ or {ρ, ρ̃}.

When p 6= 2, we find that the dichotomy map is given somewhat simply by

∆(τ) =

{
σ if

−→
Θ6(τ) = 0,

{ρ, ρ̃} if
−→
Θ6(τ) 6= 0.
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However, when p= 2, it is possible a priori that a self-contragredient supercuspidal irrep ρ
occurs as a summand of Θ6(τ), the non-generic summand π of IndPGSp6

Q3
ρ⊗ |det| occurs as

a summand of
−→
Θ7(τ), and still a generic supercuspidal representation of PGSp6 occurs as a

summand of
−→
Θ7(τ). We cannot yet exclude such a strange possibility.

4. Shalika functionals

4.1 The Shalika subgroup

It is convenient hereafter to view GSp6 in the traditional way, as a group of symplectic
similitudes. We let M2 denote the abelian unipotent algebraic group of two-by-two matrices
(under addition); if g is a matrix, we write gT for its transpose.

Let I =
(

1 0
0 1

)
, J =

(
0 −1
1 0

)
, and

J3 =

0 0 J

0 J 0

J 0 0

.
Let GSp6 be the algebraic group of symplectic similitudes:

GSp6 = {g ∈GL6 : gJ3g
T = sim(g) · J3 for some sim(g) ∈GL1}.

The resulting character sim : GSp6→GL1 is called the similitude character.

Let Q3 = L3U3 be the maximal parabolic subgroup of GSp6, with Levi component

L3 =


g 0 0

0 h 0

0 0 det(g−1h) · g

 : g, h ∈GL2


and unipotent radical

U3 =


I X Z

0 I Y

0 0 I

 :X, Y, Z ∈M2, XJ + JY T = 0, ZJ + JZT =−XJXT

.
The center of U3 is three dimensional,

Z3 =


I 0 Z

0 I 0

0 0 I

 : ZJ + JZT = 0

.
There is an isomorphism of unipotent groups U3/Z3→M2, given byI X Z

0 I Y

0 0 I

 7→X.

762

https://doi.org/10.1112/S0010437X10005178 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005178


Dichotomy for generic supercuspidal representations of G2

There is also an isomorphism of reductive groups L3→GL2 ×GL2, given byg 0 0

0 h 0

0 0 det(g−1h) · g

 7→ (g, h).

With these identifications, the conjugation action of L3 on U3/Z3 is given by

(g, h) ·X = gXh−1.

Let ∆ : GL2→GL2 ×GL2
∼= L3 denote the diagonal embedding (there should be no risk of

confusing this ∆ with the dichotomy map in other sections). If g ∈GL2, then ∆(g) is identified
with an element of L3 ⊂GSp6:

∆(g) =

g 0 0

0 g 0

0 0 g

.
Then we write S for the ‘Shalika subgroup’:

S = ∆(GL2) n U3 ⊂Q3.

Observe also that the Shalika subgroup has another interpretation: if A is any k-algebra,
consider the degenerate cubic A-algebra A[ε]/〈ε3〉. Then there is a natural inclusion (of
codimension one):

S(A)⊂GL2(A[ε]/〈ε3〉).

Define a character ψ3 of U3 by ψ3(u) = ψk(−Tr(X)) (for a matrix u ∈ U3 projecting to
X ∈M2

∼= U3/Z3). ∆(GL2) is precisely the centralizer of the character ψ3 in L; hence, the
character ψ3 can be extended uniquely to a character ψS of S such that ψS(∆(g)) = 1 for all
g ∈GL2.

When σ is a smooth representation of GSp6, we define the space of Shalika functionals by

Sh(σ) = HomS(σ, ψS).

Note that, if σ has a non-zero Shalika functional, then the central character of σ is trivial.
The main goal of this section is to demonstrate that for supercuspidal irreps σ of PGSp6,
dim(Sh(σ))6 1; the ‘uniqueness’ of Shalika functionals.

Our methods are similar to many other papers; we mention the work of Jacquet and
Rallis [JR96], who proved uniqueness of Shalika models for GL2n. The k-points of their ‘Shalika
subgroup’ can be identified with GLn(k[ε]/〈ε2〉). While their Shalika functionals are related to a
degenerate quadratic algebra, ours are related to a degenerate cubic algebra.

4.2 Double cosets
If g ∈GSp6, then its transpose gT is also an element of GSp6, and the transpose is an involution
(anti-automorphism of order two) of GSp6. If H⊂G is an algebraic subgroup, we write HT for
its transpose.

We will require an explicit description of the double cosets QT
3 \GSp6/Q3 as well as

ST\GSp6/S. As Q3 is a maximal parabolic subgroup of GSp6, the first is a routine computation;
it suffices to find representatives for double cosets in the Weyl group of type C3, modulo the
parabolic subgroup of type A1 × A1. For this, we define elements of GSp6 corresponding to simple
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root reflections a, b, c (though we refrain from identifying a maximal torus, Borel subgroup, etc):

a=

J 0 0

0 I 0

0 0 J

, c=

I 0 0

0 J 0

0 0 I

, b=



1 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0

0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 1


.

Proposition 4.1. The algebraic variety GSp6 can be decomposed as a finite disjoint union

GSp6 =
⊔
σ∈Σ

QT
3 σQ3,

where

Σ = {1, b, bcb, bacb, bcabacb}.

Proof. The non-trivial shortest representatives for double cosets in the Weyl group are given by
words in a, b, c, which begin and end with b. These can be found by direct computation, using
the relations in the Coxeter group. 2

Define an embedding η of GL2 into L3 by

η(g) =

I 0 0

0 g 0

0 0 det(g) · I

.
Then it can be easily verified that

L3 = ∆(GL2)η(GL2) = η(GL2)∆(GL2).

The previous proposition now implies the following corollary.

Corollary 4.2. The algebraic variety GSp6 can be decomposed as a disjoint union

GSp6 =
⊔
σ∈Σ

STη(GL2)ση(GL2)S.

Let R = QT
3 σQ3 be a double coset in GSp6. Then we find that

RT = QT
3 (σT)Q3 = R.

If s ∈ S, then we define a character ψT
S of ST by

ψT
S (s) = ψS(sT).

4.3 Distributions

If X is a subset of GSp6 and X = STXS, then there is a natural action `× ρ of ST × S on
C∞c (X), given by

[`(s)ρ(t)f ](x) = [ρ(t)`(s)f ](x) = f(s−1xt),
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for all s ∈ ST, t ∈ S, x ∈X, f ∈ C∞c (X). If T is a distribution on X, i.e., T is a linear functional
on C∞c (X), then we say that T is (S, ψ, T)-invariant if, for all s ∈ ST, t ∈ S, f ∈ C∞c (X),

T ((`(s)ρ(t)f) = ψT
S (s)ψS(t−1)T (f).

We frequently apply the following restrictions on the support of such distributions.

(R1) If s ∈ S, g ∈G, gsg−1 ∈ ST, and ψS(s) 6= ψT
S (gsg−1), then the coset STgS does not support

any (S, ψ, T)-invariant distributions.

(R2) If s ∈ S, g ∈G, g−1sTg ∈ S, and ψT
S (sT) 6= ψS(g−1sTg), then the coset STgS does not

support any (S, ψ, T)-invariant distributions.

These restrictions follow directly from Bernstein’s localization principle; this method is used
often in the study of Shalika and Whittaker models, and we point to the recent work of Jiang
et al. [JNQ08] for an example similar in spirit.

We will also apply the following criterion to prove transpose-invariance of distributions.

(TI) If g ∈G, and there exist s1, s2 ∈ S ∩ ST = ∆(GL2) such that s1gs2 = gT, then any (S, ψ, T)-
invariant distribution on STgS is also transpose-invariant.

Following the methods of Gelfand–Kazhdan [GK75], we prove the following.

Theorem 4.3. Let R=QT
3 σQ3 be a double coset in GSp6. Suppose that T is a (S, ψ, T)-

invariant distribution on R. Then T is transpose-invariant.

Proof. We prove this theorem, by analyzing the five cosets QT
3 σQ3 individually. We whittle down

the support of such a distribution T using the restrictions (R1) and (R2), and prove transpose-
invariance using criterion (TI).

Case σ = 1. For σ = 1, we are led to consider distributions T on R=QT
3 ·Q3 = UT

3 · L3 · U3.
Since L3 normalizes both U3 and UT

3 , the (S, ψ, T)-invariant distributions T on R are in natural
correspondence with distributions on L3 which are ∆(GL2) bi-invariant.

Thus, we are led to consider the orbits for the action α of ∆(GL2)×∆(GL2)∼= GL2 ×GL2

on L3
∼= GL2 ×GL2, given by

α(g, h)(x, y) = (gxh, gyh).

Clearly, every element (x, y) ∈ L3
∼= GL2 ×GL2 is in the same orbit as (1, x−1y). Furthermore, we

find that for all g ∈GL2, (1, x−1y) is in the same orbit as (1, gx−1yg−1). Finishing this analysis,
we find that the orbits of GL2 ×GL2 on L3 are in natural bijection with the orbits of GL2 on
GL2 by conjugation. Furthermore, this bijection is compatible with the transpose (on L3 and
on GL2).

It follows that the (GL2 ×GL2)-invariant distributions on L3 are in bijection with the
GL2-invariant distributions on GL2 (for the conjugation action). Since every element of GL2

is conjugate to its transpose, we find that conjugation-invariant distributions on GL2 are also
transpose-invariant. It follows that (GL2 ×GL2)-invariant distributions on L3 are also transpose-
invariant, finishing this case.

Case σ = b. For σ = b, we first whittle down the support of (S, ψ, T)-invariant distributions T
on R=QT

3 σQ3. Consider a general (ST, S) coset representative in R: g = η(u)ση(v). We require
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explicit forms for the entries of u and v:

u=
(
u1 u2

u3 u4

)
, v =

(
v1 v2

v3 v4

)
.

We must consider two cases.

Case u3 = 0. If u3 = 0, then choose λ1, λ2 so that

ψk(λ1v1 + λ2v2) 6= 1,

using the fact that v is non-singular. Define

x=
(
x1 x2

x3 x4

)
=
(
λ1v1 λ1v2

λ2v1 λ2v2

)
and s=

I x 0

0 I JxTJ−1

0 0 I

.
We compute

gsg−1 =



1 λ1 0 0 0 0
0 1 0 0 0 0
0 u1λ2 1 0 0 0
0 0 0 1 0 0
0 0 0 −u1λ2 1 λ1

0 0 0 0 0 1

.
We find that

ψS(s) = ψk(x1 + x4) = ψk(λ1v1 + λ2v2) 6= 1, ψT
S (gxg−1) = ψk(0) = 1.

By criterion (R1), R= STgS does not support any (S, ψ, T)-invariant distributions.

Case u3 6= 0. Suppose that u3 6= 0. If v1 6= 0, then define

x=
(
x1 x2

x3 x4

)
=
(
λ1v1 λ1v2

λ2v1 λ2v2

)
,

where λ1 and λ2 are chosen in such a way that λ2 6= 0 and

x1 + x4 = λ1v1 + λ2v2 = 0.

Then, since v is non-singular, we find that

x4v3 − x3v4 = λ2v2v3 − λ2v1v4 =−λ2 det(v) 6= 0.

Simplifying,

gsg−1 =



1 λ1 0 0 0 0
0 1 0 0 0 0
0 λ2u1 1 0 0 0
0 −λ2u3 0 1 0 0
0 0 λ2u3 −λ2u1 1 λ1

0 0 0 0 0 1

.
By scaling the vector (λ1, λ2) if necessary, we find that

ψS(s) = ψk(x1 + x4) = ψk(0) = 1, ψT
S (gsg−1) = ψk(−λ2u3) 6= 1.

By criterion (R1), R= STgS does not support any (S, ψ, T)-invariant distributions.
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If v1 = 0 and v2 6=−u3, then we may choose λ2 such that ψ(−λ2u3) 6= ψ(λ2v2). From this,
it follows that ψT

S (gsg−1) 6= ψS(s). It follows that R= STgS does not support any (S, ψ, T)-
invariant distributions.

We find that all (S, ψ, T)-invariant distributions T must be supported on cosets STgS for
which g = η(u)ση(v) with v1 = 0, u3 6= 0, and v2 =−u3. Applying (R2) instead of (R1), we can
whittle down the support further (in a symmetric way), and we find that all (S, ψ, T)-invariant
distributions T must be supported on

X = {STη(u)ση(v)S : u1 = v1 = 0, v2 =−u3}.

Now, if g = η(u)ση(v), u1 = v1 = 0, and v2 =−u3, consider the elements z, y ∈ S given by

z =



1 0 0 0 0 0
0 1 0 0 u4v3 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, y =



1 0 0 0 0 0
0 1 0 0 v4u2 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

Then we find that

yTgz =



1 0 0 0 0 0
0 0 0 v2 0 0
0 0 0 0 −u2v2v3 0
0 v2 0 0 0 0
0 0 −u2v2v3 0 0 0
0 0 0 0 0 det(uv)


.

Observing that yTgz is equal to its transpose, and ψS(y) = ψS(z) = 1, we find that (S, ψ, T)-
invariant distributions on X are also transpose-invariant.

Case σ = bcb. For σ = bcb, consider a general coset representative g = η(u)ση(v). With u, v as
before, define w = uv, so that

w =
(
w1 w2

w3 w4

)
=
(
u1v1 + u2v3 u1v2 + u2v4

u3v1 + u4v3 u3v2 + u4v4

)
.

If (w3, w4) 6= (−det(v), 0), then there exist x3, x4 such that

ψk

(
w4x3 − w3x4

det(v)

)
6= 1 and ψk(x4) = 1.

In this case, we set x1 = x2 = 0 and x3, x4 satisfying the above conditions. Define as in the
previous case

x=
(
x1 x2

x3 x4

)
and s=

I x 0

0 I JxTJ−1

0 0 I

.
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Then we compute

gsg−1 =



1 0 0 0 0 0
0 1 0 0 0 0

0
w2x3 − w1x4

det(v)
1 0 0 0

0
w4x3 − w3x4

det(v)
0 1 0 0

0 0 −w4x3 − w3x4

det(v)
w2x3 − w1x4

det(v)
1 0

0 0 0 0 0 1


.

We find that

ψS(s) = ψk(x4) = 1, ψT
S (gsg−1) = ψk

(
w4x3 − w3x4

det(v)

)
6= 1.

By (R1), it follows that if T is a (S, ψ, T )-invariant distribution on R, then T is supported on
(ST, S)-cosets of the form STη(u)ση(v)S for u, v ∈GL2 satisfying

uv =
(

∗ det(u)
−det(v) 0

)
. (1)

For such u, v, we compute

g =



1 0 0 0 0 0
0 0 0 0 −det(v) 0
0 0 ∗ det(u) 0 0
0 0 −det(v) 0 0 0
0 det(u) 0 0 0 0
0 0 0 0 0 det(uv)


.

A direct computation yields

∆
(

det(v) 0
0 −det(u)

)
g∆
(

det(v) 0
0 −det(u)

)−1

= gT.

By criterion (TI), we find that all (S, ψ, T )-invariant distributions on these cosets are also
transpose-invariant.

Case σ = bacb. For σ = bacb, consider a general coset representative g = η(u)ση(v) with u, v as
before.

First, if u1 = 0, then we may choose x1, x2, x3, x4 such that

ψk(x1 + x4) 6= 1 and v2x1 − v1x2 = 0.

For this choice, there exists λ such that x1 = λv1 and x2 = λv2. Define

x=
(
x1 x2

0 x4

)
, s=

I x 0

0 I JxTJ−1

0 0 I

.
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Then we compute

gsg−1 =



1
−v1x4

det(v)
0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
u3λ 0 0 1 0 0
x4v3

det(u−1v)
0 0 0 1

−v1x4

det(v)

0 − x4v3

det(u−1v)
u3λ 0 0 1


.

We find that gsg−1 ∈ ST,

ψS(s) = ψk(x1 + x4) 6= 1, ψT
S (gsg−1) = ψk(0) = 1.

By (R1), the double coset STη(u)ση(v)S does not support any (S, ψ, T)-invariant distributions.
Next suppose that u1 6= 0. Choose λ such that ψk(u1λ) 6= 1. Define

x=
(
λv1 λv2

0 −λv1

)
and s=

I x 0

0 I JxTJ−1

0 0 I

.
We compute

gsg−1 =



1
λv2

1

det(v)
0 0 0 0

0 1 0 0 0 0
u1λ 0 1 0 0 0
u3λ 0 0 1 0 0

−λv1v3

det(u−1v)
0 0 0 1

λv2
1

det(v)

0
λv1v3

det(u−1v)
u3λ −u1λ 0 1


.

We find that gsg−1 ∈ ST,

ψS(s) = ψk(x1 + x4) = ψk(0) = 1,

ψT
S (gsg−1) = ψk(u1λ) 6= 1.

By (R1), the double coset STη(u)ση(v)S does not support any (S, ψ, T)-invariant distributions.

Case σ = bcabacb. Suppose that g = η(u)ση′(v) for u, v ∈GL2, where η′(v) = ∆(v)η(v)−1; we find
it convenient to use slightly different coset representatives here, using η′ instead of η. There are
two cases to consider.

First, suppose that u det(v)−1 =−v ∈GL2. Then we find that

g =

 0 0 −u
0 u 0

−u 0 0

.
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Note that there exists γ ∈GL2 such that γuγ−1 = uT. It follows that

∆(γ)g∆(γ)−1 = gT.

By (TI), any (S, ψ, T)-invariant distribution on STgS will be transpose-invariant.
Next, suppose that u det(v)−1 6=−v. Then we may choose X ∈M2 such that

ψk(−Tr(X)) 6= ψk(Tr(det(v)−1uXv−1)).

Define an element s ∈ S by

s=

I X 0

0 I JXTX

0 0 I

.
Then we find that

gsg−1 =

 I 0 0

det(v)−1uJXTJv−1 I 0

0 det(u)vXu−1 I

.
We find that gsg−1 ∈ ST and

ψS(s) = ψk(−Tr(X)),
ψS(gsg−1) = ψk(Tr(det(v)−1uXv−1)).

By (R1), the coset STgS does not support any (S, ψ, T)-invariant distributions. 2

With this technical work done, we can state the following theorem.

Theorem 4.4. Suppose that σ is a supercuspidal irrep of GSp6. Then the space of Shalika
functionals for σ is at most one dimensional:

dim(Sh(σ))6 1.

Proof. Our previous results on distributions, with the methods of Gelfand, Kazhdan, and
Bernstein, imply that the pair (GSp6, S) is a Gelfand pair, in the sense of [Gro91, Condition 4.1]
(though we work with the character ψS of S rather than the trivial representation of S). To
be precise, for an irrep σ of GSp6, with contragredient σ̃, we find (cf. [Gro91, Proposition 4.2])
that

dim(Sh(σ)) · dim(Sh(σ̃))6 1.

So, it remains to check that σ has a non-vanishing Shalika functional if and only if σ̃ has a
non-vanishing Shalika functional.

Since S is a unimodular subgroup of GSp6, there is a non-degenerate GSp6-invariant
pairing:

c-IndGSp6
S ψS × c-IndGSp6

S ψ̃S → C,
given by integration of functions on S\G:

〈f1, f2〉=
∫
S\G

f1(g)f2(g) dg.

Now, if σ is a supercuspidal irrep of GSp6 with non-vanishing Shalika functional, then σ

occurs as a subrepresentation of c-IndGSp6
S ψS . The non-degeneracy of the pairing above
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(and the injectivity of supercuspidals) implies that σ̃ occurs as a subrepresentation of
c-IndGSp6

S ψ̃S . It follows that σ̃ has a non-vanishing Shalika functional, with respect to the
character ψ̃S . But since ψ̃S and ψS are conjugate (via an element of GSp6) characters of S, we find
that Sh(σ̃) 6= 0. 2

4.4 Theta correspondence
The importance of Shalika functionals in the theta correspondence is the following.

Lemma 4.5. Suppose that σ is a generic supercuspidal irrep of PGSp6. Then there is a linear
isomorphism

WhG2(
←−
Θ7(σ)) =

←−
Θ7(σ)N2,ψ2

∼= Sh(σ).

Proof. Here, let N2 be the unipotent radical of a Borel subgroup of G2 and ψ2 a principal
character of N2. Let Q2 = L2U2 be a maximal parabolic subgroup of G2 such that U2 is
contained in N2 and N2/U2 corresponds to a short simple root.

Then WhG2(Π7) = (Π7)N2,ψ2 can be computed in two stages:

(Π7)N2,ψ2 = ((Π7)U2,ψ2)N2,ψ2 .

Lemma 2.9 on p. 213 in [GS98] shows how to compute the coinvariants of Π7 with respect to any
character of U2. The characters of U2 are parameterized by cubic k-algebras, and the restriction
of ψ2 to U2 corresponds to the degenerate cubic algebra k[ε]/〈ε3〉.

Let S◦ ⊆ S be the semidirect product of GL2 with U◦3 ⊆ U3, where U◦3 contains the center Z3

and U◦3 /Z3 corresponds to trace zero matrices in U3/Z3
∼=M2(k). Then

(Π7)U2,ψ2
∼= c-IndGSp6

S◦ (C).

Under this identification, one observes that the action of N2 on (Π7)U2,ψ2 (which restricts to the
character ψ2 on U2) is identified with the action of S/S◦ by left translation on c-IndGSp6

S◦ (C).
This implies that

WhG2(Π7) = (Π7)N2,ψ2
∼= c-IndGSp6

S (ψS),

as representations of GSp6.
Applying HomGSp6

(σ, ·) to both sides above, we find that

WhG2(
←−
Θ7(σ)) =

←−
Θ7(σ)N2,ψ2

∼= Sh(σ). 2

Since
←−
Θ7(σ) is multiplicity-free and supercuspidal, and every subrepresentation is generic,

we immediately find the following proposition.

Proposition 4.6. Suppose that σ is a generic supercuspidal irrep of PGSp6. Then
←−
Θ7(σ) is

non-zero if and only if Sh(σ) 6= 0. Moreover, if
←−
Θ7(σ) 6= 0, then

←−
Θ7(σ) is a generic supercuspidal

irrep of G2.

Proof. This proposition directly follows from the previous lemma, and the ‘uniqueness of Shalika
functionals’ of Theorem 4.4. 2

4.5 Injectivity of dichotomy
We can now demonstrate the following.
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Theorem 4.7. The dichotomy map is injective:

∆ : Irr◦g(G2) ↪→ Irr◦g(PGSp6) t
Irr◦g(PGL3)

Contra
.

Proof. If two generic supercuspidal irreps τ, τ ′ of G2 have the property that
−→
Θ6(τ) and

−→
Θ6(τ ′) have a common supercuspidal subrepresentation, then τ is isomorphic to τ ′ by [GS04,
Theorem 19].

If two generic supercuspidal irreps τ, τ ′ of G2 have the property that
−→
Θ7(τ) and

−→
Θ7(τ ′) have a

common generic supercuspidal subrepresentation σ, then τ is isomorphic to τ ′ by Proposition 4.6,
since both τ and τ ′ must be subrepresentations of the irrep

←−
Θ7(σ). 2

5. L-functions and periods

Now that we have proven that the dichotomy map is injective, it remains to characterize its
image. In fact, all supercuspidal irreps of PGL3 occur in the theta correspondence with a generic
supercuspidal irrep of G2, by Gan and Savin [GS04, Theorem 19].

Proposition 5.1. Suppose that ρ is a supercuspidal irrep of PGL3. Then there exists a unique

generic supercuspidal irrep τ of G2 occurring in
←−
Θ6(ρ).

This immediately implies the following.

Corollary 5.2. The image of dichotomy in Irr◦g(PGL3) includes all non-self-contragredient
supercuspidal irreps. In particular, ∆ surjects onto Irr◦g(PGL3) when p 6= 2.

On the other hand, the image of dichotomy in Irr◦g(PGSp6) is so far only characterized as

∆(Irr◦g(G2)) ∩ Irr◦g(PGSp6) = {σ ∈ Irr◦g(PGSp6) : Sh(σ) 6= 0}.

In this section, we demonstrate that the image of dichotomy can be described not only by the
Shalika functional, but also by the degree-eight spin L-function. The goal of this section is to
prove the following.

Theorem 5.3. Suppose that σ is a generic supercuspidal irrep of PGSp6. Let L(σ, Spin, s)
denote Shahidi’s L-function, associated to the eight-dimensional spin representation of Spin7(C).
Then Sh(σ) 6= 0 if and only if L(σ, Spin, s) has a pole at s= 0.

One direction in this theorem, that a non-vanishing Shalika functional implies that
L(σ, Spin, s) has a pole at s= 0, follows from Shahidi’s work, examination of a reducibility
point, and properties of the minimal representation of E8. The other direction relies on an
integral representation for the spin L-function due to Bump–Ginzburg [BG92] and studied by
Vo [Vo97]. We prove that these two incarnations of the spin L-function have the same poles,
using global methods.

5.1 A reducibility point
Let P4 = M4N4 be the Heisenberg parabolic subgroup of F4, with Levi component M4

∼= GSp6,
and sim the similitude character of GSp6. The modular character, for the adjoint action of M4

on N4, can then be expressed as

δP4(m) = |sim(m)|8.
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For σ a generic supercuspidal irrep of PGSp6, consider the family of representations of F4:

I(σ, s) = IndF4
P4

(σ ⊗ |sim|s+4),

where sim is the similitude character of GSp6. The normalization factor |sim|4 is chosen so that
I(σ, 0) is unitary when σ is unitary.

Let L(σ, Spin, s) be Shahidi’s L-function, where Spin is the eight-dimensional representation
of the dual Levi M̂4

∼= GSpin7(C) on the abelian quotient of the unipotent radical of the
parabolic P̂4 dual to P4. The following result is essentially due to Shahidi [Sha90].

Lemma 5.4. The L-function L(σ, Spin, s) has a pole at s= 0 if and only if I(σ,−1) is reducible,
in which case it has a composition series of length two. In this case, the unique irreducible
submodule J(σ) of I(σ,−1) is not generic.

Proof. To compute this reducibility point, we compute some constants discussed in [Sha90]. Let
α1, . . . , α4 denote the simple roots in a root system of type F4, numbered as below.

P4 = GSp6 nN4

Let β denote the highest root, so that

β = 2α1 + 3α2 + 4α3 + 2α4.

Observe that the maximal parabolic subgroup P4 is associated to the root α1, which is adjacent
to −β in the extended (affine) Dynkin diagram.

Let ρP denote the half-sum of the roots occurring in N4. Then ρP = 4β. It follows that

α̃1 = 〈α∨1 , ρP 〉−1 · ρP = 〈α∨1 , β〉−1β = β.

Since β corresponds precisely to the similitude character of M4 = GSp6, it follows that I(σ, s)
is normalized as in Shahidi [Sha90]. The result now follows directly from [Sha90]; a helpful
exposition of the results from Shahidi can be found in [Zha99, § 2]. 2

To demonstrate a connection between non-vanishing of a theta correspondence and
L-functions, we use a method of Muić–Savin [MS00] and consider a theta correspondence in a
larger group. The following lemma plays a similar role in this section to [MS00, Proposition 4.1].

Lemma 5.5. Let Π8 denote the minimal representation of E8. Let φ4 be a generic character of
a maximal unipotent subgroup U4 of F4. Then

WhF4(Π8) = (Π8)U4,φ4 = 0.

Proof. We study the Whittaker functionals WhF4(Π8) = (Π8)U4,φ4 in stages:

(Π8)U4,φ4 = (((Π8)N4,ψ4)N3,ψ3)U2,ψ2 ,

where N4 is a 15-dimensional Heisenberg group in F4, N3 is a six-dimensional abelian unipotent
subgroup of GSp6, and U2 is a maximal unipotent subgroup of SL3.

Stage 1. The N4, ψ4 coinvariants. We view F4 here as the algebraic group associated to the
14-dimensional structurable algebra of Freudenthal type

Fk ∼= k ⊕ Jk ⊕ Jk ⊕ k.
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Similarly, we view E8 as the algebraic group associated to the 56-dimensional structurable algebra
of Freudenthal type

FO ∼= k ⊕ JO ⊕ JO ⊕ k.
The construction of these algebras and groups follows § 2.3.4. As a result, F4 is endowed with a
parabolic subgroup P4 = M4N4, and E8 contains a parabolic subgroup P8 = M8N8, such that:

(i) N4 and N8 are two-step unipotent groups with one-dimensional centers Z4 and Z8;
(ii) N4/Z4 is naturally identified with Fk, and N8/Z8 is naturally identified with FO;
(iii) the parabolics are aligned, in the sense that P8 ∩ F4 = P4, N8 ∩ F4 = N4, and Z8 = Z4.

Let ψ4 denote the restriction of φ4 to N4. Then ψ4 is in the minimal GSp6-orbit in the
space of characters of N4. By conjugation, we may assume that ψ4 corresponds to the element(

1 0
0 0

)
∈ Fk ∼= k ⊕ Jk ⊕ Jk ⊕ k (identified with N−4 /Z

−
4 ).

The space (Π8)N4,ψ4 is a quotient of the kernel

Ker((Π8)Z8 → (Π8)N8).

From [GS05, Corollary 11.12], this kernel can be identified with C∞c (Ω), where Ω is the minimal
non-zero M8-orbit in the 56-dimensional minuscule representation N−8 /Z

−
8 .

Then the characters of N8 which restrict to ψ4 on N4, and also are in the N8/Z8-support of
Π8, correspond to elements (

1 j
j] 0

)
∈ FO ∼= k ⊕ JO ⊕ JO ⊕ k,

where j ∈ JO, the entries of j and j] are in O◦, j] is the quadratic adjoint of j, and N(j) = 0. Here,
we refer to [GS05, Proposition 11.2, § 10] for a description of the orbit Ω and Jordan algebras.

Thus, the representation (Π8)N4,ψ4 is identified with C∞c (Ω⊥), where

Ω⊥ =


 0 α −β
−α 0 γ
β −γ 0

 :
α2 = β2 = γ2 = 0,

Tr(αβ) = Tr(βγ) = Tr(γα) = 0,
Tr(αβγ) = 0

.
Equivalently, we may view

Ω⊥ = {(α, β, γ) ∈O3
◦ : Spank(α, β, γ) is isotropic, Tr(αβγ) = 0}.

Stage 2. The N3, ψ3 coinvariants. Now we are led to consider

((Π8)N4,ψ4)N3,ψ3
∼= C∞c (Ω⊥)N3,ψ3 .

First, we describe the subgroup N3 of GSp6, and the character ψ3. Here, Q3 = M3N3 denotes
the ‘Siegel parabolic’ in GSp6, whose derived subgroup is M′

3
∼= SL3 n N3. This derived subgroup

M′
3 stabilizes the character ψ4 of N4. The unipotent radical N3 of Q3 is abelian, and its k-points

N3 are identified naturally with the space Jk of symmetric three-by-three matrices with entries
in k. Then N3 acts on Ω⊥ in the following way:

κ ? j = j + (j] × κ) for all κ ∈N3 = Jk, j ∈ Ω⊥ ⊂ JO.

In particular, we can compute1 0 0
0 0 0
0 0 0

 ?

 0 α −β
−α 0 γ
β −γ 0

=

 0 α −β
−α 0 γ − αβ
β γ + αβ 0


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or, in shorthand, 1 0 0
0 0 0
0 0 0

 ? (α, β, γ) = (α, β, γ − αβ).

Let ψ3 be the character of N3 given by

ψ3

a r s
r b t
s t c

= ψk(a).

We now decompose Ω⊥ into two subsets:

Ω⊥1 = {(α, β, γ) ∈ Ω⊥ : αβ = 0},
Ω⊥2 = {(α, β, γ) ∈ Ω⊥ : αβ 6= 0}.

We find almost immediately that C∞c (Ω⊥1 )N3,ψ3 = 0: indeed, if j ∈ Ω⊥1 , t ∈ k and ψk(t) 6= 0,
then

ψ3

t 0 0
0 0 0
0 0 0

 6= 1 and

t 0 0
0 0 0
0 0 0

 ? j = j.

In other words, Ω⊥1 does not support any (N3, ψ3)-invariant distributions. It follows that

((Π8)N4,ψ4)N3,ψ3 = C∞c (Ω⊥)N3,ψ3 = C∞c (Ω⊥2 )N3,ψ3 .

Note that if j = (α, β, γ) ∈ Ω⊥2 , then αβ is non-zero and orthogonal to α, β, γ, and itself (with
respect to the trace pairing on O◦. But the maximal dimension of an isotropic subspace in O◦ is
three, so there must exist a, b, c ∈ k, not all zero, such that

αβ = aα+ bβ + cγ.

Multiplying through by α or by β, we find that

bαβ =−cαγ,
aαβ =−cγβ.

Hence, Spank(αβ, βγ, γα) is one dimensional. Note also that c 6= 0 in the above relations, since
otherwise αβ = 0.

Stage 3. The U2, ψ2 coinvariants. Now we are led to consider the coinvariants

WhF4(Π8) = (Π8)U4,φ4 = (((Π8)N4,ψ4)N3,ψ3)U2,ψ2 = (C∞c (Ω⊥2 )N3,ψ3)U2,ψ2 .

We describe the subgroup U2 and character ψ2 here. There is a chain of embeddings:

U2 ⊂ SL3 ⊂Q′3 = SL3 n Jk ⊂Q3 ⊂GSp6 ⊂Q4 = GSp6 n Fk ⊂ F4.

The resulting action of SL3 on Fk ∼= k ⊕ Jk ⊕ Jk ⊕ k is given by the formulas of
Krutelevich [Kru07, § 3.1].

γ ·
(
a A
B b

)
=
(

a γAγT

(γ−1)TBγ−1 b

)
for all γ ∈ SL3.
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In particular, let U2 denote the standard maximal unipotent subgroup of this SL3; the action of
U2 on Ω⊥ is given by1 x z

0 1 y
0 0 1

 · (α, β, γ) = (α+ (xy − z)γ + yβ, β − xγ, γ).

We define ψ2 to be the principal character of U2 given by

ψ2

1 x z
0 1 y
0 0 1

= ψk(x− y).

Together with the action of N3, we find an action of SL3 nN3 on Ω⊥: for all γ ∈ SL3 and all
κ ∈N3,

γ · (κ ? j) = (γκγT) ? (γ · j).
The subgroup U2 of SL3 stabilizes the character ψ3 of N3:

ψ3(uκuT) = ψ3(κ) for all u ∈ U2, κ ∈N3.

Now, for j = (α, β, γ) ∈ Ω⊥2 , so that αβ 6= 0, we find three possibilities.

Case αγ 6= 0. If αγ 6= 0, then there exists x ∈ k such that αβ − xαγ = 0. We find that j = (α, β, γ)
is in the same U2-orbit as j′ = (α, β − xγ, γ), and (α)(β − xγ) = 0. Thus, j′ ∈ Ω⊥1 , and cannot
be contained in the support of an (N3, ψ3)-invariant distribution by the result of Stage 2.

Case βγ 6= 0. If βγ 6= 0, then there exists z ∈ k such that αβ − zγβ = 0. We find that j = (α, β, γ)
is in the same U2-orbit as j′ = (α− zγ, β, γ), and (α− zγ)(β) = 0. Such elements j′ ∈ Ω⊥1 cannot
be in the support of an (N3, ψ3)-invariant distribution, again by the result of Stage 2.

Case αγ = βγ = 0. If αγ = βγ = 0, then we find that a= b= 0 in the linear dependence

αβ = aα+ bβ + cγ.

Thus, αβ = cγ. Define an element j′ in the N3-orbit of j by

j′ =

c−1 0 0
0 0 0
0 0 0

 ? j = (α, β, 0).

Then j′ cannot be in the support of a (U2, ψ2)-invariant distribution since, for any x ∈ k such
that ψk(x) 6= 1, we have

ψ2

1 x 0
0 1 0
0 0 1

 6= 1 and

1 x 0
0 1 0
0 0 1

 · j′ = j′.

It follows that (C∞c (Ω⊥2 )N3,ψ3)U2,ψ2 = 0, and so

WhF4(Π8) = 0. 2

Now we can demonstrate a connection between a non-vanishing Shalika functional and a pole
in Shahidi’s L-function.
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Theorem 5.6. Suppose that σ is a generic supercuspidal irrep of PGSp6, with non-zero Shalika

functional. Let τ =
←−
Θ7(σ), a generic supercuspidal irrep by Proposition 4.6. Then the following

statements are true.

(i) The L-function L(σ, Spin, s) has a pole at s= 0.

(ii) If J(σ) is the unique irreducible subrepresentation of I(σ,−1), then J(σ)� τ occurs as a
quotient of the minimal representation Π8 of E8, restricted to the dual pair F4 ×G2.

Proof. We use the Heisenberg parabolic subgroups P4, P8 of F4, E8, discussed in the previous
result.

Recall that σ � τ occurs as a quotient (or subrepresentation) of the minimal representation
Π7 of E7. By [MS97, Theorem 6.1] (following [Sav94, Proposition 4.1], and not requiring any
condition on residue characteristic), the Jacquet functor (along N8) of the minimal representation
Π8 of E8 can be identified as a representation of GE7:

(Π8)N8
∼= (Π7 ⊗ |det|3/28)⊕ |det|5/28.

Since N4 ⊂N8, (Π8)N8 is a quotient of (Π8)N4 , as representations of GSp6 ×G2 ⊂GE7. It
follows that there is a surjective GSp6 ×G2 intertwining map:

(Π8)N4 �Π7 ⊗ |det|3/28.

Since σ � τ occurs as a quotient of Π7, restricted to GSp6 ×G2, we find a surjective GSp6 ×G2

intertwining map:

(Π8)N4 � (σ � τ)⊗ |det|3/28.

It follows by Frobenius reciprocity that there is a non-trivial F4 ×G2 intertwining map:

Π8→ IndF4
P4

(σ ⊗ |det|3/28)� τ.

In order to identify the restriction of det (the determinant for the action of GE7 on a 56-
dimensional space) to GSp6, we consider the coroot α∨ of F4, which satisfies

α∨(t) ∈ Z(GSp6) for all t ∈ k× and sim(α∨(t)) = t2.

This is the coroot of the SL2 which commutes with Sp6 = [M4,M4] in F4. This SL2 is identified
with the SL2 which commutes with E7 = [M8,M8] in E8. Indeed, both copies of SL2 arise as
AutO/M2

, embedded in GO⊗O ∼= E8 and in Gk⊗O ∼= F4. We refer to § 2.3.3 for a construction of
these groups from tensor products of composition algebras.

The character det of GE7, considered above, pairs with α∨, in such a way that

det(α∨(t)) = t56 = sim(α∨(t))28.

Indeed, α∨(t) acts on the 56-dimensional space N8/[N8, N8] by the scalar t, and the determinant
is computed above. Comparing with the similitude character, for every element m of the subgroup
GSp6 ⊂GE7, one has

|det(m)|3/28 = |sim(m)|3.
Hence, we find a non-trivial F4 ×G2 intertwining map:

Π8→ IndF4
P4

(σ ⊗ |sim|3)� τ = I(σ,−1)� τ.

Since I(σ,−1) is generic, we find that WhF4(I(σ,−1)) = I(σ,−1)U4,φ4 is non-zero, where φ4

is a generic character of U4 as before. But WhF4(Π8) = (Π8)U4,φ4 = 0 by the previous lemma.
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It follows that the image of the above intertwining map must be a proper submodule of
I(σ,−1)� τ . Thus, we get both statements at once.

(i) I(σ,−1) is reducible and, by the work of Shahidi, L(σ, Spin, s) has a pole at s= 0.

(ii) J(σ)� τ occurs as a quotient of Π8 (restricted from E8 to F4 ×G2). 2

5.2 Eisenstein series

Here, we review Eisenstein series on GL2, as they are used in the construction of the spin
L-function by Bump and Ginzburg [BG92]. Let F be a global field with adele ring A.
Following [GS88, p. 47], for every place v of F and s in C, we define V (s) to be the local unramified
principal series representation of GL2(Fv), unnormalized, so that the trivial representation is a
submodule of V (0) and a quotient of V (1). Here, Fv is the completion of F at v; qv will denote
the cardinality of the residue field at v, if v is a finite place.

We have an intertwining operator Mv(s) : V (s)→ V (1− s) defined by

Mv(s)(fv,s)(g) =
∫
Nv

fv,s(wng) dn,

where fv,s is in V (s). Let f0
v,s be the spherical vector in V (s) normalized so that f0

v,s(1) = 1.
Then (see [GS88, p. 51])

Mv(s)f0
v,s =

Lv(2s− 1)
Lv(2s)

f0
v,s,

where Lv(s) = (1− q−sv )−1. We normalize the operator Mv(s) by defining

M∗v (s) = γv(2s− 1) ·Mv(s),

where γv(s) is the γ-factor attached to the trivial representation of GL1. In particular, γv(s) =
Lv(1− s)/Lv(s) for finite places v. (Note that, since

∏
v γv(s) = 1, this normalization has no

effect globally.) An advantage of this normalization is that

M∗v (1− s) ◦M∗v (s) = Id.

Moreover, we normalize the spherical vector by defining f∗v,s = Lv(2s) · f0
v,s. The advantage of

this normalization is that

M∗v (s)(f∗v,s) = f∗v,1−s.

In order to define Eisenstein series, as in [GS88, p. 52], we define admissible sections fs =⊗fv,s
as follows. Let S be a finite set of places containing all archimedean places. Then define fv,s = f∗v,s
for all v 6∈ S and, for v ∈ S, we take fv,s to be one of the following two functions:

(i) fv,s is a constant section, i.e., its restriction to a maximal compact Kv does not depend
on s;

(ii) fv,s =M∗v (1− s)(gv,s), where gv,s is a constant section.

Note that if fv,s is defined by (ii), then fv,s has a pole at s= 0 with residue contained in the
trivial submodule of V (0). For an admissible section fs, define Eisenstein series by

E(s, g, fs) =
∑

γ∈B(F )\GL2(F )

fs(γg),

where B is the standard Borel subgroup of upper-triangular matrices in GL2.
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5.3 Zeta integrals
Let σ =

⊗
v σv be a generic cuspidal automorphic representation of GSp6(A). Then, for an

admissible section fs, we have a zeta integral

Z(s, φ, fs) =
∫
Z(A)GL2(F )\GL2(A)

∫
U(F )\U(A)

φ(∆(g)u)ψU (u)E(s, g, fs) du dg,

where φ is an automorphic form in the space of σ, fs is an admissible section, U is the two-step
unipotent radical of the Shalika subgroup S, and Z is the center of GL2.

Let Wφ =
⊗

v Wv be the Whittaker function associated to φ. The global zeta integral can
be rewritten as a product of local zeta integrals

∏
v Z(s, Wv, fv,s), where the local factor

Z(s, Wv, fv,s) is

∫
B(Fv)\GL2(Fv)

∫
F×v

∫
F 2

v

Wv





y
y

y
z x 1

z 1
1

w∆(g)

|y|
s−3fv,s(g) dx dz d×y dg

where

w =



1 0 0 0 0 0
0 0 0 1 0 0
0 −1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

.

In contrast to the formula in [BG92], we do not have the factor Lv(2s) as we have built it
into the definition of fv,s. If σv is supercuspidal and fv,s is a constant section, then the local
zeta integral converges for all s. The following is of crucial interest to us: assume that v is finite
and take fv,s = f0

v,s in the local zeta integral. Since f0
v,0 is the constant function on GL2(Fv), the

zeta integral at s= 0 defines a Shalika functional.
The following is claimed as [BG92, Theorem 1].

Proposition 5.7. Assume that σv is unramified, and let Wv be the corresponding (spherical)
Whittaker function. Then

Z(s, Wv, f
∗
v,s) = L(σv, Spin, s),

where the spin L-function on the right-hand side is given by the appropriate Euler factor from
the Satake parameters of σv.

For every finite place v, we can now define a local γ-factor by

γ(σv, s)Z(s, Wv, fv,s) = Z(1− s, Wv, M
∗
v (s)(fv,s)).

The fact that the definition of γ(σv, s) is independent of Wv and fv,s, and that it is a rational
function in qsv, was proved by Vo [Vo97]. Since M∗v (1− s) ◦M∗v (s) = Id, we have a local functional
equation

γ(σv, 1− s)γ(σv, s) = 1,
for every finite place v. In particular, γ(σv, s) has a pole at s= 1 if and only if it has a zero at
s= 0.
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Assume that σv is unramified. Since M∗v (s)(f∗v,s) = f∗v,1−s, Proposition 5.7 implies that

γ(σv, s) =
L(σv, Spin, 1− s)
L(σv, Spin, s)

.

Proposition 5.8. Let σv be a generic supercuspidal irrep of GSp6. If γ(σv, s) has a zero at
s= 0, then σv has a Shalika functional.

Proof. Let fv,s =M∗v (1− s)(gv,s), where gv,s is a constant section. Note that fv,s can have a
pole at s= 0 with the residue contained in the trivial subrepresentation of V (0). Consider the
functional equation

γ(σv, s)Z(s, Wv, fv,s) = Z(1− s, Wv, M
∗
v (s)(fv,s)) = Z(1− s, Wv, gv,s).

Since σv is supercuspidal, the local zeta integral Z(1− s, Wv, gv,s) converges for all s and can be
arranged to be non-zero at s= 0 by a result of Vo [Vo97, Proposition 10.4].

Thus, the functional equation and γ(σv, 0) = 0 imply that the zeta integral Z(s, Wv, fv,s) has
a pole at s= 0, for some choice of gv,s. After taking the residue of fv,s at s= 0, the zeta integral
gives a Shalika functional. 2

Proposition 5.9. Let σ be a generic supercuspidal representation of GSp6 = GSp6(k) with
trivial central character. Let γ(σ, s) be the local factor defined above by means of zeta integrals.
Let γ′(σ, s) be the analogous local factor constructed by Shahidi [Sha90]. Then the poles and
zeros of γ(σ, s), counted with multiplicity, coincide with poles and zeros of γ′(σ, s).

Proof. The proof of this is global and uses the idea of [GRS99a]. Assume, as we may, that the
global field F contains a place v such that Fv ∼= k. Let Σ be a global generic cuspidal automorphic
representation such that Σw is unramified for all finite places w 6= v and Σv

∼= σ.
The functional equation for Eisenstein series E(s, g, fs) [GJ79, p. 232] implies a functional

equation of the global zeta integral:

Z(s, φ, fs) = Z(1− s, φ, Ms(fs)).

This in turn, implies that

γ(Σ∞, s)γ(σ, s) =
LS(Σ, Spin, 1− s)
LS(Σ, Spin, s)

,

where S = S∞ ∪ {v} is the set of places consisting of all archimedean places S∞ and v,
LS(Σ, Spin, s) is the corresponding partial L-function, and

γ(Σ∞, s) =
∏
w∈S∞

Z(1− s, Ww, M
∗
w,s(fw,s))

Z(s, Ww, fw,s)
.

We have a similar global equation satisfied by Shahidi’s γ-factors. Combining the two gives

γ(Σ∞, s)γ(σ, s) = γ′(Σ∞, s)γ′(σ, s).

Note that, as a consequence, γ(Σ∞, s) does not depend on the choice of fv,s.
We need to understand the locations of poles and zeros of γ(Σ∞, s). Fortunately, in [Vo97,

Proposition 12.1], Vo showed that for every archimedean place w and every s0, one can pick a
constant section fw,s such that Z(s0, Ww, fw,s0) 6= 0. He also showed (see [Vo97, Proposition 11.1
and Lemma 11.5]) that the poles of the zeta integral for a constant section at archimedean
places lie among the poles of Γ(s0 + s) for finitely many complex numbers s0. Since the poles
of M∗w,s(fw,s) are contained on the real axis, it follows that poles of γ(Σ∞, s) are located on
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finitely many lines parallel to the real axis. The same is true for zeros, since

γ(Σ∞, s)γ(Σ∞, 1− s) = 1.

On the other hand, since γ(σ, s) is a rational function in qs, if s0 is a zero or a pole then so
is s0 + (2πin/log q) for every integer n. The same is true for Shahidi’s factors; poles and zeros
of γ′(Σ∞, s) lie on finitely many lines parallel to the real axis, while the poles or zeros of γ′(σ, s)
lie on lines parallel to the imaginary axis. In view of the identity

γ(Σ∞, s)γ(σ, s) = γ′(Σ∞, s)γ′(σ, s),

it follows that poles and zeros of γ(σ, s) must coincide with poles and zeros of γ′(σ, s), as
desired. 2

We can now demonstrate Theorem 5.3, which is encompassed by the theorem below.

Theorem 5.10. Let σ be a generic supercuspidal irrep of PGSp6. Then the following three
conditions are equivalent:

(i) σ has a non-vanishing Shalika functional;

(ii) Shahidi’s L-function L(σ, Spin, s) has a pole at s= 0;

(iii) the Bump–Ginzburg–Vo L-function L(σ, Spin, s) has a pole at s= 0.

Proof. We prove the full circle of implications, from the results earlier in the section.

(i) implies (ii). If σ has a non-vanishing Shalika functional, then Shahidi’s L(σ, Spin, s) has a
pole at s= 0 by Theorem 5.6.

(ii) implies (iii). If Shahidi’s L-function L(σ, Spin, s) has a pole at s= 0, then Shahidi’s local
factor γ′(σ, s) has a zero at s= 0. By the previous proposition, the local factor for the
Bump–Ginzburg–Vo L-function γ(σ, s) must also have a zero at s= 0. It follows that the Bump–
Ginzburg–Vo L-function L(σ, Spin, s) has a pole at s= 0.

(iii) implies (i). If the Bump–Ginzburg–Vo L-function L(σ, Spin, s) has a pole at s= 0, the local
factor γ(σ, s) has a zero at s= 0. Then Proposition 5.8 implies that σ has a non-vanishing Shalika
functional. 2
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MS00 G. Muić and G. Savin, Symplectic-orthogonal theta lifts of generic discrete series, Duke Math.

J. 101 (2000), 317–333.
Sav94 G. Savin, Dual pair GJ × PGL2 where GJ is the automorphism group of the Jordan algebra

J , Invent. Math. 118 (1994), 141–160.
Sav99 G. Savin, A class of supercuspidal representations of G2(k), Canad. Math. Bull. 42 (1999),

393–400.
SG99 G. Savin and W. T. Gan, The dual pair G2 × PU3(D) (p-adic case), Canad. J. Math. 51 (1999),

130–146.
Sha90 F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for

p-adic groups, Ann. of Math. (2) 132 (1990), 273–330.
Vo97 S. C. Vo, The spin L-function on the symplectic group GSp(6), Israel J. Math. 101 (1997),

1–71.
Vog93 D. A. Vogan Jr., The local Langlands conjecture, in Representation theory of groups and

algebras, Contemporary Mathematics, vol. 145 (American Mathematical Society, Providence,
RI, 1993), 305–379.

Zha99 Y. Zhang, L-packets and reducibilities, J. Reine Angew. Math. 510 (1999), 83–102.

Gordan Savin savin@math.utah.edu
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Martin H. Weissman weissman@ucsc.edu
Department of Mathematics, University of California, Santa Cruz, CA 95064, USA

783

https://doi.org/10.1112/S0010437X10005178 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005178

	Introduction
	0.1 Conventions

	1 Dichotomy of parameters
	1.1 The local Langlands conjectures
	1.2 The dichotomy
	1.3 Dichotomy for irreps of G2

	2 Structure theory
	2.1 Composition, Jordan, and structurable algebras
	2.2 Lie algebras
	2.3 Algebraic groups

	3 Theta correspondence
	3.1 Minimal representations
	3.2 Whittaker functionals
	3.3 Useful facts
	3.4 Analysis of the correspondences

	4 Shalika functionals
	4.1 The Shalika subgroup
	4.2 Double cosets
	4.3 Distributions
	4.4 Theta correspondence
	4.5 Injectivity of dichotomy

	5 L-functions and periods
	5.1 A reducibility point
	5.2 Eisenstein series
	5.3 Zeta integrals

	Acknowledgements
	References



