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Abstract
As the global population continues to age, effective management of longevity risk becomes increasingly
critical for various stakeholders. Accurate mortality forecasting serves as a cornerstone for addressing this
challenge. This study proposes to leverage Kernel Principal Component Analysis (KPCA) to enhance mor-
tality rate predictions. By extending the traditional Lee-Carter model with KPCA, we capture nonlinear
patterns and complex relationships in mortality data. The newly proposed KPCA Lee-Carter algorithm is
empirically tested and demonstrates superior forecasting performance. Furthermore, the model’s robust-
ness was tested during the COVID-19 pandemic, showing that the KPCA Lee-Carter algorithm effectively
captures increased uncertainty during extreme events while maintaining narrower prediction intervals.
This makes it a valuable tool for mortality forecasting and risk management. Our findings contribute to
the growing body of literature where actuarial science intersects with statistical learning, offering practical
solutions to the challenges posed by an aging world population.

Keywords: mortality forecasting; machine learning; Kernel Principal Component Analysis; longevity risk; predictive
analytics

1. Introduction
The aging of populations around the globe has elevated the importance of longevity risk man-
agement (World Bank, 2024). This challenge underscores the need for accurate and reliable
mortality forecasting, a fundamental prerequisite for various stakeholders such as governments,
pension funds, insurance and reinsurance companies, and individuals (Cairns et al., 2009; Gaille
& Sherris, 2011; Blake et al., 2013). As depicted in Figure 1, which illustrates global and regional
life expectancy at birth, it is evident that life expectancy has been steadily rising across all regions.
Notably, developed regions such as North America, the EuropeanUnion, andAustralia exhibit the
highest life expectancy levels. This remarkable global phenomenon has triggered a surge of inter-
est in machine learning techniques within the field of actuarial science, particularly concerning
the intricate domain of mortality prediction (LeCun et al., 2015; Richman, 2021a, 2021b).

The extended life expectancy observed in more developed regions and income classes can
be attributed to a confluence of environmental, healthcare, and socioeconomic factors, most
notably characterized by economic progress and improved healthcare access, resulting in a
significant decline in mortality rates among older age groups (Rau et al., 2008; Maier et al.,
2010; Desjardins & Bourbeau, 2010; Woolf & Schoomaker, 2019). High-income regions have
experienced a substantial increase in the old-age dependency ratio, defined as the proportion of
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Figure 1. Life expectancy at birth (total) of the world and different regions (Source: World Bank).

the population aged above 65 in comparison to the working-age population, surpassing the global
average. Take Hong Kong as an example: approximately 19.1% of the population in Hong Kong is
aged over 65, with nearly 45% aged over 50. As a result, forecasting mortality has become a piv-
otal task in demographic analysis, exemplifying the challenges and financial obligations faced by
pension plans and related institutions along with the ongoing global increase in life expectancy.

Nevertheless, accurately predicting mortality rates presents a formidable challenge. The com-
plexity arises from intricate nonlinear effects inherent in mortality rates, exacerbated by external
factors like pandemics (e.g., COVID-19) and climate change. For instance, for the period of
January 2020 to December 2021, the overall excess deaths are estimated to be 14.83 million,
2.74 times higher than the COVID-19 deaths reported to the WHO (Msemburi et al., 2023),
underscoring the complexity of mortality dynamics.

However, traditional mortality models, including the seminal work by Lee and Carter (1992),
primarily rely on linear extrapolation methods, often overlooking these nonlinear effects. In
recent years, there is an evolving landscape of machine learning applications in different fields
of actuarial science (e.g., (Wüthrich, 2017; Gabrielli & V. Wüthrich, 2018; Lally & Hartman,
2018; Lee & Lin, 2018; Gao et al., 2019; Ghahari et al., 2019; Brock Porth et al., 2020; Noll et al.,
2020; Devriendt et al., 2021; Henckaerts et al., 2021; Lee, 2021; Gomes et al., 2021; Wuthrich &
Buser, 2021; Gao et al., 2022; Hu et al., 2022; Meng et al., 2022; Xin & Huang 2024; Fissler et al.,
2023; Chen et al., 2023; Debener et al., 2023)), particularly in the context of mortality model-
ing and forecasting. Pioneering research by Deprez et al. (2017) demonstrated the application
of machine learning techniques for the analysis and evaluation of stochastic mortality models,
shedding light on the potential of machine learning to enhance our understanding of mortal-
ity models. Subsequent studies expanded on this foundation by incorporating tree-based models
to improve prediction accuracy (Levantesi and Nigri, 2020; Bjerre, 2022). Hainaut (2018) intro-
duced an innovative framework that used auto-encoders to capture nonlinearities in mortality
data, extending the traditional Lee–Carter model. Richman and Wüthrich (2019) proposed a
neural network extension of the Lee–Carter model for multiple populations, allowing neural net-
works to automatically select optimal structures for improved mortality forecasting. Since then,
numerous studies have delved into improving mortality prediction performance through various

https://doi.org/10.1017/S1748499524000277 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000277


628 Yuanqi Wu et al.

neural network architectures (Nigri et al., 2019; Petneházi & Gáll, 2019; Richman & Wuthrich,
2019; Bravo, 2021a, 2021b; Nigri et al., 2021; Perla et al., 2021; Wang et al., 2021; Chen & Khaliq,
2022; Lindholm&Palmborg, 2022; Zhang et al., 2022;Marino et al., 2023). Some studies employed
tensor-based approaches for mortality modeling (Dong et al., 2020; Cardillo et al., 2022). Most
recently, transformer models have emerged as a powerful tool for mortality prediction in major
countries (Wang et al., 2024). Furthermore, researchers have explored the uncertainty associated
with machine learning models for mortality forecasting (Schnürch & Korn, 2022; Marino et al.,
2023).

This paper contributes to the dynamic field of mortality modeling and forecasting by introduc-
ing a novel framework that leverages machine learning techniques, specifically Kernel Principal
Component Analysis (KPCA), to enhance the accuracy of mortality predictions. This innova-
tion holds the potential to address the growing challenges posed by increasing life expectancy,
volatile mortality risks, and population dependencies. By surpassing the limitations of traditional
linear extrapolation models, our research empowers stakeholders with a more accurate tool for
decision-making in the face of evolving mortality dynamics.

The rest of the paper proceeds as follows. Section 2 introduces the KPCA modeling method-
ology. Section 3 presents the empirical test results. Section 4 tests the robustness of the proposed
method. Section 5 concludes the paper.

2. Modeling methodology
2.1 The Lee–Carter model
In their seminal paper, Lee and Carter (1992) proposed the following model that has become
the standard model for the mortality forecast literature and the preferred methodology for the
U.S. Census Bureau. Let mxt be the central death rate at age x and year t, x0 ≤ x≤ X, 0≤ t ≤ T,
then

log (mxt) = αx + βxκt + εxt , (1)
where αx is a static age function specifying the general shape of mortality by age; βxκt captures the
age-period effect, with κt reflecting overall mortality trend (period-related effect) and βx modulat-
ing its effect across ages (age-related effect). In particular, κt is commonly known as the mortality
index, contributing to capturing the overall level of mortality improvement.

The Lee–Carter model is only identifiable up to a transformation. As a result, in the literature,
it is conventional to impose the following parameter constraints to circumvent the identification
problem: {∑

t κt = 0,∑
x βx = 1.

(2)

2.2 Estimation of mortality trend
In this section, we introduce two well-established methods to estimate the Lee–Carter coefficients
to build the context: the singular value decomposition method (SVD) and the maximum-
likelihood estimation method (MLE). They are closely related to the KPCA Lee–Carter model
proposed in this paper.

2.2.1 Singular value decomposition
The SVD method is a conventional approach to estimate the parameters in Model (1), as pro-
posed by Lee and Carter (1992). This method first forms the centered logarithms of the mortality
rates matrix, denoted as AX×T , where each element of the matrix is the age-specific intercept α̂x
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adjusted logarithm of the mortality rates. α̂x is estimated as the long-term mean of the logged
mortality for each age. Specifically:

α̂x = 1
T

T∑
t=1

ln (mxt). (3)

The logic behind this is that

T∑
t=1

ln (mxt)=
T∑
t=1

(αx + βxκt + εxt)

≈ Tαx + βx

T∑
t=1

κt = Tαx,

(4)

where the identification constraint
∑T

t=1 κt = 0 is used (see Constrants (2))
The centered logarithms of the mortality rates matrix AX×T are formed as follows:

AX×T =

⎛
⎜⎜⎝
ln (m11)− α̂1 ln (m12)− α̂1 · · · ln (m1T)− α̂1
ln (m21)− α̂2 ln (m22)− α̂2 · · · ln (m2T)− α̂2

...
...

. . .
...

ln (mX1)− α̂X ln (mX2)− α̂X · · · ln (mXT)− α̂X

⎞
⎟⎟⎠ (5)

Applying SVD method to matrix AX×T , the factorization form is AX×T =U�VT , where the
columns ofU andV are orthonormal and thematrix� is diagonal with positive real entries. Thus,
AX×T is decomposed with right singular vectors �v1, �v2, · · · , �vr , left singular vectors �u1, �u2, · · · , �ur ,
and corresponding singular values λ1, λ2, · · · , λr . Then AX×T can be written as

AX×T = λ1�u1�vT1 + λ2�u2�vT2 + · · · + λr�ur�vTr (6)

The first left and right singular vectors, along with leading value of the SVD, provide the
approximation of βx and κt , respectively. Specifically,

β̂x = u1x∑X
i=1 u1i

, (7)

κ̂t = λ1

(
v1t − 1

T

T∑
t=1

v1t

)
. (8)

Notably, weighting and adjustments are applied to β̂x and κ̂t to satisfy the conventional
Constraints (2).

2.2.2 Maximum-likelihood estimation
Besides the SVD method, using MLE to estimate the Lee–Carter coefficients is another classic
approach (Wilmoth, 1993). TheMLEmethod requires specifying a probabilistic model. Following
Wilmoth, we assume the number of deaths, denoted as Dxt , at age x and year t follows a Poisson
distribution, with the mean parameter λxt set to the product of the number of lives at risk (Ext)
and the mortality rate (mxt) for the corresponding age and year. That is:

Dxt ∼ Poisson(λxt)
λxt = Extmxt

(9)
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Assuming Dxt is independent across time-age, we sum over all time-age to obtain the full log-
likelihood:

l(θ)=
∑
xt

Dxtlog(λxt))− λxt − log(Dxt)

=
∑
xt

Dxtlog(Ext)+Dxtlog(mxt)− Extmxt − log(Dxt)

=
∑
xt

{
Dxtlog(mxt)− Extmxt

}+ C

=
∑
xt

{
Dxt(αx + βxκt)− Exteαx+βxκt

}+ C. (10)

Here, we substitute the Lee–Carter model (Equation 1) into the log-likelihood function to obtain
the optimization maximizer. The term C is a constant that aggregates the non-variable terms.
By finding the parameter set θ = (αx, βx, κt) that maximizes the log-likelihood function l(θ), we
estimate the Lee–Carter coefficients.

A notable advantage of MLE method is that it is flexible in including additional covariates
or explanatory variables to account for other factors affecting mortality rates, making it a more
adaptable method for complex models, while SVD method is limited to the structure of the
decomposition and does not easily accommodate additional covariates.

2.3 KPCA Lee–Carter model
KPCA extends traditional Principal Component Analysis (PCA) into nonlinear feature spaces,
offering a means to better capture the intricate spatial structures and nonlinear patterns present in
high-dimensional mortality data. While traditional PCA is effective for capturing linear relation-
ships and patterns in data, it may underperform when data exhibits nonlinear structures. KPCA
addresses this limitation by using a kernel trick to project the data into a higher-dimensional space
where the linear relationships are more easily captured. By applying PCA in this transformed
space, KPCA effectively captures nonlinear patterns present in the original data.

As discussed previously, nonlinearity may exist in the mortality data. KPCA excels at captur-
ing these nonlinear structures and enables the estimation of the time-varying mortality index κt
through the use of kernel function. The estimation stage of the Lee–Carter model using SVD can
be viewed as a specific instance of PCA. It involves summarizing the log-mortality data by only
considering the first principal component (PC), which is κt in Equation (1), while the variance of
other PCs is encapsulated within the error term εxt .

In this section, we illustrate how the conventional SVD based solution of Lee–Carter models
can be extended to the KPCA context. Section 2.3.1 briefly introduces the kernel transformation
and the kernel functions used in this paper. Section 2.3.2 illustrates the estimation of Lee–Carter
coefficients with KPCA method.

2.3.1 Kernel functions
KPCA is a statistical learning algorithm that allow us to study the data in the feature spaceF using
kernel function k.

Theorem 1. (Aronszajn, 1950) Let k be a kernel function in some space X , where �xi, �xj ∈X .
Then, there exists a Hilbert space of functions H and a mapping φ: X →H such that k(�xi, �xj)=
〈φ(�xi), φ(�xj)〉H.

Here, the Hilbert spaceH is what we referred as feature space F . Theorem 1 says that k(�xi, �xj) can
be obtained without explicitly calculating φ(�x). This implicit mapping helps us construct kernel
matrix without knowing what φ is. The kernel functions that we tested in this paper include:
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• Gaussian Radial Basis Function (RBF) Kernel:

k
(�xi, �xj)= exp

(
−σ

∥∥�xi − �xj
∥∥2) , σ > 0, σ ∈R (11)

• Laplace Kernel:

k
(�xi, �xj)= exp

(−γ
∥∥�xi − �xj

∥∥) , γ > 0, γ ∈R (12)

• Polynomial Kernel:

k
(�xi, �xj)=

(
�xTi �xj + c

)q
, c≥ 0, q ∈N

+ (13)

All three kernels are effective for handling nonlinear data, each excelling in different scenarios.
The Gaussian RBF kernel is particularly well-suited for capturing smooth, continuous variations,
whereas the Laplace kernel demonstrates greater robustness to noise and outliers, making it ideal
for data characterized by sharp transitions (Wang et al., 2015). The polynomial kernel, on the
other hand, is strong at capturing feature interactions and modeling global structures, making it
effective for data that can be made linearly separable through polynomial (Weiße et al., 2006).

In untabulated analyses, we found that the Gaussian RBF kernel performed best, as measured
by the minimum error in predicting mortality data in validation set, which will be illustrated
in detail in Section 3. This superior performance is likely due to the kernel’s ability to handle
the nonlinear relationships and local variations present in the mortality data, aligning with the
theoretical strengths of the Gaussian RBF kernel. Therefore, in our empirical analyses, we use the
Gaussian RBF kernel function as the default setting to compare the performance of KPCA relative
to other well-established mortality models.

2.3.2 Kernel PCA
The procedure of using KPCA to estimate the Lee–Carter coefficients from log-mortality rate is
as below:

Step 1: Estimate α̂x and form the centered mortality vectors.
Given that KPCA will transform the log-mortality data to a higher dimension, we first need

to estimate the age-specific intercept term α̂x for each age x, following the method described in
Equation (3). After estimating α̂x, we subtract it from the log-mortality rate to obtain the centered
log-mortality rate.

For the sake of discussion, we denote the centered log-mortality vector for time t as �At =
(A1t , . . . ,AXt)T , where the element

Axt = log (mxt)− α̂x. (14)

The vector �At corresponds to the t-th column of the matrix AX×T in Equation (5). We will then
transform the set {�At}Tt=1 from its original space to the extended space.We note that this approach
is transforming the log-mortality data over time for each age group rather than the other way
around since we intend to capture the time-varying patterns of the mortality nonlinearity.

Step 2: Construct centered kernel matrix in featured space.

The data points should be centered in the feature space, that is,
∑T

t=1 φ(�At)= 0.We denote the
centered mapping of xi in the feature space as φc(�Ai

)
and calculated as:

φc(�Ai
)= φ

(�Ai
)− 1

T

T∑
j=1

φ(�Aj). (15)
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The expression of the i, j-th element of centered kernel matrix Kc is calculated as:

Kc
ij =

〈
φc(�Ai

)
, φc(�Aj

)〉
H

=
〈
φ
(�Ai
)− 1

T

T∑
l=1

φ
(�Al
)
, φ
(�Aj
)− 1

T

T∑
l=1

φ
(�Al
)〉

H

= 〈
φ
(�Ai
)
, φ
(�Aj
)〉
H − 1

T

T∑
l=1

〈
φ
(�Ai
)
, φ
(�Al
)〉
H

− 1
T

T∑
l=1

〈
φ
(�Aj
)
, φ
(�Al
)〉
H + 1

T2

T∑
l=1

T∑
l′=1

〈
φ
(�Al
)
, φ
(�Al′

)〉
H

=Kij − 1
T

T∑
l=1

Kil − 1
T

T∑
l=1

Kjl + 1
T2

T∑
l=1

T∑
l′=1

Kll′ . (16)

Here, Kij represents the i, j-th element of the uncentered kernel matrix K. Let 1T denote a T × T
matrix with all elements equal to 1

T , the relationship between Kc and K is:
Kc =K− 1TK−K1T + 1TK1T . (17)

Step 3: Perform PCA to the centered kernel matrix.
In this step, we perform PCA on Kc. Since PCA is a well-established method, we will not delve

into the details of the procedure (see comprehensive procedures in (Jolliffe, 2002) and (Shlens,
2014)). Given that Kc is real and symmetric, it can be eigendecomposed as follows:

Kc =Q�QT , (18)
whereQ is the matrix ofKc’s eigenvectors (or PCs), and� is a diagonal matrix of the correspond-
ing eigenvalues. In the eigendecomposition, the eigenvalues are ranked from the largest to the
smallest, with the leading PCs capturing more variance of Kc.

Step 4: Estimate β̂x and κ̂t .
The KPCA method of obtaining the Lee–Carter coefficients is similar in form to the SVD

method (see Section 2.2.1). However, due to the properties of the matrix Kc, the left and right
singular matrices are identical. Denote the t-th column ofQ as �vt , where �vt = (v1t , . . . , vTt)T

To estimate the age-specific sensitivity β̂x for age x, we project the centered log-mortality for
age x onto the first PC (i.e., �v1):

β̂(1)
x =

∑T
t=1 Axtvt1∑T
t=1 vt1

, (19)

where Axt is calculated as described in Equation (14), and the weighting
∑T

t=1 vt1 is applied to
meet the conventional Constraints (2). The estimated β̂

(1)
x is labeled with a superscript to indicate

it is derived from the first PC. The Lee–Carter model can incorporate more than one pair of βx
and κt estimated from different principal components (Booth et al., 2002).

The calculation of β̂x by projecting the centered log-mortality data onto the eigenvectors allows
us to quantify how each age group’s mortality rates respond to the primary time-varying factors
captured by KPCA. This makes β̂x a valid representation of age-specific sensitivity, aligning with
the objectives of the Lee–Carter model in capturing the dynamics of mortality rates over time.

The estimated time-varying mortality trend κ̂t under the KPCA framework is the first principal
component adjusted by the long-term mean and then weighted by the corresponding eigenvalue.
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Algorithm 1: KPCA Lee–Carter Algorithm for Mortality Forecasting

InputMortality Datamxt , Death distribution Dxt , t = 1, . . . , T;x= 1, . . . , X
Output h-steps ahead forecasts of m̂x(T+h), h= 1, 2, . . .

Dimension Reduction Step:
1: Estimate the age-specific intercept term α̂x by Equation (3).
2: Select kernel and corresponding parameters.
3: Compute kernel matrix K= kernelMatrix(kernel, parameter, Y).
4: Compute the centered log-mortality Axt for each x and t by Equation (14) and construct the

centered log-mortality matrix as depicted in (5).
5: Compute the mortality kernel matrix in the feature space Kc following Equation (17).
6: Conduct eigendecomposition on Kc, and get the first PC vt1 and the corresponding

eigenvalue λ1.
7: Compute the first set of age-specific sensitivity β̂

(1)
x for x= 1, . . . , X following Equation (19)

and time-varying mortality trend κ̂
(1)
t for t = 1, . . . , T following Equation (20).

8: if include two PCs to the model
9: Get the second PC vt2 and the corresponding eigenvalue λ̂2.
10: Compute the second set of age-specific sensitivity β̂

(2)
x for x= 1, . . . , X and time-varying

mortality trend κ̂
(2)
t for t = 1, . . . , T.

11: end if
Forecasting Step:

12: Fit κ̂ (1)
t with ARIMA(0,1,0) time series model.

13: Compute κ̂
(1)
t+h, for h= 1, 2, . . ., the h-step ahead forecasts.

14: if include one PC to the model
15: Compute h-step ahead forecasts m̂x(T+h) = α̂x + β̂

(1)
x κ̂

(1)
t+h

16: else if include two PCs to the model
17: Fit κ̂ (2)

t with ARIMA(0,1,0) time series model.
18: Compute κ̂

(2)
t+h, h= 1, 2, . . ., the h-step ahead forecasts.

19: Compute h-step ahead forecasts m̂x(T+h) = α̂x + β̂
(1)
x κ̂

(1)
t+h + β̂

(2)
x κ̂

(2)
t+h

20: end if

Since the transformation was done over time, the time variation is preserved, and no additional
projection is required:

κ̂
(1)
t = λ1

(
vt1 − 1

T

T∑
t=1

vt1

)
. (20)

For the same reason as β̂
(1)
x , we label the estimated κ̂

(1)
t with a superscript to indicate it is derived

from the first principal component.
Thus, the KPCA is constructed using the obtained eigenvectors and eigenvalues. We can then

select the kernel PCs that explain the most variance in the data. For future mortality projections,
we fit κ̂ (1)

t with an ARIMA(0,1,0) model to project future trends and calculate the future mortality
using the Lee–Carter Model (1). The procedure of the KPCA Lee–Carter model is summarized in
Algorithm 1.
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Figure 2. Log-mortality rate by year and age, with different colors representing age groups. The oldest age group is shown in
violet, while the youngest is highlighted in red.

3. Empirical analysis
3.1 Data description
In this section, the proposed KPCA Lee–Carter method is applied to the U.S. mortality data from
the Human Mortality Database (HMD),1 a database that provides detailed mortality and popula-
tion data. All the death numbers (Dxt), exposure-to-risk (Ext) and central mortality rates (mxt) are
derived from the dataset to facilitate the analysis of mortality patterns across age (x) and time (t).
The sample period is from 1952 to 2021 and we use total populationmortality data between age 51
and 90.

The logarithmic patterns of mortality rates over time and across age groups are represented
in Figure 2. In the year-specific plot on the left, distinct colors are employed to distinguish
between various age groups, with the oldest age group depicted in violet and the youngest in red.
Conversely, in the age-specific plot on the right, the color scheme denotes different years, with the
most recent years represented in violet and the earliest in red.

The year-specific plot illustrates a consistent decline in mortality rates across all ages spanning
from 1959 to 2019, then increased due to COVID-19 from 2020 to 2021. Notably, the decline
exhibits varying trajectories for different age groups, highlighting the importance of our task to
forecast mortality rates as a means of managing longevity risk, while the COVID-19 period poses
new challenges for researchers to deal with excess life expectancy calculation. Conversely, the age-
specific plot reveals a predictable trend of increasing mortality rates with advancing age, aligning
with conventional wisdom regarding age-related mortality patterns.

3.2 Prediction results
We split the U.S. mortality data with time period from 1952 to 2021 into three subsets, training-
validation-test, preserving the temporary order. The training set contains observations of a total
of 50 years from 1952 to 2001, the validation set contains observations of a total of 10 years from
2002 to 2011, and the test set contains observations of a total of 10 years from 2012 to 2021 for
model forecast.

1HMD can be accessed at http://www.mortality.org
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Table 1. Validation result for Kernel Principal Component Analysis 1 principal compo-
nent model

σ 1 2 3 4

MAPE 0.05422343 0.05410058 0.0540364 0.05399309
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 10 15 20 25
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAPE 0.05385088 0.05379326 0.05375357 0.05370333
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 30 35 40 45
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAPE 0.05360421 0.05341044 0.05325787 0.05326042
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 0.1 0.01 0.001 0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAPE 0.05448813 0.05452792 0.05453205 0.05453254

Table 2. Validation result for Kernel Principal Component Analysis 2 principal compo-
nent model

σ 1 2 3 4

MAPE 0.05422343 0.05410059 0.0540364 0.05399309
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 5 6 7 8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAPE 0.0539594 0.0539313 0.0539071 0.05388595
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 0.01 0.05 0.1 0.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAPE 0.05755043 0.05106988 0.05448818 0.05434232
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 0.0001 0.0005 0.001 0.005
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAPE 0.05453239 0.1062232 0.1058115 0.0595571

The proposed KPCA Lee–Carter method is applied to the mortality data. Standard SVD and
MLE methods are natural benchmarks to assess the prediction performance of KPCA Lee–Carter
method. In addition, we also include auto-encoder method proposed by Hainaut (2018) as bench-
marks for performance assessment comparison, as auto-encoder model is able to incorporate
nonlinearity as well. To evaluate the forecast performance, we consider the mean absolute per-
centage error (MAPE) between the forecast mortality rates and actual mortality rates. More
specifically,

MAPE= 1
XTf

Tf∑
t=1

X∑
x=1

∣∣∣∣mxt − m̂xt
mxt

∣∣∣∣ , (21)

where Tf is the number of forecast years.
The validation set result shown in Tables 1 and 2 is used for choosing the hyper-parameters

of KPCA 1PC and 2 PC model. We choose the parameters that give the lowest validation MAPE.
More specifically, for 1 PC Gaussian RBF kernel, we choose σ = 40, and for 2 PC Gaussian RBF
kernel, we choose σ = 0.05.

TheMAPE for the KPCAmethodwith RBF kernel and chosen hyper-parameter, in comparison
with MAPE of benchmark models, are shown in Table 3. For the auto-encoder model, we use
three neurons in both the input and output layers and two neurons in the intermediate layer. The
model is trained with a learning rate of 0.001, over 800 epochs, and the MSE loss function. The
auto-encoder 1 PCmodel extracts a single-dimensional factor, while the auto-encoder 2 PCmodel
extracts two-dimensional factors from the constructed model.

When compared to all other models, it is evident that the 1 PC and 2PCs KPCA approach yields
the lowest MAPE, indicating the efficacy of our proposed KPCA Lee–Carter model. Notably, the
root mean squared error (RMSE) and MAPE values obtained from the 1 PC and 2PCs KPCA
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Table 3. Mean absolute percentage error (MAPE) for out-sample test set on all models

Model SVD MLE KPCA 1 PC

MAPE 0.1019752 0.09558255 0.09079403
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model KPCA 2PCs Auto-encoder 1PC Auto-encoder 2PCs
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAPE 0.0866092 0.1159562 0.1125127

Table 4. Proportion of variance for
Kernel Principal Component Analysis
2 principal component model

PC1 PC2

0.9324705 0.05252356

Figure 3. βx estimated across models.

methods are quite similar. Based on the calculation of proportion of variance for KPCA 2PC
model shown in Table 4, this similarity is attributed to the fact that the first PC can effectively
capture a substantial portion of the variance in the data, rendering the inclusion of the second PC
less impactful in enhancing our KPCA model’s performance.

The fitted value of αx is the same across all models, as it represents the long-term mean of
logged mortality for each age and follows the same formula across different models. The fitted βx
based on different models are plotted in Figure 3. Estimation results of κt from different models
are displayed in Figure 4. Figure 5 shows the corresponding fan charts.

Analyzing Figure 3 and Figure 4, we can discern consistent trends in all three parameters when
employing the SVD and MLE methods. These methods primarily capture the linear trend present
in the mortality data. However, the KPCA method stands out by estimating a distinct mortality
index κt and different age interactions with mortality index βx, in contrast to the SVD and MLE
methods. This distinction arises from the KPCA’s ability to uncover underlying nonlinear patterns
within the mortality data through kernel methods in the feature space.

Furthermore, Figure 5 reveals that the width of the fan chart corresponds to the level of uncer-
tainty around the baseline forecast, and Table 5 shows the confidence intervals of out-of-sample
predictions for the year 2021. The SVD method produces the narrowest confidence interval for
κt , due to its overly optimistic estimation of the upper bound, which is driven by the excessive
information reduction inherent in the SVD approach. In contrast, the KPCA-estimated κt has a
similar range to the MLE and auto-encoder methods. Notably, the KPCA method exhibits the
lowest level of uncertainty when compared to the other two methods.
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Table 5. Projected κt at 2021

Lower Mean Higher Width of CI

SVD −23.75 −19.89 −16.04 7.71
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MLE −24.28 −19.52 −14.77 9.51
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Auto-encoder −25.52 −20.64 −15.76 9.76
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KPCA −23.24 −18.58 −13.92 9.32

Figure 4. κt estimated across models.

Figure 5. Fan chart of κt estimated across models, 95% CI.
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Figure 6. β (1) and β (2) estimated by 2 principal components Kernel Principal Component Analysis model.

Figure 7. Fan plots of κ
(1)
t and κ

(2)
t estimated by 2 principal components Kernel Principal Component Analysis model,

95% CI.

For 2PCs KPCA model, the fitted results of β(1)
x and β

(2)
x are displayed in Figure 6, and predic-

tion results of κ (1)
x and κ

(2)
x are shown in Figure 7. From Figure 6, we can see that the estimated β

(1)
x

and β
(2)
x follow similar decreasing trend as the original Lee-Carter model. From Figure 7, we can

identify that the estimated κ
(2)
t hovers near zero with a small variance, indicating its small impact

on the overall model. This observation aligns with the findings in Table 3 and Table 4, where the
forecasting error of the 1 PC and 2 PCs KPCA Lee–Carter model reveals that including the second
PC doesn’t yield a substantial improvement (only 0.4% improvement).

Our empirical results lead us to the conclusion that the KPCAmethod effectively enhances the
forecast performance of the Lee–Carter model.
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Table 6. Model comparison for other countries

SVD MLE KPCA 1 PC

CAN 0.08792 0.08425 0.08372
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AUS 0.09524 0.10337 0.08373

4. Robustness analysis
In this section, we test the robustness of KPCA in mortality prediction. Section 4.1 extends
our analyses from the U.S. to Canada and Australia to ensure the geographical robustness of
our empirical results. Section 4.2 compares the models analyzed in the empirical analyses using
COVID-19 as a case study.

4.1 Geographical robustness
We apply the 1 PC KPCA model to mortality data from Canada and Australia using the same
prediction procedure and age groups as the U.S. data and compare it with the SVD and MLE
methods. TheMAPE results in Table 6 demonstrate that KPCA is applicable to populations across
different geographical locations.

4.2 Impact of COVID-19 mortality disruption on life expectancy projections
To evaluate the robustness of the KPCA model in extreme cases, in this subsection, we conduct
an analysis of the model’s performance during the COVID-19 pandemic, which presented an
unprecedented disruption in mortality rates. The objective of this analysis is to assess how a dis-
ruption in mortality would affect the model’s prediction performance. We created two sets of
training datasets: (1) COVID-exclusive, using pre-COVID mortality data from 1952 to 2019; (2)
COVID-inclusive, which includes mortality data from the COVID years, spanning from 1952 to
2021. To make the results of different models more tangible, we transformed the mortality pro-
jections into remaining life expectancy projections using the life table method (Dickson et al.,
2019).

Figure 8 depicts the projection of life expectancy under the two training sets. Table 7 presents
summary statistics of these projections, including the mean, and the 20th and 80th quantiles of
the life expectancy projections at age 60, with the two training sets across different models. We
have the following interesting observations. First, the differences between predictions of average
remaining life expectancy from samples including and excluding the COVID period are large
and economically significant. In particular, the inclusion of the COVID period in the training
sample significantly reduces the projected remaining life expectancy by about 2 years on average,
ranging from 2.11 years (auto-encoder model) to 2.19 years (MLE model). The projections from
KPCA and SVD are similar. However, the average reduction from the KPCA model is 2.13 years,
slightly higher than auto-encodermodel while lower than SVDmodel (2.15 years). The confidence
interval width of the auto-encoder model remains the smallest both before and after the inclusion
of the COVID period. Second, after including the COVID period, confidence intervals from all
models are widened, but the width of the 20th-80th confidence interval from the KPCA model
increases by 1.31 years, compared to 1.29 years (SVD) and 1.27 years (MLE & auto-encoder) from
benchmarks. Although the KPCA model’s confidence interval widens the most, we also notice
that it remains narrower than those of traditional models such as SVD and MLE. This indicates
that while the KPCA model maintains narrower prediction intervals, it effectively captures the
increased uncertainty during the pandemic.

Moreover, the discrepancies between future life expectancy projections from different mod-
els are smaller in COVID-exclusive cases. In contrast, after including the COVID sample, the
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Table 7. Projected remaining life expectancy at age 60

Panel A: COVID inclusion

20th Mean 80th Width Mean diff CI diff
of CI (Pre-post) (Pre-post)

SVD 22.59 24.19 25.81 3.22 2.15 1.29
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MLE 22.62 23.95 25.82 3.20 2.19 1.27
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Auto-encoder 22.55 24.08 25.59 3.04 2.11 1.27
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KPCA 22.59 24.19 25.78 3.19 2.13 1.31

Panel B: COVID exclusion

20th Mean 80th Width
of CI

SVD 25.39 26.35 27.32 1.93
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MLE 25.40 26.14 27.33 1.93
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Auto-encoder 25.30 26.19 27.07 1.77
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KPCA 25.38 26.32 27.27 1.89

Figure 8. Projected remaining life expectancy based on COVID inclusion and exclusion datasets.
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life expectancy predictions deviate more between different models. For example, the standard
deviation of mean projection between different models is 0.10 years without the COVID data
and increases to 0.12 years after the COVID period is included. This highlights the increased
variability and uncertainty introduced by the pandemic. Finally, from our analysis, we can see
that while the KPCA model maintains narrower prediction intervals, it effectively captures the
increased uncertainty during the pandemic. This indicates that KPCA is more robust in extreme
cases. In particular, KPCA model provides conservative and realistic projections even when faced
with extreme disruptions. The model’s predictions remain robust, with the intervals appropriately
widening to reflect the increased variability during the COVID-19 period.

We acknowledge that due to the limited post-COVID sample, there are some limitations to our
analysis in this subsection. It is interesting to include more observations after COVID when more
data are available, to see the long-term impact of nonlinear disruptive events and the performance
of different models. It’s also interesting to develop new model that can incorporate the shocks
from extreme events, e.g., an extension of the model in Zhou and Li (2022).

5. Conclusion
In this study, we introduced an extension of classic Lee–Carter model to enhance mortality fore-
casting by incorporating KPCA. Our empirical results demonstrate that the KPCA-enhanced
Lee–Carter model significantly improves the accuracy of mortality rate predictions. Both RMSE
andMAPE are consistently lower for the KPCAmodel compared to SVD andMLE. This enhance-
ment in forecasting performance is due to the ability of KPCA Lee–Carter model to capture
nonlinear patterns and complex relationships in mortality data. In addition, we observed that
including more PCs beyond the first one in KPCA does not lead to substantial improvements in
forecasting accuracy. The first PC effectively characterizes a significant portion of the variance
in mortality data, highlighting the efficiency and practicality of our proposed KPCA Lee–Carter
model. Moreover, our analysis indicates that our KPCAmodel is more robust to nonlinear disrup-
tions in the extreme case and provides more reliable mortality forecasts with lower uncertainty.
This robustness makes the KPCA model a reliable tool for stakeholders managing longevity risk,
ensuring they can make well-informed decisions even during significant mortality shocks like the
COVID-19 pandemic.

Our research highlights the potential of KPCA as a valuable tool for enhancing mortality fore-
casting. As global populations continue to age, and the challenges of longevity risk intensify,
accurate mortality predictions are essential for governments, pension funds, insurance compa-
nies, and individuals. Our findings contribute to the growing body of literature where actuarial
science intersects with statistical learning, offering practical solutions to the challenges posed by
an aging world population. We acknowledge that due to the limited sample of post-COVID, there
are some limitations to our analysis. It will be beneficial to include more observations as more
data become available to better understand the long-term impact of nonlinear disruptive events
and the performance of different models. Additionally, it is worth exploring the development of
new models that can incorporate shocks from extreme events, e.g., an extension of the model in
Zhou and Li (2022). We leave discussions of these interesting topics for future research.
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