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AN ARITHMETICAL FUNCTION ASSOCIATED WITH THE 
RANK OF ELLIPTIC CURVES 

DAVID CLARK 

ABSTRACT. We define an arithmetical function, f(n), which gives a lower bound for 
the rank of elliptic curves, y2 = x3 + nx, n square-free. Thus, if f{n) is unbounded for 
square-free values of n, then there are elliptic curves of arbitrarily large rank. We show 
that f(n) is unbounded as n ranges over all integers. 

1. Introduction. The set E(Q) of rational points of an elliptic curve over Q is the 
set of solutions 

{(x, y) G QxQ : y2 = x3+ax + b}, 

together with oo, the point at infinity, where a,b G Q and the discriminant of x3 + ax+b, 
—4a3 — 27b2, is nonzero. Poincaré noticed that an addition law could be defined on this 
set using secants and tangents. Mordell [6] showed that E(Q) is a finitely generated group 
under this addition law. From this result it follows that 

E(Q) = £(0tors X Z\ 

where £(0tors is the set of elements of finite order. The integer r is called the rank of 
the elliptic curve over Q. The theorems of Lutz [3], Nagell [7], and Mazur [4] give a 
complete characterization of the torsion part of elliptic curves over Q. However, the rank 
of elliptic curves over Q remains very poorly understood. In the case of elliptic curves 
over function fields Shafarevich and Tate [8] showed that there exist elliptic curves with 
arbitrarily large rank. Naturally, it is conjectured that the same result holds for elliptic 
curves over the rational numbers. Using a specialization argument, Néron [8] proved the 
existence of an infinite family of elliptic curves over Q with rank greater than ten, but 
his method yields no explicit examples. Mestre [5] found an elliptic curve of rank at 
least fourteen using an algorithm based on the Birch and Swinnerton-Dyer Conjecture; 
unfortunately, his method is not suited to finding infinite families of such curves. 

This paper investigates an arithmetical function, 

f(n) = #{(a, b) e ZxZ : ab = n, a + b = D } , 

which gives a lower bound for the rank of elliptic curves, y2 = x3 +nx, for n square-free. 
The definition of this function is motivated by the Tate algorithm for computing the rank 
of an elliptic curve over Q. 
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THEOREM 1. IfE:y2 = x3+nxis an elliptic curve of rank r over Q, with n G Z 
square-free, thenf(n) ^ 2r+2. 

Thus, if 

(1) lim sup f(n) — +oo, 
n squarefree 

then there exist elliptic curves of arbitrarily large rank. Although this conjecture remains 
unproved, the following holds. 

THEOREM 2. lim s u p ^ ^ f(n) = +oo. 

Section 2 outlines the Tate algorithm and proves these two theorems. Section 3 de­
termines the average order of f(n). The final section gives some numerical observations 
which support conjecture (1). 

2. Tate Algorithm and the Arithmetical Function. Tate formulated an algorithm 
for determining the rank of elliptic curves of the form 

E: y2 = x3 + ax2 + bx, a, b e Q. 

For a detailed exposition of this algorithm, see Appendix 1 of Coates [2]. An outline of 
the algorithm follows. Consider the mapping 

<xE:E(Q)-+Qx/Qx\ 

defined by 

aE(oo) = 1 (mod g x 2 ) , aE(0, 0) = 6 (mod £ x 2 ) , and aE(x, y) = x(mod g x 2 ) , JC ̂  0, 

where Qx is the multiplicative group of the rational numbers. If rE is the rank of E(Q), 
then 

(2) TE = - |Image (aE)\ | Image {otE,)\, 

where El\ y2 = x3 — lax2 + (a2 — Ab)x. An integer b\ is in the image of aE if 

(3) Â 2 = bxM
A + aM2e2 + b2e\ bxb2 - ft, 

has a nontrivial integer solution. However, this algorithm is theoretically ineffective since 
there is no known method for deciding if (3) has a solution. 

For elliptic curves of the form E: y2 = x3 + nx,n G Z, equation (3) simplifies to 
N2 = b\MA + b2e

4,bib2 = n. Thus, factorization of n — ab with, a + b = D(a + ba 
square), give nontrivial elements of the image of aE. Call such factorizations of n good. 
For n square-free, the magnitude of the arithmetical function f(n) gives a lower bound 
for the rank of £ ( 0 . 
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PROOF OF THEOREM 1. Since n is not a square, every factorization n = ab, a+b — D, 
gives rise to two elements of the image of a^, and since n is square-free, the elements 
from all such factorizations are distinct. • 

PROOF OF THEOREM 2. Choose an elliptic curve y2 = x3 + Dx with rank greater than 
or equal to one, for example y2 = x3 + 2x. An integer point (JC, y) on the curve such that 
JC| y and x ^ 0 gives rise to a desired factorization of D, 

„2 D 
= x + 

Given any positive integer m, choose m rational points on the elliptic curve, 

Pi Pi r2 . (Pm nA 
9 ' " ' 1 s2 ' s3 ) 

with the property 

(4) 
P2 r2 T "* 

for all i and j . Let R — n£Li n S = ITJli st, and consider the elliptic curve 

(5) y2 =x3+DR4S4x. 

From 

+ D{^\ or rj=p3 + DPis
4, 

it is clear that /?;| r?. Observe that (R2S2pt/ s2, R3S3rt/ s3) are distinct integer points on 
the curve (5) and that R2S2pij s2\R3S3rt/ s3, which follows immediately from pt\ rf. The 
property (4) ensures that the representations are distinct. Thus, /(DR4^) ^ 2m. m 

3. Average Order Estimate. There are the following estimates of the average or­
der of f(n). The proof uses the fact that for a and c nonnegative the inequalities a ^ 
y/x and c ^ yj(x + a2)/ a are equivalent to the inequality a(c2 — a) ^ x. 

THEOREM 3. 

*3/4 < £ /(*) < *3/4. 

PROOF. First, notice that, 

JC + « Z 

x + az 

^ Vx+l+ J- +adaik Vx+ 1 + / L / - + ^/a 1 da 

^ v/^TT + 2V^(x1 /4- l) + ̂  (x3'4-!) 

« *3/4. 
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Similarly, 

£ /(«) = E 
jc + ^r 

W B ?.,N-i a a ^ 

x + a 

= Lxfâ+ada-v~x-iï V2 
W - + v ^ \da — ^/x 

V2 
^ \/2x(x1/4 - 1) + ^ (x3/4 - 1) - •/* 

» x3/4. 

4. Numerical Observations. A computer search produced the following examples 
of integers n with a large number of good representations. 

n 
828 
8,820 
26,100 
92,400 
153,648 
417,600 
2,458,368 
3,009,600 
541,209,600 

factorization 
22 • 32 • 23 
22 • 32 • 5 • 7 
22 • 32 • 52 • 29 
24 • 3 • 52 • 7 • 11 
24 • 32 • 11 -97 
26 • 32 • 52 • 29 
2 1 0 - 3 2 - 11- 19 
2 6 - 3 2 - 5 2 - 11 • 19 
2 i o . 3 6 . 5 2 . 29 

/(*) 
6 
8 
10 
10 
10 
12 
14 
16 
20 

To give some evidence for the validity of the conjecture (1), a search was also made 
for square-free integers with many good representations. 

n 
547,230 
613,263 
86,129,043 
121,706,970 
209,323,023 
27,522,144,195 
55,639,361,778 

factorization 
2 • 3 • 5 • 17 • 29 • 37 
3 
3 
2 
3 
3 
2 

7 • 19 • 29 • 53 
7- 11- 13-23-29-43 
3 - 5 - 7 - 11- 19-47-59 
7 • 13 • 17 • 23 • 37 • 53 
5 -7 - 13- 19-23-29-37-43 
3 -7 - 11 • 13- 17- 19-23-29-43 

/ ( 
8 
6 
6 
8 
6 
6 
8 
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