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LEFT IDEALS AND 0-PRIMITIVITY IN MATRIX NEAR-RINGS
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Maximal left ideals in matrix rings were studied by Stone [10]. Similar results are not necessarily valid in the
general near-ring case and one of the objectives of this paper is to study these differences. Furthermore,
although much is known about 2-primitivity in general matrix near-rings (Van der Walt [11}), quite the
opposite is true for O-primitivity and the other objective of this paper is to present some results on 0-
primitivity in matrix near-rings in certain restricted cases.

1980 Mathematics subject classification (1985 Revision): 16A76.

0. Introduction

Matrix near-rings were introduced in 1984 by Meldrum and Van der Walt [5]. Since
then several papers ([8, 12, 11, 13, 6, 2, 3]) and theses ([7, 1]) were devoted to matrix
near-rings and as this field of study is still very immature, many more publications are
expected to follow.

The purpose of this paper is to study O-primitivity in matrix near-rings. A good
survey on 2-primitivity in matrix near-rings over any zero-symmetric near-ring has been
done by Van der Walt [11]. Some results on O-primitivity are also contained in Abbasi,
Meldrum and Meyer [2], but only for a very special class of near-rings, namely the
weakly distributive d.g. near-rings. Because of some complexities, we could only manage
to obtain certain results in restricted cases such as finite near-rings, or near-rings having
the DCCR. It seems that a considerable amount of work still needs to be done to
obtain similar results in the general zero-symmetric case.

The first section merely introduces some of the basic definitions, results and
techniques in matrix near-rings which will be used in this paper. For more details the
interested reader should consult [5], [7] and [1]. Section 2 deals with maximal left
ideals in matrix near-rings and the connections they have (or do not have) with
maximal left ideals in the base near-ring. A counter-example is given to show that the
near-ring case does not always necessarily follow the same pattern as in the ring case.

The final section is devoted, for the greater part, to finite zero-symmetric near-rings
and O-primitivity. It becomes clear from this section that in order to have a reasonable
understanding of modules over matrix near-rings, it is useful if one knows whether or
not such modules can be embedded into a direct sum of finitely many copies of the
additive group of the base near-ring.
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1. Definitions and preliminaries

Throughout this paper R will denote a zero-symmetric right near-ring. Unless
otherwise specified, R will also be assumed to contain an identity element. For any
natural number n, R" denotes the direct sum of n copies of the (not necessarily abelian)
group (R, +). From now on, n will always denote an arbitrary but fixed natural
number. We write the elements of R” in the form (r,,r,,...,r,> where r,eR for all
i=1,2,...,n. In particular, 0:=0,0,...,0> where the symbol := means “is defined by”.
The functions =;:R"—R and 1;;: R—>R" will denote the ith co-ordinate projection and
injection functions respectively.

Definition 1.1. The near-ring of nx n-matrices over R, denoted by M,(R), is defined
to be the subnear-ring of M(R"), generated by the set of functions {f ,fj:R"—>R"|reR,
1<i,j<n} where fi<r,ry,...,10:=(51,52...,8,» With s;=rr; and s,=0 if k#i. The
elements of M,(R) will be referred to as n x n-matrices over R.

It follows that M ,(R) is a zero-symmetric right near-ring with identity I=f1,+ f3, +
-+ + f1. If R happens to be a ring, then M,(R) is isomorphic to the usual full matrix
ring over R. Sometimes, because of typographical problems, we write f7; as [7; 1, j].

It happens frequently that we need to know a specific way in which a matrix is
compiled in terms of the functions f7};. We therefore introduce the following concept.

Definition 1.2. Let S denote the free semigroup over the alphabet of symbols
{filreR1=0,j<n} U{(,), +}. The set E,(R) of matrix expressions is the subset of S,
recursively defined by the following rules:

(a) fi;eE,(R) forallreR and 1<i,j<n;

(b) if X, YeE,(R), then X+ YeE,(R);

(¢) if X, YeE,(R), then (X)(Y)eLE,(R);

(d) nothing else is in E,(R).
Clearly, each element of E,(R) represents a matrix in M,(R). On the other hand, each
matrix has infinitely many expressions representing it. For example, the expressions X
and X + f9,, for any X eE,(R), represent the same matrix. Also, when we write down an
expression, we usually discard any redundant parentheses without disturbing unambi-

guity. For example, the expression (f7,)(f}i+f%2) would be written (mostly) as
f(f31+S12) f XeE,(R), m(X) will denote the matrix in M,(R) represented by X.

Definition 1.3. Let XeE,(R) and UeM,(R). The length, I(X), of X is defined to be
the number of f}; in it. The weight, w(U), of U is defined to be the length of an
expression Y of minimal length such that m(Y)=U.

One way to relate (two-sided) ideals in M,(R) to those in R, is by means of
Noetherian quotients: If A4 is an ideal of R then we define A* to be the ideal
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(A" R")={UeM,(R)|Uxe A" for all aeR"}, where A" is the set {(a,,a,,...,a,>€R"|
a;€A,i=1,2,...,n}. As a matter of fact, if L is a left ideal of R, then (L":R") is also a
two-sided ideal of M,(R) and is equal to A*, where A4 is the largest two-sided ideal
contained in L. We prove this in the following lemma.

Lemma 14. If L is a left ideal of R and A is the largest two-sided ideal of R
contained in L, then L* = A*.

Proof. Since ASL, A*<L* Now suppose U ¢ A*. Then n;Ua¢ A for some i, 1 <iZn,
and aeR". Therefore, (m;Ux)r¢ L for some re R. But (m;Ua)r=n;U(ar), where ar means
multiply each co-ordinate of a by r on the right. (See Meyer [7, Lemma 2.1.]) Hence,
UgL* O

Note that there are other (non-equivalent) ways of relating ideals in M,(R) with those
of R, resulting in a vital difference between ring matrices and near-ring matrices, namely
that there is in general not a bijection between the set of ideals of R and the set of
ideals of M,(R)—even if R is a finite weakly distributive d.g. near-ring with identity.
More details are contained in [12], [7] and [3].

Given an R-module G, one can ask the question: If G" is the direct sum of n copies of
G, how can we define an M, (R)-module structure on G"? We need the following
definition.

Definition 1.5. Let G be an R-module. Then G is said to be locally monogenic if for
any finite subset H of G there exists g € G such that H S Rg.

This idea was introduced by Van der Walt [11] and he used the term connected.
Clearly, if G is finite, then G is locally monogenic if and only if G is monogenic.

Now, if G is a locally monogenic R-module, then we define the action of M,(R) on G”
as follows: Let UeM,(R) and {g,,£5,...,£,> €G". Then, by Definition 1.5, there are
geG and r,r,,...,r,eR such that g,=rg,i=12,....,n. Let U{g,g;,....8.0:=
(ULry,ra,...s10)g, where s,83,...,5,08: = (518,528, ---,5,8> for any {sy,5,,...,5,0€R".
It is shown in Van der Walt [11] that this action is well-defined and it makes G" an
M,(R)-module.

Also note that R" can be viewed as an M,(R)-module in a natural way, since M(R) is
a subnear-ring of M(R"). If L is a left ideal of R, then the action of R on R/L, namely
Hs+L):=rs+ L for all r,se R, can be used to define (R/L)" as an M, (R)-module as follows:
Let UeM,(R) and {r;+L,ry+L,...,r,+L>€e(R/L)" and suppose U{r,,r;,...,r,>=
(tysty,..ostyy. Then Ury+Lry+L,...,r,+L):={t;+L,t,+L,....,t,+L). An easy
induction argument on the weight of matrices in M, (R) shows that this action is
well-defined and turns (R/L)" into an M,(R)-module. Furthermore, L” is an M,(R)-ideal
of R" and we can therefore also consider R"/L* as an M,(R)-module in the usual way.
The following lemma states that there is virtually no difference between the
M,(R)-modules (R/L)" and R"/L".
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Lemma 1.6. (Meyer [7]). If L is a left ideal of R then the M,(R)-modules R"/L" and
(R/L)" are M (R)-isomorphic.

We now state some results which will be useful later on;

Theorem 1.7. (Van der Walt [11]). If A is a two-sided ideal of R, then M (R/A)=
M, (R)/A* as near-rings.

Lemma 18. (Van der Walt [11]). Let G be an R-module and ve{0,2}. If R is
v-primitive on G, then M (R) is v-primitive on G".

Lemma 1.9. (Van der Walt [11]). Let ve{0,2}. If A is a v-primitive ideal of R, then
A* is a v-primitive ideal of M ,(R).

Lemma 1.10. (Van der Walt [11]). Suppose I" is a type 2 M, (R)-module and let
o :=Anny \I". Then there is an ideal A of R such that of = A*.

Lemma 1.11. (Meyer [7]). An ideal o/ of M,(R) is 2-primitive if and only if o = A*
for some 2-primitive ideal A of R.

Lemma 1.12. (Van der Walt [11]). If the M, (R)-module T is monogenic, then I =G"
as additive groups for an appropriate R-module G.

The R-module G of Lemma 1.12 is defined as f{,I'={f1,y|yel’} where r(f},y):=
Si(f11y) forallreR and fyefi,T.

2. Maximal left ideals

Whilst studying O-primitivity in matrix near-rings, it would be very handy to have
some nice relationships between maximal left ideals of R and those of M,(R). Stone [10]
characterises all maximal left ideals in matrix rings as follows:

Theorem 2.1. (Stone [10]). If L is a maximal left ideal of a ring R and o.e R"\L", then
(L":oz):={UeM,,(R)| Uae L} is a maximal left ideal of M,(R). Moreover, every maximal
left ideal of M, (R) is of this form.

Unfortunately, in the near-ring case the situation is not the same. We will show that
under certain conditions, (L*:a) is indeed a maximal left ideal of M,(R), where R is a
zero-symmetric near-ring with identity (Theorem 2.4), but not under the general
conditions of Theorem 2.1 (Example 2.5). Also, we will prove that for some “well-
behaved” near-rings R, the maximal left ideals of M, (R) are indeed of the form (L":a) as
described in Theorem 2.1 (Theorem 2.11). Before we can prove these theorems, we need
the following lemmas.
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Lemma 2.2. Let A={s,,s,,...,5,} be a finite subset of R and let S be the R-subgroup
of R generated by A. Furthermore, let T be the subset of R recursively defined by the
Jfollowing rules:

(a) s;eTforalli=1,2,...,n;

(b) if t,,t,€T, thent, —t,eT;

(¢) if teT and reR, then rteT;

(d) nothing else is in T.

Then S=T.

Proof. First of all, that T is an R-subgroup of R, follows directly from (b) and (c).
Since A= T (by (a)), we must have ScT.

Before showing that T<S, let us introduce some more terminology. Each teT is
always constructed (in many ways) by a finite number of applications of the rules (a)~
(c), starting always with rule (a). A unique number c ,(t) which is in effect the minimum
number of applications of the rules (a)-(c) needed to construct ¢, will be assigned to ¢t in
the following way:

We call a sequence t,,t,,...,t,, of elements of T a generating sequence of length m for
t with respect to A if t,€A, t,=t and for each k=2,3,...,m, one of the following
applies:

() ned;

(1) te=t;—t; 1Zi,j<k;

(iii) t,=rt;, 1<i<k and reR.
The complexity of t with respect to A, denoted by c,(t), is the length of a generating
sequence of minimal length for ¢ with respect to A. Note that c,(f)=1 if and only if
te A. We can now finish the proof of Lemma 2.2.

Let teT. We will show that teS by using induction on c,(t). If c(t)=1, then

te ASS. Suppose c,(t)=m>1 and that all t'e T with c,(t') <m are contained in S. We
have two possibilities:

1. t=t,—t, where t,t,€T and c(t;), c,(t;)<m. Since t,t,€S, we must have
t=tl-t2€S.
2. t=rt,, where t, € T, re R and c(t,) <m. Since t, €S, we have t=rt, €S.

By induction all elements of T are contained in S and the proof of the lemma is
accomplished. O

Lemma 23. Suppose S is an R-subgroup of R generated (as an R-subgroup) by the
elements sy, s,,...,s, in R. Let a:=<{5y,55,...,5,» €R". Then

M, (R)x =S
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where M,(R)a:={Uax|U e M,(R)} and S":={{x,,x,,...,x,>€R"|x;€8,i=1,2,...,n}.

Proof. To show that M, (R)a<S", we use induction on the weight of matrices in
M,(R). Let UeM,(R) and suppose w(U)=1, ie. U=f}; for some reR and 1Zi,j<n.
Then UB=1(rn;f)eS", for all BeS". In particular UaxeS". Now suppose w(U)=m>1
and VBeS” for all feS" and for all VeM,(R) with w(V)<m. There are two cases to
consider:

1. U=V, +V, with V,V,eM_(R) and w(V,),w(V,)<m. It follows that UB=V,f+
V,feS"+8"<S".

2. U=V,V, with V,V,eM, (R) and w(V)),w(V,)<m. In this case Uf=(V,V,)B=
Vi(V,p)=V,y for some ye S" so that V,yeS".

In both cases it follows that UaeS”, since xeS". From induction it follows now that
M, (R)ax = S".

In order to prove that S"< M, (R)a, we will show that 1;7,(S")=<§, {0}, {0},...,{0}> <
M,(R)a. The same method can then be used to show that 1m(S")=M,(R)a for all
i=1,2,...,n Since M, (R)x is an M, (R)-subgroup of the M, (R)-module R", it follows
that Y 7_, 1;m(S") =S"<=M,(R)a.

Since S is the R-subgroup of R generated by A={s,,s,,...,s,}, we can apply Lemma
2.2 and so each element of S has a complexity with respect to A. Now let se S such that
cq(s)=1. Then se A, ie. s=s; for some j,1<j<n But then 1,(s)=(s,0,0,...,0>=
f1j2eM,(R)a. Now suppose s€S with c,(s)=m>1 and that 1,(t)e M,(R)« for all te§
with ¢ (t) <m. Consider the following possibilities:

1. s=t,—t, with ¢t,,t,€S and c4(t;), cu(t;)<m. But then 1,(s)=1,(t;)—
1,(t3) e M, (R)a— M, (R)a =M, (R)a.

2. s=rt where reR,teS and c,(t)<m. In this case 1,(s)=f71,(D)efi1 M, (Rac
M, (R)a.

The principle of induction assures us that 1,(S)=1,7,(8")cM,(R)x and by the argu-
ments above, our proof is complete. 0O

Theorem 2.4. Suppose L is a maximal left ideal of R and a={s,,s,,...,5,>€ R"\L" is
such that the set {s,s,,...,s,} generates R as an R-subgroup of R (for example, if at
least one s;=1). Then (L":a) is a maximal left ideal of M,(R), where (L":a):=
{UeM,(R)|UxeL"}.

Proof. Consider the M, (R)-homomorphisms ¢:M,(R)=»R" and ¢:R"-R"/L'=
(R/L)", where ¢(U):=Ua for all UeM,(R) and ¥ is the canonical M ,(R)-epimorphism.
The isomorphism follows from Lemma 1.6. Furthermore, M, (R)a=R" as follows from
Lemma 2.3, which means that ¢ is an epimorphism. But then ¥ o ¢:M, (R)—R"/L" is an
epimorphism. We deduce that M, (R)/(L":a) =M, (R)/Ker (¢ o ¢)=Im (¢ o )= R"/L". But
since R/L is simple as R-module, (R/L)" is simple as an M, (R)-module. (See Meyer [7,
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Corollary 2.10.]) This means that M, (R)/(L":2)~R"/L"=(R/L)" is simple as
M, (R)-module and we deduce that (L":a) is maximal in M,(R). O

We will now provide an example to show that when ae R"\L", but the co-ordinates of
o do not generate R as R-subgroup of R, then Theorem 2.4 is in general not valid.

Example 2.5. Let G:={0,1,2,...,7} denote the cyclic group of order 8. The non-
trivial proper subgroups of G are denoted by H,:={0,2,4,6} and H,:={0,4}. Define R
as follows:

R:={feM(G)|f(H)=H,i=1,2,and if x,ye H, with x—yeH,,

then f(x)—f(y)eH,}.

It is routine verification to check that R is a zero-symmetric, abelian near-ring with
identity. Moreover, R is finite with |R|=2'¢=65536.
Now consider the following subsets of R:

M:={feR|f(1)eH,},
K:={feR|f()eH,},
L:={feR|f(1)=0}=Anng(1).

Obviously, {0}cLcKcMcR, where “c” means proper inclusion. We also observe
the following facts:

I. L is a maximal left ideal of R.

Proof. Being the annihilator of an element in G, L is certainly a left ideal of R.
Since R1=G, we have that R/Anng(1)=R/L=>~G as R-modules. The only
possible non-trivial proper R-ideals of G are H; and H,. But r2+1)—r(1)=
r3)—r(1)=11if {3)=1 and r(x)=0 if x#3. Since 2e H, and 1¢H,, H, is not an
R-ideal of G. In a similar way it follows that H, neither is an R-ideal of G,
implying that G is a simple R-module. But then R/Lis a simple R-module and

so L is a maximal left ideal of R. a
II. Both K and M are R-subgroups of R (and not R-ideals).
Proof. Straightforward. O

HI. K is an R-ideal of M.

Proof. Since (K, +) is a normal subgroup of (R, +), it is a normal subgroup of
(M, +) as well. Let ke K,me M and reR. Then

[rk+m)—rm](1)=r(h,+h,)—r(h,) where h,e H;,i=1,2
EHz, Since hl,h1+h2€H1 and (hl+h2)—hleH2. E]
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1V. We have the following proper inclusions of R-modules:
L/LcK/LcMJ/L.
Proof. This is merely a matter of equivalence class arithmetic. O
V. The R-module M/L is not simple.

Proof. From III and IV it follows readily that K/L is a non-trivial proper
R-ideal of M/L. O

V1. The R-subgroup M of R is generated (as an R-subgroup) by the two elements m,
and m,, where

29 x=1 2if x=1
0if x=2 -
my(x):= 4;i=6 my(x):=4 0if x=4

. x otherwise.
X otherwise

Proof. Since m;,m,e M, the R-subgroup generated by m, and m, is certainly
contained in M. Conversely, if meM, choose r;,r, e R as follows:

m(l)—m(2) if x=2 m(2) if x=2
rx):=4 m(1)+m2) if x=6 ry(x):=< m(6)—m(4) if x=6
m(x) otherwise 0 otherwise.

Then rym, +r,m,=m, as can be easily verified and so M is contained in the
R-subgroup generated by m, and m,. O

VIL. For any n=2 we have that M, (R)a=M", where a:={m;,m,,0,0,...,0>€ R" with
m, and m, as in VI.

Proof. This result follows directly from VI and Lemma 2.3. 0O
VIIL. For the « of VII it follows that a € R"\L" and (L*:a) is not a maximal left ideal of
M,.(R).

Proof. Consider the mappings ¢:M,(R)—-R" and yY:R"->R"/L"=~(R/L)" of
M ,,(R)-modules as in the proof of Theorem 2.4. It follows that

Im(y o @)={Ua+ L"|U eM,(R)}
=M"/L" by VIL
Furthermore , M, (R)/(L*:a) =M, (R)/Ker(y o §) = M"/L". But M/L is not simple

as an R-module (from V) and so (M/L)"=M"/L" is not simple as an
M, (R)-module which implies that (L":«) is not maximal in M ,(R). 0

It must be emphasised that although K is not a left ideal of R, (K":a) is indeed a
maximal left ideal of M,(R), properly containing (L":a). It can be shown that (K":a) is
of the form (T”:8) where T is a maximal left ideal of R and feR"\T":Take T as
{feR|f(2), f(6)eH,}, and $=(1,1,0,0,...,0>eR".

If T is a faithful type 0 M,(R)-module, then I is M,(R)-isomorphic to M, (R)/& for
some maximal left ideal & of M, (R). It follows from faithfulness that the largest
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two-sided ideal in & is {0} and hence, if ¥ =(L":a) for some maximal left ideal L of R
and aeR"\L", then L*={0}, because L*=(L":R")S(L":a)=% and L* is two-sided.
Consequently, if we can find an R with M,(R) O-primitive and such that no maximal left
ideal L of R has the property L*={0}, then at least one maximal left ideal of M,(R)
cannot be written in the form (L":a) where ae R*\L". It is not known whether such an R
exists. In Theorem 2.11, however, it will be shown that when R is a weakly distributive
d.g. near-ring, then every maximal left ideal of M,(R) can be expressed in this form.

Recall that a d.g. near-ring R is weakly distributive if its distributor series {D'(R)}
terminates in {0}, where

D°(R):=R, and
D'*!(R):=Gp{{x(a+b)—xb—xa|xeR,a,be DR)}* if i20.

Here Gp{X)>® denotes the normal subgroup of (R, +) generated by X<R. The
interested reader should consult Meldrum [4] for a comprehensive study on this subject.
We also quote the following lemmas from [4]:

Lemma 2.6. (Meldrum [4, Theorem 9.45]). Let R be a d.g. near-ring with R>=R.
Then D"(R)=4,(R) for all n=0 where 6,(R) denotes the nth term of the derived series of
the group (R, +).

Lemma 2.7. (Meldrum [4, Corollary 9.46]). If R is a d.g. near-ring with R>=R, then
R is weakly distributive if and only if (R, +) is soluble.

Lemma 2.8. (Meldrum [4, Corollary 9.34)). If R is a d.g. near-ring then 6(R) is an
ideal of R for all i=0.

Lemma 29. (Meldrum [4, Corollary 9.49]). If R is a d.g. near-ring with (R, +)
soluble, then 3,(R) is multiplicatively nilpotent.

It was shown in Abbasi, Meldrum and Meyer [2] that if R is a weakly distributive
d.g. near-ring, then so is M,(R). By Lemmas 2.7, 2.8 and 2.9 it follows that §,(M,(R)) is
a multiplicatively nilpotent ideal of M,(R). Consequently, 4,(M,(R)) is contained in
Z12(M,(R)) from which it follows that 6, (M (R))<# for any maximal left ideal & of
M,(R), since 7} ,(M,(R))=n {£ | is a maximal left ideal of M,(R)}. This leads us to
the following lemma:

Lemma 2.10. Suppose R is a weakly distributive d.g. near-ring and let & be a maximal
left ideal of M,(R). Then there exists an a€R" such that the set of co-ordinates of o
generates R as an R-subgroup and such that (.%t:oc):={UeM,,(R)|Uae$a}cM,,(R),
where La:={La|Le £}.

Proof. Since M, (R) is d.g., each matrix can be represented by an expression
involving only f7; and plus-signs (Abbasi [1, Theorem 4.1]). In fact, since M,(R) is also
weakly distributive, any U € M,(R) can be expressed as
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Us f+fH++f%
I ST

+ % S35+ + [+ U, where U'e6,(M,(R)) < 2.

Now suppose the lemma is not true. Then (La:a)=M,(R) for all ae R" of which the
co-ordinates form a generating set for R as R-subgroup; in particular, for all a with
ma=1 for some i, 1 £i<n. Consequently, La=R" for all such oa. To simplify matters, we
shall stick to the case n=2. A similar (but much more clumsy) procedure applies for the
case n>2.

For every yeR there is a matrix U,e.% such that U1, y>=<1,0). Since f{,U,e &
and f1,U <1, y>=<1,0), we shall only consider first row matrices in %, i.e. matrices of
the form f},L, Le &. Similarly, for every xeR, there is a (first row) matrix V,e.% such
that V. {(x,1>={1,0). Now suppose

Uy=[r; L1+ s 1,21+ ry; 1,114 55 1,21+ - + [ 1, 11 + [5; 1, 2]
Then
Uy=[ri+r+-+r,; L1]J4+[s;+5,+ - +5,; 1,2]+ U, for some U, e Z.
Let a(y):=ry+r,+---+r, and b(y):=s, +5,+" - +s5,. Then, since U, {1, y>=1,03, it

- follows that a(y)+b(y)y+d(y)=1 for some d(y)ed,(R). Consequently, for any yeR,
there aie b(y)e R and d(y) e d,(R) such that

(1—-d(y)=b(y)y; 1, 1]+ [b(y); 1,2]€ £.
But [ —-d(y); 1,1]€ % (Abbasi [1, Corollary 4.18]) and thus we have that
[1=b(y)y; 1,11+ [b(y); 1,2)e £.
By a similar argument, for any x € R, there is an a(x)€ R such that
[a(x); 1,1]+[1—a(x)x; 1,2] e Z.

Since & is a left ideal we deduce that for any x,y,z,weR, [z(1-b(y)y);1,1]+
[zb(y); 1,2]€ £ and [wa(x); 1, 1]+ [w(1 —a(x)x); 1,2] € &, and so

[z2(1 —b(y)y) + wa(x); 1, 1]+ [2b(y) + w(1 —a(x)x); 1,2] e Z.

Let y=0, x= —b(0), w= —b(0) and z=1 4 b(0)a( — b(0)). Then we have (with b(0) written
as b and using the fact that x(— y)—xyeé,(R) for all x, yeR)

[1; 1,1]+[b+ba(—b)b+(—b)(1+a(—b)b);1,2]e &
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and since the expression in g and b is an element of D'(R)=4,(R), we conclude that
fle®.

It follows mutatis mutandis that f1,e.% and therefore f},+ f},, the identity matrix, is
an element of %, which is a contradiction. [

Theorem 2.11. If R is a weakly distributive d.g. near-ring and & is a maximal left
ideal of Mi(R), then there exists a maximal left ideal L of R such that & =(L":a) for some
ae RM\L"

Proof. From the previous lemma it follows that there is an aeR" (of which the
co-ordinates generate R as an R-subgroup and can therefore not be in L* for any proper
left ideal L of R) such that (ZLa:a) =M, (R). But since £ <=(ZLa:a) and £ is maximal,
we must have ¥ =(ZLa:a). Also, Lo is an M,(R)-ideal of the M (R)-module R" and is
thus of the form K" for some left ideal K of R (Van der Walt [11, Lemma 3.7]). But K
is contained in a maximal left ideal L which means that . =(K":a) =(L":a)c M,(R) so
that £ =(L":a). O

Corollary 2.12. If the d.g. near-ring R is weakly distributive, then

(Z12(R))* = Zo(M(R)) = (% (R))*.

Proof.

T,(M(R))=n {£|& is a maximal left ideal of M,(R)}

=N {(L":aL)|L is an element of a subset of the set of all maximal
left ideals of R and a; € R"\L"}, by Theorem 2.11

2N {(L:a)|L is a maximal left ideal of R and e R"\L"}
2 {(L:R")|L is a maximal left ideal of R}
=((n {LIL is a maximal left ideal of R})": R") by Pilz [9, 1.44]
=((41,2(R))":R")
=(J12(R))*.
Since (7;,(R))* is two-sided, (7; ,(R))* < Jo(M,(R)). Furthermore, Z5(M,(R)) < (Z(R))*,

from Meyer [7, Theorem 2.34(a)], and since (Z%(R))* =(;,,(R))* (by Lemma 1.4), the
result follows. O
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3. 0-Primitivity

In this section we will concentrate on those R-modules embeddable into zR. We shall
see that when R has DCCR, ie. R has the descending chain condition on R-subgroups,
then much can be said about simple faithful R-subgroups of R. If R is finite we can even
go further and prove a strong relationship between R and M ,(R), as far as O-primitivity
is concerned. Of course, the next step would be to study this relationship in arbitrary
zero-symmetric near-rings.

Lemma 3.1. Suppose K is an R-subgroup of R. Then
(a) The R-module K is faithful if and only if the M, (R)-module K" is faithful.
(b) The R-module K is simple if and only if the M,(R)-module K" is simple.

Proof. (a) Suppose , K" is faithful. Let 0%£reR. Then f%, is non-zero in M,(R)
which means that there is an ae€ K" such that f,a#0. This implies that n,ae K and
Hm,a)#0. Consequently, zK is faithful.

On the other hand, let zK be faithful. Suppose UeM,(R) is non-zero. Then
Ulry,ry,. .ty =<Cty,ty,...,t,» with r,t;eR and at least one ¢;, say t,, is non-zero.
Since zK is faithful, there is a ke K such that t k0. But then U{rk,r.k,...,r,k>=
(tik,tyk,. .., t,k>#0, while {r k,r,k,...,r,k>e K" In other words, m K" is faithful.

(b) Suppose gxK is not simple. Then there exists an R-ideal H of K such that
{0}cH<K and so (H", +) is a proper non-trivial normal subgroup of (K" +).
Moreover, H" is an M,(R)-ideal of K", as follows: Let ae H”, fc K" and f7;e M (R).
Then fif{a+p)—fi;B=7, where myeH and my=0 if k#i. So yeH" Now let
w(U)=m>1, and suppose V(a+ f)— Ve H" for all ae H", B K" and matrices V with
w(V)<m. There are two cases to consider:

1. U=V, +V,, with w(V,), w(V,)<m. But then U(a+pB)—UB=(Vi+V,)(a+p)—
(Vi+V)B=V(a+ B+ Vi(a+ B V.-V f=V{a+f)+y—V f=V (a+p)—
V.B+7y e H", for some y,y € H",

2. U=V,V,, with w(V,), w(V,)<m. In this case, U(a+pB)—UB=V,Vy(a+ph)—
ViVoB=V [ Vy(a+ B =V, B+ V,8]—V,V,fe H", since V,(a+p)—V,feH".

From induction it follows that y K" is not simple.

Conversely, suppose y K" is not simple. Then there is a non-trivial M,(R)-ideal
H# <K". But o is of the form H" for some R-ideal H of K, where {0}cHcK (take
H={n,a|aes#}) As a consequence, zK is not simple. O

Theorem 3.2. Suppose R has DCCR and does not necessarily contain an identity. Let
K be a non-zero R-subgroup of R. If the R-module K is simple and faithful, then it is
monogenic.

Proof. Since K is faithful, K¢ Anng(k,) for some k,eK. Moreover, because
K n Anng(k,) is an R-ideal of K, we must have K N Anng(k,)={0}. Now consider the
map ¢:K—K where ¢(k):=kk, for all keK. This map is injective, for if kk,=k'k,
where k#k’, then 0%k —k'e KnAnng(k,)={0}, a contradiction. That ¢(k+ k)= (k) +
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&(k’) and @(rk)=r¢(k), for all k,k'e K and reR, follows trivially. We deduce that K and
Kk, =1m(¢) are R-isomorphic.

If Kk,cK, we can repeat the process with K replaced by Kk, and obtain an
R-module Kk,k, =Kk, which is R-isomorphic to Kk, (and hence to K). And so we can
continue to repeat this process until the containment is not proper any more {because of
the DCCR) and we end up with a chain of R-subgroups:

KDKkIDKkzklD"'DKkiki_l...k1=Kki+lki...kl.
This implies that k;.k;...k;=Kk'k;,k;...k, for some k’e K, whence Rk;,k;...k;=

Rk'k;yki.. . kS Kk k;...ki S Rk; . 1k;...k, and it follows that Kk;, k;...k, is mono-
genic over R by k;,k;...k,. Since all the subgroups in the chain are R-isomorphic, zK

is also monogenic. 0
Corollary 3.3. If R has DCCR and contains a simple faithful R-subgroup, then R is
O-primitive.

Note that Theorem 3.2 is no longer valid if zK is not faithful: Let, for example,
G:=Z,®Z,®Z, and let H,:={(0,0,0),(0,1,0)}, H,:={(0,0,0),(1,0,0)}, Hj:=
{(0,0,0)(1,1,0)} and H:=)2_,| H;. Then define R as follows:

R:={feMy(G)|f(H)<H,for all i=1,2,3}.
R is a finite near-ring with identity. If we now take
K={feR|f(0,0,1)e H and f(a)=(0,0,0) for all 2(0,0, 1)},

then it is easy to verify that zK is simple, not faithful and also not monogenic.

Theorem 3.4. Suppose R is finite. Then M, (R) is O-primitive if and only if R is
O-primitive.

Proof. If R is O-primitive then M, (R) is O-primitive by Lemma 1.8. Now suppose
mw] is a faithful type 0 module with generator y. Then I'=M,(R)/Z as M,(R)-modules
where £:=Anny (y) is a maximal left ideal of M,(R). Since v xM,(R)/Z is faithful,
& cannot contain any two-sided ideals other than {0}. Also, since M,(R) is finite, it
contains minimal left ideals as well as minimal two-sided ideals. Suppose all minimal left
ideals of M, (R) are contained in %. According to Pilz [9, 3.54], every minimal
two-sided ideal is a direct sum of minimal left ideals. This would mean that ¥ contains
all the minimal two-sided ideals, which is impossible.

Consequently, there is at least one minimal left ideal, say %, of M, (R) such that
B¢ L. Hence, By+#{0}. From Pilz [9, 3.10], it follows that =TI as M,(R)-modules.

Furthermore, since % # {0}, there is a non-zero aeR" such that %« is a non-zero
M, (R)-subgroup of R". This implies that Ba is of the form K" for some non-zero
R-subgroup K of R. (Take K ={n,Bx|Be®}.) The map #— K" which sends Be % to Ba
for all Be # assures us of an isomorphism
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K" B)(B ~ Anny (@) = B/{0} = B

of M,(R)-modules. Consequently, I' = K" as M,(R)-modules whence 4, 5, K" is simple and
faithful. We therefore must have zK simple and faithful, by Lemma 3.1. Corollary 3.3
now implies that R is 0-primitive. O

Corollary 3.5. If R is a finite O-primitive near-ring, then there exist a maximal left
ideal % and a minimal left ideal B of M, (R) such that

M,(R)=Z @ B.

Proof. Following the same terminology as in the proof of Theorem 3.4, # n ¥ ={0}
by the minimality of # and we therefore must have that M, (R)=@® %, by the
maximality of Z. ]

The following corollary clears up—at least to a certain extent—open problem 5 posed
in Meyer [7, p. 105]. For any k,1<k<n, %, is defined to be the left ideal of M ,(R)
generated by the matrix f1,. We also define

.//f,,2=$1+$2+"'+3’,‘_1+$k+1+“'+$",

In Meyer t6] it is shown that if F is a near-field, then, with R replaced by F in the
foregoing, .#, is a maximal left ideal of M (F). Moreover, it is shown that

M= Annm,(r)(‘k(l))- ()

Corollary 3.6. If F is a finite near-field and with the notation as explained above, there
is a minimal left ideal B of M, (F) such that 8 N #,={0} and hence that

M (F)=»4,DB.

Proof. The module y s F" is faithful and of type 0 and we may choose y:=1,(1) as
generator. But, according to (1), .#, is the annihilator of y in the near-ring M,(F).
Following the proofs of Theorem 3.4 and Corollary 3.5 above, our result is
immediate. d

It remains, however, to be seen whether #<.%, in the corollary above, as was
suggested by the open problem discussed in the foregoing.

Another question which remains open is whether Lemma 1.10 remains valid if I" is a
type 0 M, (R)-module. Examples suggest very strongly (at least in the finite case) that
this is indeed the case. This would in turn, force Lemma 1.11 to be true in the O-
primitive case and by using Theorem 1.7 one should be able to prove a strong link
between Z5(R) and J,(M,(R)) which we formalise as follows:
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Conjecture 3.7. If R is finite, then
To(M(R)) =(Z(R))*.
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