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S O M E T R I A N G L E I N E Q U A L I T I E S A N D 
G E N E R A L I Z A T I O N S 

BY 

C. E. CARROLL, C C. YANG AND S. AHN 

ABSTRACT. Let Dn s(x) = II(-sa^+ a2 + #-* + a*), where at, s, 
and x are real, and II denotes the product over cyclic rearrange­
ments of the subscripts. We show that, in five special cases, 
Dns(x)Dns(y) is greater than a fixed multiple of D n s(x + y). 

Introduction and results. A plane triangle ABC has an incircle of radius r 
and a circumcircle of radius R. By a known trigonometric formula [5, p. 200], 

2r2-4R2 cos A cos B cos C = IP2 > 0. 

In terms of the sides of the triangle, we obtain 

(1) (-a + b + c)2(a -b + c)2(a + b-c)2 

>(-a2+b2 + c2)(a2-b2 + c2)(a2 + b2-c2). 

The functions appearing here are special cases of the general function 

Dn,s(x) = n ( - s a ï + a^+aS + - • • + < ) , 

where s and x are real and II denotes the product over the n cyclic rearrange­
ments of the subscripts. Although (1) holds for all real a, b, and c, our 
theorems 1, 2, 3, and 5 are valid only for positive values of The 
inequalities connecting Dns(jc)Dns(y) and Dn s(x + y) seem not to appear in 
standard treatises on inequalities [1,4,7], but we shall mention a slight 
connection between the work of Gârding [3] and the proof of 

THEOREM 1. If n>l and s < 0 , then D n s (x )D n s (y )>( - s )D n s (x + y). 

The inequalities for positive values of s are more interesting and more 
difficult. 

THEOREM 2, 

(2) [I>4,i(l)]2>3D4fl(2). 

We remark that (2) becomes an equality if we set ax = a2= a3 and take the limit 
as a4—»0. If we let a4—>0 and then use the elementary inequality 3(a2 + b2 + 
c 2 )>(a + fc + c)2, we recover (1). 

Received by the editors September 30, 1977 and, in revised form, February 20, 1979. 

267 

https://doi.org/10.4153/CMB-1980-037-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1980-037-6


268 C. E. CARROLL, C. C. YANG AND S. AHN [September 

Jensen's inequality [6] suggests the following generalizations: 

THEOREM 3. If x and y are positive, then 

(3) D3f l(x)D3 f l(y)^D3f l(x + y), 

with equality iff a1 = a2= a3. 

THEOREM 4. If au a2, s, x, and y are positive, or if s > 0 and x and y are 

positive integers, 

(4) D2iS(x)D2fS(y) > (1 - s)2D2,s(x + y), 

with equality only if |a1| = |a2|. 

Finally, we shall prove 

THEOREM 5. Suppose a?+y , a2
+y, a3

+y are the sides of a triangle. If x and y are 
positive and s < l , then 

(5) D3,s(x)D3,s(y) > 2(1 - s)2D3,s(x + y). 

Proof of Theorem 1. The proof is trivial if s = 0. If n > 1 and s < 0, we have 
^ , s W ^ s ( y ) > n ( s 2 a f y + a f y + ' • - + a*+y). The quantity on the right is grea­
ter than (-s)D n s (x + y), except that it is equal to Dn s(x + y) when s = - 1 . To 
prove this, we need 

LEMMA 1. If Au A 2 , . . . , An are positive, n > 1, s < 0 , and sj^-1, then 

(6) n ( s 2 A! + A 2 + - • • + An) + s n ( - s A 1 + A 2 + - -+AJ 

is positive. 

The proof can be done by induction on n or by use of Cauchy's inequality 
followed by Holder's inequality. We plan to give full details and extensions of 
Lemma 1 in a separate publication. We conjecture that the polynomial (6) is 
hyperbolic in the sense of Gârding [3]. 

Proof of Theorem 2. If the numbers ax- • • a4 are not all distinct, the 
inequality is easily proved. Let ax = a2. Then 

D4f l(l) = 4a2(a3 + a4)2 - (a2 - a2)2 

and 

D44(2) = 4a*2(aj + a2)2 - (a2 - a2
4f(aj + a2)2. 

Hence, 

12at(a3 + a4)4 - 3 (a | - al)4 > 3D4>1(2). 

Finally, 

[£>4,i(D]2 - 12a4
2(a3 + a4)4 + 3 (a | - a4)4 = [2al(a3 + a4)2 - 2 (a | - a2)2]2 ^ 0. 
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In the general case, we can write D44(1) and D41(2) in terms of the 
elementary symmetric functions a1 • • • cr4. They are defined by 

(7) U(x -at) = x4- a±x3 + a2x
2 - cr3x + a4. 

Some computations give 

^4,1(1) = -(rt + 4ala2- Sa1cr3+ 16a4, 

D4A(2) = -(0-1- 2a2)
4 + 4(cr? - 2a2)

2(al - 2VX<J3 + 2a4) 

-8(<T2 - 2cr2)((T
2
3 - 2a2<r4) + 16a2

4, 
and 

(8) [D4,1(l)]2-3D4,1(2) = P(o-1, cr2, 0-3)-8(7cr?-22 CT2O-2 + 32al(r3-26a4)a4, 

where P(o-l9 cr2, a3) is a polynomial. We shall show that (8) is a decreasing 
function of or4, when al9 a2, a3 are fixed. Then, if (8) is positive at the largest 
allowed value of cr4, it is always positive. If (7) has distinct real zeroes, its value 
at each local minimum must be negative. We may increase cr4 until the value at 
one of the local minima is zero; then two zeroes coincide and we have the case 
first considered. Thus, (8) is always positive. 

To show that (8) is a decreasing function of cr4, we need inequalities relating 
the symmetric functions. We shall use the method of Breusch [2] to show that 

(9) 13o-?-44o-1o-24-64o-3>0. 

By the arithmetic-geometric inequality, crt^44cr4> 104o-4. Combining this 
with (9) gives lu\-22cr\(T2 + 32a±a3-52cr4>0, showing that (8) is a decreas­
ing function of a4. 

Our last step is to prove (9). Since the left side is a homogeneous polynomial, 
we can set cr1 = l without loss of generality. Since cr3 is positive, (9) holds when 
cr2<\. Hence, we assume cr2>\. The polynomial (7) has four real zeroes. Its 
derivative, 

4[(x -W + &r2 -Mx - I ) + (|or2 -fr3 -à)l 

must have three real zeroes. We compute the discriminant of this cubic 
polynomial, as suggested by Breusch [2], obtaining 

(10) 32(cr2- |)3 + 27(o-2-2c73-i)2<0. 

But the quantity on the left is positive, unless o-2<|. This bound for a2 could 
be obtained more easily from Maclaurin's inequality [1,4]. From (10), we have 

13-44o-2 + 64o-3>5-12o-2-8(l-fc72)3 / 2 . 

We now minimize the function on the right side, using the bounds for cr2. Since 
this function has a negative second derivative at interior points of the interval 
[h i]> the minimum is at one of the end points. The values at both end points 
are positive, which completes the proof. 
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Proof of Theorem 3. We shall prove (3) and 

(11) D 3 , 1 ( x ) D 3 , 1 ( y ) < [ D 3 , 1 ( ^ ) ] 2 

by use of Jensen's inequality [6]. Most of the relevant properties of D31(x) are 
stated in two lemmas. 

LEMMA 2. If D31(x) ^ 0, then 

A2 

dx2 
(12) — l o g l D ^ M l ^ O , 

with equality iff ax = a2= a3. 

Proof. We may assume a1>a2^a3 without loss of generality. Since 
£*3,i(x)^0> n o vanishing denominators appear in 

d 2 -alax
2(log ^J + a*2a%{\og ffi - a |a ï ( log j f 

2log|D3-1(x)| = - / , , X / , , ± „ I t f dx2 °' J>1 " (-ax + ax + a^)2 

-a\ax
2\Aog-~\ - ax

2al\\og-^\ + a%a\\\og-^\ 

(13) + x \ 2 {-a\ + al + al) 
\2 / n \ 2 

+ 
a ^ l 0 g ^ ^ 

(aï 4- a\- ax
3)

2 

The first numerator is never positive, and {—a\ + a2 + a3)~
2>(ax-a2 +a3)~

2. 

Hence, -2axa2[\og—\ (a\ — a2 + a3)~
2 is an upper bound for the first two 

terms on the right side of (13). Further estimation gives 

- a j a ^ l o g - ^ j - a ^ l o g - ^ j - a%a\\\o%-^ 
d 

2 l0g|D3 ,1(x) |- ,„x^„x - 2 
dx2 ° ' J'iV n {ax + ax

2-a
x
3)

2 

which is negative unless ax = a2 = a3. We note that (12) is also valid when x < 0. 
The uniqueness of the positive real zero of D31(x) is essential for the proof 

of Theorem 3. This uniqueness follows from 

LEMMA 3. D31(x)l(a1a2a3)
x is a monotonie decreasing function of x, unless 

ax = a2 = a3. 

Proof. If x is less than the first positive zero of D31(x), we note that 

-~- log -—3i { vanishes at x = 0, and use Lemma 2 to show that log -—^—— 
dx (a^a^ (a1a2a3) 
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is decreasing, unless a1 = a2 = a3. If D 3 1 ( J C ) < 0 , we may assume ax>a2>a3 

without loss of generality. Then 

D^(x) _|"i (aAx ( f l3Vïï(aiVn (a3V1[(aiV ( a 2Vn1 
(a1a2a3)

x L \a1J \a1J JlAa2 / \a2J Jl_\a3/ \a 3 / J 

is the product of three increasing functions; the first factor is non-negative and 
the other two are positive. 

We can now prove (11). If D 3 1 ( I = 0 and x ^ y, then Lemma 3 implies 

DMD^yXO. If D M ( ^ ) / 0 , then either D3, l (x) or D3, l (y) has the 

same sign as D 3 1 l 1. If all three of them have the same sign, we obtain 

(11) from Lemma 2 and Jensen's inequality; if not, (11) still holds. 
Theorem 3 is easily verified if D3A(x)D3A(y)D3A(x + y) = 0. If D3tl(x + y)> 

0, then D31(x) and D3 4(y) are positive. Using Lemma 2 and Jensen's inequal­
ity, we find 

(14) \ogDxl(x) X log D3 1(x + y ) + - f - log D3.i(0) - - 7 - log D3 1(x + y ) 
x + y x + y x + y 

and, similarly, 

(15) log D3tl(y ) ̂  ^ J - log D3 1(x 4- y ). 

In both cases, equality holds iff a1 = a2
 = fl3- Addition of (14) and (15) gives 

(3). If D3 1(x + y )<0 , the proof is trivial unless Dxl(x) and D31(y) have 
opposite signs, we assume D3 j l(jc)<0<D3>1(y), and use Lemma 3 to show 

|D3,1(x)|_<|D3,1(x + y)| 

and 
D » ( y )

r < D M ( 0 ) = l. 
{axa2a3)

y 

Therefore, |-D3 j l(x)|D3 j l(y)<|D34(x + y)|, which completes the proof. 

Proof of Theorem 4. If ax and a2 are positive, then D2,s(0) = ( l - s ) 2 , 

D2,s(x)_ 

( Û I Û 2 ) X 
= l + s2 {(S)'+©1 

is a non-increasing function of x, and the proof of (4) is similar to that of (3). If 
c ^ a ^ O , or if a1 + a2 = 0, (4) is easily verified. Thus, we assume a1a2<0 and 
01 + ^2 7^0- H x is a n odd integer, then D 2 s ( x ) < 0 and 

|P2,,(*)I 
kl^2 |X = l + 52 + S 

/ | a i | x
 + | a 2 | x \ 

Via? I lai I / 
a2 , 
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is an increasing function of x. If y is even, this gives 

|D2^(x)|<|D2^(x + y)| 
kia2|

x Ka 2 r* ' 
and we also have 

^ ^ < D 2 , S ( 0 ) = (1-S)2 . 

Hence, |D2s(x)| D 2 s (y )< ( l - s ) 2 |D2,s(x + y)|. In this way, (4) is proved when x 
and y are integers of opposite parity. If x and y are both odd, D2,s(x + y) is 
unchanged when we replace ax and a2 by their absolute values, while 
D2s(x)£)2jS(y) decreases, so (4) must hold. Finally, (4) holds when x and y are 
both even. 

Proof of Theorem 5. Since aï+y, a j+ y , a3
+y form a triangle, D34(x + y) is 

positive; but (5) remains valid if it vanishes. To prove this, we shall use 

(16) 0<D3,1(x + y)<(a1a2a3)x+y. 

To prove the second half of this inequality, let x + y = 1 ; then 

2axa2a3 - 2D31(1) = (-a1 + a2 + a3)(a2 - a3)2 + (ax - a2 + a3){ax - a3)2 

+ (a1 + a2-a3)(a1-a2)
2 

is non-negative. 
The inequality published by Jensen [6] and Pringsheim [8], and attributed to 

Luroth, is useful. It implies that both triples (aï, a2, a3) and (ay, a2, a3) satisfy 
triangle inequalities. Hence, 

(17) D3j l(x)>0 and D3>1(y)>0, 

and (5) holds when s = 1. 
If s<0 , we note that the sign of the inequality in Lemma 2 is reversed. 

Jensen's inequality gives D3s(x)D3s(y)> D3J—— J . To prove (5), we shall 

show that 

[ ^ f r 2 ) ] 2 > 2(1 - s)2D3Jx + y). 

As in the previous paragraph, we have D3s(—— )>0. We set x + y = 2, 

without loss of generality. Then 

DXs (1) = -sal + (s + DVxO-2 - (s + 1)V3 

and 
D3,s (2) = S{CT\- 2a2f + (s + l)2(<r2o-2 - 2crl(73 + 4<T1O2O-3) - (s + l )Vi , 

where <rl9 cr2, a3 are the elementary symmetric functions of al9 a2, a3. We shall 
use s < 0 and 
(18) D3}1(1) = 4 ( 7 ^ 2 - o - ? - 8 c r 3 > 0 
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to show that 

[D3,S(1)]2-2(1-5)2D3,S(2) 

= lis ~ 1) V 2 + s2a2
l(r2 - s(2s2 - 35 + 2)a2

1(a
2
1 - 3cr2)](4cr2 - a2) 

+ 2(5 + l)2(3s2 - 3s + 2){d\ - la^a^ 

+ 2(5 +1) 2 ( -5 3 + 2s2 - 45 + l)D3,0(l)or3 

(19) +(5 + l)2(54 + 453 + 85 2 -65 + 5)(72 

is positive. From (18), 4o"2-cr2 must be positive. Also, <x2-3o-2 is non-negative 
and D 3 0 ( l ) is positive. Therefore, (19) is always positive and (5) holds when 
s < 0 . In particular, 

(20) D3,0(x)D3,o(y) > 2D3,0(x + y). 

Also, cr1c72>:9(73 gives 

£>3,o(l) = o"iO*2 - 03 > 8cr3, 

which can be written in the useful form 

(21) D3>0(x)>8(a1a2a3)x and D3 ,0(y)^8(a1a2a3)y . 

We now use 

D3>,(x) = 5D3>1(x) + (5 - 1 ) 2 D 3 ) 0 « - 5(5 -1)(5 + 3)(axa2a3)x 

to generate a lengthy expression for 

ô = D3 , s(x)D3 j S(y)-2(l-5)2D3 > s(x + y). 

If 0 < 5 < 1 , (3) and (20) give 

5 > 5(25 -1) (2 - s)D3tl(x + y) + 5(5 - l)2[D3)1U)D3>0(y ) + D3t0(x)D3tl(y)] 

+ s2(l - 5)(s + 3)[D3)1(x)(axa2a3)y + D3>1(y)(a1a2a3)x] 

+ 5(1 - 5)3(s + 3)[D3>0(x)(a1a2a3)y + D3>0(y)(a1a2a3)x] 

+ s(s-1)2(5 4- 3)(52 + 55 - 2)(aia2a3)x+y . 

Then (17) and (21) give 

ô>5(25- l ) (2 -5)D 3 , 1 (x + y) + 5(5-l)2(5 + 3 ) ( 5 2 - l l 5 + 14)(a1a2a3)x+y. 

Finally, (16) is used to show that 8 is positive when 0 < s < l . 
If s > 1, and s^ 2 then D3s(x) can change sign more than once as x increases 

from 0 to +00. If s > l , (5) cannot hold for all positive x and y. But a 
generalization from (4) and (5) to larger n appears possible. Suppose ax+y, 
a2

+y, a3
+y, a^+y are the sides of a quadrangle. If x and y are positive and s ̂  1, 

we conjecture that 

D4,,(x)D4ta(y)>4(l-s)2D4ta(x + y). 
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FINAL REMARK. The reader may have some difficulty to see that Theorems 1, 
2, 3, and 5, are valid when ax is negative. We have the following cases in which 
the inequalities are reversed. In Theorem 1, a1 = —2, a 2 = l , n = 2, s = ~l, 
x = l and y = 3. In Theorem 2, a1 = -l, a2 = a3 = a4 = 1. In Theorem 3, ax < 0 , 
x = 1, y = 2; then let a 2 -^0 and a 3 -^0 . In Theorem 5, a1 = —\, a 2 = a 3 = l , 
s = 0, x = y = 1. 
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