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This paper presents a systematic study of the automorphism groups of 
those unary (universal) algebras 21 = (G; F) whose carrier set G is the carrier 
set of some group ® = (G; •) and whose automorphism set Aut(Sl) contains 
the right translations of the latter group. These algebras appear, apart from 
the known classical contexts, repeatedly in characterization theorems of 
endomorphism semigroups (End) and automorphism groups (Aut) of algebras 
due to Grâtzer (3; 4; 5), Makkai (7), Armbrust and Schmidt (1), Birkhoff (2), 
and others. 

Our main result (Theorem 1) constitutes an essential strengthening of a 
theorem of Birkhoff and represents the automorphism group (Aut(SÏ); •) of 
a unary algebra 21 = (G; F) (where F is contained in the set L(®) of left 
translations of the group ® = (G; • )) as wreath product of two groups that 
are easily determined from F and G. In the remainder of § 1 we deduce in the 
form of corollaries some well-known results due to Birkhoff, Grâtzer, and 
others that follow quite easily from our general result. In § 2 we mention a 
few observations concerning arbitrary universal algebras on groups. 

We assume familiarity with the diverse algebraic concepts and keep essen­
tially to the denotations and terminology as introduced in (4). Universal 
algebras (shortly: algebras) are denoted by capital German letters 
(21, E, ®, . . .) or pairs of capital italic letters ((A; F), (C; F), (G; F), . . .) , 
where the first letters denote non-empty sets on which the sets of fundamental 
operations, denoted by the second letter, operate. All mappings, except the 
polynomials, are applied at the right side of the arguments; polynomials 
(i.e., all mappings that result from a finite number of applications of the 
fundamental operations to the projections) are applied at the left side. V, A 
are set-theoretical union and intersection, V' denotes the disjoint set-
theoretical union, W and C\ stand for lattice-theoretical union and inter­
section. E(2l) = (C(2();U, P\) is the (algebraic) congruence lattice of the 
algebra 21; o> Ç C(2l) (i 6 C(2I)) are the smallest (biggest) elements in that 
lattice. 

1. Unary operations. If a group ® = (G; •) is given, then we have the set 
R(&) of right translations rai a £ G. The question about the sets F of unary 
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operations that assure that 21 = (G; F) satisfies i?(@) C Aut(?i) is easily 
answered and stated in the next remark. 

Remark. R(®) C Aut(Sï) holds true if and only if F Ç L(@) = {/fl; a Ç G}. 

The question that we are interested in is the structure of the automorphism 
group of the universal algebra SI = (G; F) if, conversely, F C L(@). 

THEOREM 1. L ^ 2Ï = (G; F) be a unary algebra, where @ = (G; • ) is a group 
and F C L(@). If ([T7]; • ) is the subgroup of © generated by all elements b such 
that lb G ^ ([F] = {1} if F = <j>), then (Aut(2l); •) is isomorphic to the wreath 
product ([F] I Sa; •) (see 2, p. 81) resulting from a fixed decomposition into 
left cos et s of G, say 

G = [F]x0 V [F]Xi V" . . . V [F]x7 V . . . , 7 < a, xo = 1, 

where (Sa; •) w /Ae symmetric group on the ordinals {7; 7 < a} and [F] acts as 
permutation group via right translations on itself. 

Proof. Let G = [F]x0 V" [F]xx V* . . . V [F]xy V . . . , 7 < a, and 
0 G Aut(8Q. If 10 = c, then 60 = /&(1)0 = /6(10) = b-c and c = 10 = 
(6.&-i)0 = /6(6-i)0 = h(b~l<t>) = b-ib-W, i.e. J-1* = 6~^ holds for all 6 
with Z& G F. Induction on the length of the words shows that d<f> = dc holds 
for all d G [F], for if d = 6i'i-&2"2- . . . •&»"» (P, c { - 1 , +1}) with /,, G F and 
vi = + 1 , then it is clear. If 1̂ = — 1 , then we conclude: 

b1(br1'b2
v2- . . . -6/n)0 = (b1-br1-b2

v2- . . . • &„'»)<£ = 62"2- . . . •&„"»•<;, 

i.e. 
d<t> = 6 r 1 6 2 " 2 - . . . -bn

vn'C = dc. 

Thus, 10 determines 0 on [F] to be r1<t>. Similarly, xt<j> (i ^ 1) determines 0 
on [FJa;* to be rxi4>. We conclude that (Jxt)4> = f(?Ci<t>) for all / G [i7] and 

G = [F]-(1*) V [^]-(xi0) V . . . V [^]-(x70) V . . . , y <a. 

Thus, 0 induces in a natural fashion a permutation ^ of {7; 7 < a}, namely 
70-4, = 5 if x70 G [^Jxs. 0 also induces a mapping r^: {7:7 < a} —» [F] as 
follows: 

If x70 = ft+xiy = (by definition of <70) fya/Xy^, fiy = / T ^ G [F], 0 ^ 7 < «, 
then 77^ = fyff^. Thus, if we use the Cartesian denotation, we have: 

r+ = (fo*4*,fuS, . • • ,/7^*, • • •), 7 <OL. 

LEMMA 1. If H = { (T>, <^); 0 G Aut(Sl)}, /Ac» # = [F]« X S«. 

To prove the lemma, let (r, cr) G [F]a X ^ a and define 0: G —> G by 
(fxy)<t> = / • (77) -x7<r (g = /Xy G G). I t is easy to see that 0 G Aut(2l); more­
over, 7C0 = y a and yr^ = yr, i.e. (r, a) = (r^, a^) Ç J Ï . This proves the 
lemma. 
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We now define multiplication on H in the intuit ive manner, namely: 

where 

T<t,*T+ = (forf-fo^./, i Jy<r<l> 'Jy^if, > • • • / > y < a, 

if T> = (/o<r/,/i<r/, . . . , / y , / , . . . ) , T < «, and r* = (fo<r/,fu/, . . ) , 

) is a group 
7 < a. If we define multiplication this way, then 0: (Aut(2l) 
mapping <f> onto (r^, o>), becomes an isomorphism, hence (H\ 
isomorphic to Aut(St) . T o see this we calculate: 

(1) 0 is clearly one-to-one and onto (Lemma 1). 
(2) If 0, ^ € Aut(8 t ) , then: ( 0 . ^ )0 = (r0.*, cr0.*), where ya+j = ô if 

x 7 # - ^ € [^]x5; <£0 = (r0, cr0), where 70$ = 5 if xy<j> £ [F]^«; \f/0 = (r^, o>), 
where ycrj, = 5 if x7iA G [F]#«. Now, if xy<j> £ [-F]x«, then (xy<t>)\p Ç ([/tyca)^ = 
[^](x5^) = [F]xe if x70 £ [F]x«, Xg^ G [F]xc. Hence, 7 0 ^ = e. On the other 
hand, 700 = 6, ôo> = e, i.e. ycr^-a^ = e. Thus , o ^ = a^-a^. 

(3) If we use the denotat ion introduced above, then x7<£ 

Xyf = fy*/xy*r T h i s implies that xy<t>-^ = (fy^+Xy^f = fy^iocy^) 

A ^ W ^ - ' * = A ' / , A v / , H * wmle> on the other hand' *r*-# = 

/ T ^ 0 ^T«"0» 

/ 1 y^-xf, ' xy<r<t>'ii/- r i e n c e , jr7(r^ 'jy^.^ f, y**.* 
4>-1> i.e. 

*•* r0.^ — C/o 
= Cfo<r/*/o«r0 . / , • 

= T<£ * T^. 

(4) If we combine (2) and 

Jyvf-if, J •) (7 < «) 

y*<t> Jy<r<t>'i{, •) (7 < a ) 

(3), we see t h a t (0-i/O0 = (T*.*, o>.*) = 

Thus , 0 is indeed an isomorphism. 
We now turn to the wreath product ([F] I Sa\ •} which arises (see diagram) 

as indicated in the theorem (see (6)) . Using the foregoing lemma we note 
t h a t [F] I Sa consists of all permutat ions 6^,^ on the set [F] X { 7 ) 7 < a] 
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defined by (g, y)BH^ = (g(yr<f>), 7*0). We now define $>: ([F] I Sa\ -)-+(H; •> 
by 0r0 i^$ = (T0, (r0) = ((/W/, . . . ,/ycr/, . . .)(7 < «), O - This mapping $ 
is clearly one-to-one and onto; moreover, 

(gi 7)0^,0* •flrf.af = (g(77*)»7<ty)0V.<rf = ( [ g ( 7 ^ ) ] [ ( 7 ^ ) ^ ] » 7**'**) 

= (giyr^.ya^) = (g, 7 ) ^ , ^ 
which shows that 

Hence, ( 0 7 ^ - 0 ^ , ^ ) $ = OT^,,^* = (r0.*, a*.*) = (as proved before) 

(T>*7>, (T^'a*) = (T*, 0*) • (T>, o>) = ( 0 r 0 , ^ ^ ) - ( ^ , ^ ^ ) . Thus, <ï> is an iso­

morphism; hence 0-$ _ 1 : (Aut(2l); •) —» ([i7] £ 5 a ; •) is an isomorphism. 
We apply this theorem to obtain the following result. 

THEOREM 2. Tfee hypotheses are as in Theorem 1. 
(1) The sequence 

( l ; . ) ^ ( [ F r ; . ) - ^ ( A u t ( 2 l ) ; - ) - ^ ( 5 a ; . ) - . ( l ; ^ 

is aw exact sequence of groups for some 81, ô2. 
(2) The normal subgroup ([F]a] •) of (Aut(2t); •) (which is, of course, 

considered as subgroup via the natural embedding) is isomorphic to (Aut(2l); •) 
if a — 1. In case of finite groups © or (Aut(2l); •) we have ([F]a; •) ~ 
(Aut(2ï) ; • ) if and only if a = 1. 

Proof. As is well known from the theory of wreath products, ([F] I Sa', •) 
has the normal subgroup ([F]*; •), where [F]* = {0^,^; T<I, = id}; moreover, 
([F]*; ->^<[F]«; • )and ([F] I Sa/[F]*; - ) ^ < 5 « ; •). These remarks prove (1). 

(2) If a = 1, then ([F] I Sa; •) = <[F]*; ->^<[F]«; •), i.e., by Theorem 1, 
(Aut(2t); •) ^ <[F]«; •). If, on the other hand, a ^ 1 and Aut(2l) is finite, 
then ([F]*; • ) is a proper subgroup of ([F] I Sa; •), and hence ([F]a; •) $= 
<Aut(2l);->. 

COROLLARY 1 (Birkhoff). 21 = (G;L(®)) sa/w/ww Aut(2t) ^ @ for every 
group @. 

P^q/". F = L(@) implies a = 1; hence © = ([F]; •) ^ <Aut(2l); • >. 

Of course, to obtain BirkhofFs result, we do not really need all left trans­
lations. The same proof shows the next slightly stronger statement. 

COROLLARY 2. (1) 21 = (G; F), F C L(®), satisfies (Aut(SÏ); •) ^ © for 
all F with [F] = G (i.e. a — 1). 

(2) If Aut(2l) wjfawte, tfw?» 21 = (G; F), F C L(@), safw/k* <Aut(2l) ; • ) ^ © 
#" awd 0/2/3/ if [F] = G (i.e. a = 1) or |G| = 2. 

Neither Theorem 2(2) nor Corollary 2(2) can be sharpened to infinite groups 
as the following example shows. 
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Example. Let ( 3 ; + } be the additive group of integers, (&„; + ) the per­
mutation group on {7:7 < wo} (with + = o). Then 21 = ( 3 X Sao; Z(2,D), 

i.e. F = {/(a,!,), satisfies [F] = 2,3 X {1} and a = ««,. Thus, (Aut(9l); •) S 
([F] I Sa; • ) S (23 2 &.; • ) S (S l &„; • ) = @ while a * 1, i.e. [F] * G. 

COROLLARY 3. The group (Aut(20 ; • ) is simple if and only if (Aut(2ï) ; • } is 
isomorphic to © and © is simple (21 = (G; F), F C L(®)). 

Proof, The converse being obvious, let (Aut(2l); •) be a simple group. 
Then we claim that a = 1 or (G; • ) is the 2-element group. Assume that we 
proved this; then Corollary 2 shows that <Aut(2l) ; • ) ^ © if a = 1; if a ^ 1, 
then © is a 2-element group and, of course, the two right translations con­
stitute Aut(2l), thus again (Aut(3l); •) ^ ©. 

LEMMA 2. If (Aut(2l); •) is a simple group, then a = 1 or \G\ = 2. 

Proof. Since ([-F]a; • ) is a normal subgroup of (Aut(2l) ; • ) (see Theorem 2), 
we conclude that [FY = {1} or Aut(«) . If [F]« = Aut(2Q ( = [ ^ ] a ? S « ) , 
then a = 1. If [F]« = {1}, then [F] = 1, i.e. F = 0 or F = {/i} ; in other 
words, 21 is a trivial algebra and Aut(2l) = SG (the full permutation group 
on G). Since SG is simple if and only if \G\ ^ 2, we obtain |G| = 1, i.e. a = 1, 
or jG| = 2, i.e. (G; •) is the 2-element group. This proves the lemma and 
Corollary 3. 

I t can, of course, happen that Aut(2l) is simple while 21 is not simple. To 
see this, just take a simple group © with non-simple subgroup lattice and 
consider (G\ £(©)) = 21. Since every subgroup and its right cosets determine 
a congruence relation on 21, the proof is complete. 

COROLLARY 4. Aut(2l) is finite of prime order if and only if (Aut(2l) ; • ) = @ 
and © is finite of prime order. 

The corollary is clear since prime order groups are simple. 

COROLLARY 5. Simple unary algebras 21 = (A; F) permit a multiplication on 
A such that © = {A; •) becomes a group, F C L(@), and @^(Aut (2 l ) ; -}.+ 

Proof. Since 21 = (A ; F) is simple and unary, it is quite trivial that 
(1) 2Ï has a simple subalgebra lattice, i.e. [a] = A for all a Ç A, and that 
(2) A = {a<t>'f<t> £ Aut(2I)} since \Ga;Ga = {a<j>\ <t> G Aut(2t)}} are evi­

dently the blocks of a congruence on 21. Thus, a<j> ^ a\p is equivalent to 
4> T£ \p and (a<j>) • {a\p) = a^xf/ makes (A ; • ) = © a group isomorphic to 
(Aut(2l); •) on which Aut(2l) acts in a form of right-translations. Hence, 
F C L(@). Thus, 21 is of our type, and our results are applicable. 

COROLLARY 6 (Grâtzer (3)). Simple unary algebras 21 are finite of prime 
order; so are their automorphism groups. 

Proof. Corollary 5 and the simplicity of the subgroup lattice of (A ; • ) 
settle the matter. 

+21 is "simple" if |C(2I)| = 2 and |Aut(2l)| ^ 1. 
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2. Binary operations. The question about the binary operations F that 
cause an algebra SI = (G; F) with R(®) C Aut(Sl) finds its answer in the 
following result. 

THEOREM 3. If 21 = (G; F) is a binary algebra (® = (G; • ) is a group), then 
R(®) Ç Aut(8t) holds if and only if F C {^; o- Ç GG} w&e» ^ ( 1 , g) = gcr 
and, in general, ypa(x,y) — ({y'X~l)<r)-x. 

Proof. To prove the necessity let \f/ £ F. Then \f/(x,y)-a = (ip(x,y))ra = 
i/(xra,yra) = \p{xa,ya) for all x, y, a G G. Define <r £ GG by ^ ( 1 , g) = go-, 
then ^(x, y) = ^(1-x, {y-x~l))*x = i^(l, 3>-x_1)-x = (y-x^cr-x, i.e. ^ = i/v. 
To establish sufficiency we check that (^v(x, y)) -ra = {((yx~l)a)'x)ra — 
((y-x~l)a)x-a while 

^a{xraiyra) = ^a(xa,ya) = (((^a)(a~1x-1))o') - x a ^ x - ^ o O x - a . 

Hence, ypa{x,y)ra = \f/ff(xrai yra) which proves the theorem. 

This theorem yields immediately a result part of which was also observed 
by Gràtzer (3). 

COROLLARY 7. Given a group ®, there exists always a simple algebra 21 such 
that End(Sl) = Aut(2Q ^ ®. 

Proof. We define 21 = (G;L(&) V {*,; a £ G°}). End(8) = Aut(2I) 2Ë ® 
follows immediately from the preceding results. If 0 is a congruence relation 
on 21 with a = b (0) and a ^ 6, then a"1-a = ûr1^ (0), i.e. 1 = d (0) for 
some d p ^ l . I f c g G i s arbitrary, we apply i/vc> where ac £ GG maps 1 to 1 
and g 5* 1 to c. Then 1 = d (0) and 1 = 1 (0) imply that ^ c ( l , 1) = 
1^(1, d) (0) or lac s dcrc (0), i.e. 1 s c (0). Hence x = y (0) for all 
(#,30 £ -4 X ^4, and 21 is simple. 

Remark. In the same fashion one can prove that R(&) C Aut(2l), where 
2Ï = (G; F) is any universal algebra built upon the group (G; •) = ® if and 
only if every n-ary (n ^ 0) operation is of the form ^v(xi, . . . , xn) = 
((x2xr~\ x3Xi-1, . . . , xnXi~1)a')xi with a £ QGn~l (where GG~l = 0, unless 
\G\ = 1 in which case we set GG_1 = {1} and \pi is the identity operation on G). 

COROLLARY 8. In order to preserve R(&) C Aut(2I) m ^ ^ universal algebra 
21 = (G; F) we can introduce at the most |GGn-1 | different n-ary operations in F 
and the upper bound is obtainable. 
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