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THE UNIFORM CONTINUITY OF FUNCTIONS
IN SOBOLEV SPACES

BY
R. A. ADAMS?

AsstrRACT. Functions in W™?(Q)N Wy4(Q), mp>dim Q, g=1,
may have to be uniformly continuous on ) even if Q is not a
Lipschitz domain.

1. Introduction. Let () be a domain (an open set) in n-dimensional Eucli-
dean space R". We denote the boundary of Q by Q. The Sobolev space
W™P(Q) consists of (equivalence classes of) functions u in LP(Q) whose
distributional derivatives D®u also belong to L?(Q) whenever |a|<=m. (m is a
positive integer; p is real, p=1; a =(ay,..., a,) is an n-tuple of nonnegative
integers; |a|=a;+: -+ a,; D =(8/dx,)* - - - (8/dx,)*.) W™P(Q) is a Banach
space with respect to the norm

1/p
lebmea={ T [ 10t as}”
al=mJo

W5 P(Q) is the closure in W™P(Q)) of the space Co(Q) of infinitely differen-
tiable functions having compact support in ().

We denote by C({}) the space of functions u bounded and uniformly
continuous on () and having, therefore, unique continuous extensions to the
closure ) of Q, and by Cg(Q) the space of functions bounded and continuous
on . Both are Banach spaces with respect to the norm sup,cq |u(x)|.

The domain ) has the core property if there exists an open, finite, right
spherical cone C such that each point x €} is the vertex of a finite cone C;
contained in Q and congruent to C. € is a Lipschitz domain if each point x € ()
has a neighbourhood Uj such that, for some rectangular coordinate system £ in
U,, U, NQ is specified by an inequality of the form &, <f{¢;, ..., &-1) where f
is a Lipschitz continuous function.

Many imbedding results for W™?(Q) can be obtained under the fairly mild
requirement that () should have the cone property. For instance, for such €,
W™P(Q) is imbedded in Cg(Q) provided mp > n. (This is a part of the “Sobolev
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Imbedding Theorem”—see e.g. [1], theorem 5.4.) Certain imbeddings, how-
ever, require more regularity of (). One cannot in general expect to imbed
W™?(Q) into C(Q) if Q has only the cone property. Two obvious counterexam-
ples are the split squares:

Q={x=(x, x2)eR*:—1<x,<1,0<|x,| <1}
Qz=QIU{x€R2:—1<x1<0, x2=0}.

Both Q; and Q, have the cone property and (), is connected. However the
reader may readily construct a function u belonging to W™?(Q) (2=, or £,)
for every m, p, but which satisfies lim,, ,o— u(x) # lim,, .o+ u(x) for x; >0, and
hence cannot be uniformly continuous on ().

If O is a bounded Lipschitz domain then the Sobolev imbedding theorem
assures us that W™?(Q) is imbedded in C(Q) provided mp >n. We examine
circumstances under which the Lipschitz property can be weakened. It is clear,
at least for bounded (), that elements of Cg({}) which also happen to tend to
zero on 8Q) belong to C(Q). Since for any q the elements of Wy%Q) may be
regarded as vanishing “in a generalized sense” on () (see Lemma 2 below) one
is led to the conjecture:

W™P(Q) N Wd(Q) = C(Q).

There is good reason to suspect that this conjecture is true for arbitrary
domains () (see section 5 below) but this writer has been unable to discover a
general proof. We can prove it for arbitrary domains with the cone property
using a well-known theorem of E. Gagliardo [4] on the decomposition of such
domains into unions of Lipschitz domains.

THEOREM 1. Let Q be a domain in R" having the cone property. If mp>n
and q=1 then W™?(Q) N Wg4Q) < C(Q). More generally, for any nonnegative
integer j, W™ P(Q)N Wyth(Q) < C/(Q).

Here, of course, C'(Q)) denotes the space of functions u for which D*ue
C(@)(le|=}), normed by max,<; supyco |D*u(x)|. Theorem 1 need only be
proved for j=0 as it then follows for general j be application of the special
case to derivatives Du, |a|=j. We give a proof in sections 3 and 4 below. At
this point we can make several remarks.

(i) Theorem 1 is only of interest when q=n. If g>n it is a trivial consequ-
ence of the Sobolev imbedding theorem that W§*"%(Q) is imbedded in C(2)
for arbitrary domains () (since zero extension outside Q imbeds W§4(Q) into
W*4(R™)). Several useful characterizations of W&4(Q) for q>n are known (see
Burenkov [2, 3]) but these are of no avail in the context of our problem.

(ii) It is not difficult to find examples of domains ) not having the cone
property for which, at least for some of the appropriate values of m, p and q
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the conclusion of Theorem 1 holds. (See section 5.) It is for this reason that we
conjecture that Theorem 1 may hold for arbitrary domains, but a different sort
of proof will be necessary to show this.

(iii) The (generalized) vanishing of functions is not really required on the
whole of the boundary of Q for Theorem 1 to hold. One might consider
replacing Wy4(Q) by the larger space Wy4(Q*), the closure in W"4(Q) of the
space of infinitely differentiable functions of compact support in R" which
vanish near 9Q ~ 8. It is clear, for instance, that such is the case for the two
examples ; and ), given above, where for each we have N~ =
{x€dQ:x,=0 and —1<x,<1}.

(iv) Weak solutions of null Dirichlet problems for elliptic partial differential
equations on Q are known a priori to belong to spaces of the form W§%Q)
(usually with g =2). Theorem 1 thus enables us to obtain “up to the boundary”
regularity of solutions in W™?(Q) for suitably large mp even if () has only the
cone property.

2. A preliminary lemma. Before proving Theorem 1 we prepare the follow-
ing lemma. It is well-known, at least for smoothly bounded domains, and
asserts that continuous functions in W¢'(Q) do in fact vanish on sufficiently
well-behaved parts of ().

LEMMA 2. Let Q be a domain in R" and G a bounded Lipschitz domain
contained in Q. Let ue Wo'(Q)NC(G) and let xedG. If there exists a
neighbourhood N of x such that NN 3G < oQ then u(x)=0.

Proof. Suppose u(x)# 0. We may select the neighbourhood N small enough
that |u(x)|=8>0 for xe NN G. By virtue of the Lipschitz property of G we
may, again contracting N if necessary, find a nonzero vector y such that for all
ze NNJG and all 5,0<s<1, we have z+sye G. Without loss of generality
y=k(0,0,...,0,1). Let V={z+sy:2e NNaG, 0<s<1}. Writing z =(z’, z,,)
where z'=(zy,..., z,-1), setting P={z":(z’, z,)e NNdG for some z,}, and
denoting by z¥ the unique number which, for given z’e P, satisfies (z', z}) €
NNJG, we have

3
V={z=(2',z,):2'€P, z,< z,< z:+ k}.

Let ¢ € Co(Q) and set v = u— ¢. Then |v(z’, Zt)| = |u(z’, ZT.)| =4 for all z'e P. If
z=(2',z,)e V then

zn

0
v(zZ', z,) =v(Z, zt)+I 35 v(z', s) ds

Zn

whence

*
z¥+k

d=|v(z’, z,)| +J'

Zn

ds.

—uou(z',s
35 (z', 5)
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Integrating z over V we obtain

9
0z,

v(z)| dz

(vol V)&= j |v(z)| dz + kJ
A\ v

= (1 + k) "U"l,l,v = (1 + k) "u - ¢"1,1,0~

Since ue Wg'(Q) the right side of the last inequality can be made arbitrarily
small for suitable choice of ¢ and we have a contradiction. Thus u(x)=0.

We remark that the above lemma extends with no change in proof to more
general domains G than bounded Lipschitz ones. For instance, it is sufficient
that G have the segment property. (See [1], section 4.2.)

In view of Lemma 2 the proof of Theorem 1 for domains (like ; above)
which are unions of finitely many pairwise disjoint bounded Lipschitz domains
is trivial. Similar ad hoc techniques will yield the result for somewhat more
complicated domains (e.g. ),) as well, but for the general case we require the
following theorem of E. Gagliardo [4]. (See also, [1], theorem 4.8)

THEOREM 3. (Gagliardo) (a) If Q is a bounded domain with the cone property
then Q is a finite union of bounded Lipschitz domains.

(b) Any domain Q (bounded or not) having the cone property is a union of
finitely many subdomains each of which is a union of parallel translates of some
open parallelepiped.

3. Proof of Theorem 1 for bounded domains. For the time being we assume
that Q is bounded. Thus Wg4(Q) < Wg'(Q) and we may also assume that g =1.

As noted above, we may write Q= |Jves V where ¥ is a finite family of
bounded Lipschitz subdomains of Q. Given ue W™?(Q)N W¢'(Q) we have
ue Cs(Q) and ue C(V) for every Ve & We must show that ue C({).

Let » be the number of elements of # and let B be an open ball in R". Let
V, We & be such that VN B# J and WN B# J. By a (B, ¥)-chain linking V
and W we mean any (finite) sequence {U,..., U< &%, (k=v), such that
U=V, Us=W and UNU;s,;NANB#J, 1=j=sk—1. Given Ve let
#A(V) denote the collection of elements W e & linked to V by a (B, %)-chain.
Evidently We H(V) if and only if Ve A(W).

Let £ >0 be given. For each Ve & there exists 8y >0 such that if x,ye V
and |x—y|<38y then |u(x)—u(y)|<e/v. (In this context we regard u as its
unique continuous extension to V.) Let 8 =miny.s 8y Let x, y € Q satisfy
|x —y|< 8. We show that |u(x)—u(y)|<e and hence complete the proof.

Let B be an open ball in R" having diameter § and containing x and y.
There exist elements V, We & such that xe V and ye W.

Case I. We (V). In this case there exists a (B, ¥)-chain {Uy, ..., Uy}
linking V=U; and W=U,. Select points zj,...,zx—; with zje
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U;N U;+; N QN B. Evidently
—2
[u(x)—u(y)|=fu(x)—u(z,)+ ;1 [u(z;) = u(zjs)| +|u(zie—1) — uly)| < e.

Case II. Wg (V). Then A(W)NA(V)= . Let A, u be the numbers of
elements in #A(V) and (W) respectively, so that A+u=<v. Let S=
Uvegwvy U, T= U vegw) U. We show that there exist points z€ BN S, pEe
BNT such that u(z)=u(p)=0. Granted this, for the moment, we have
ze BN U for some U e (V). Hence there exists a (B, ¥)-chain {U,, ..., U}
(k=A) linking U;=V and U, = U. Selecting zi,..., zx-1 as in case I we
conclude that

lu(x)| = lu(x)— u(z)| < Ae/v.

A similar argument yields |u(y)|< pe/v whence |u(x)—u(y)|<e as required
It is sufficient, therefore, to show the existence of ze€ BNS with u(z)=0.
Let Ged(V) and let G= Uvewv),uxc U. Thus S=GU G. Suppose that
te BN (3G ~ G). Then te G = so that either tedaQ or te Q. Since G is open
t€ G; thus teS. If teQ then te U for some Ue % Thus te UNGNOQNB
whence U e (V) and U < S, a contradiction. Thus.t € Q) and we have proved

BNOG~G)<a for every Ge A(V).
Now 9S = U Gesd(V) (aG ~ G) so that

BNaS <.

Let k be the largest integer such that every point of BN3dS belongs to the
boundaries of at least k distinct elements of (V). Clearly 1=<k=A. Then
there exists zedSNB and elements Gq,...,GreA(V) such that ze
3G,N---N3G, but z¢ G for any GeA(V), G#Gy,..., G Since B~
Ucest(v).G=a,....cx G is open, there exists a neighbourhood N of z with Nc B
such that NNaS=NNIG;N---NdG, and NNS=NN(G,U---UGy). We
show that NNaS=NNIG;.

Suppose that ae NN3dG; but a#dS. Evidently ae S (since otherwise
acext S so a would have a neighbourhood contained in N, containing a point
of G, but disjoint from S). It follows that k=2 and a € G; for some j,2=<j=<k.
We may assume that N has been chosen so small that NN G, lies on one side
of a Lipschitz graph in N. Let se N~ S. We may find a continuous path in N
going from s to a which meets G, for the first time at a. The path meets S for
the first time at a point of SN N<9dG; N -NIG, so this point must be a.
Since a¢dS we have a contradiction. Hence

NNaG;=NNS<i.

It follows from Lemma 2 that u(z)=0 and the proof of Theorem 3 for
bounded domains is complete.
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4. Extension to unbounded domains. By Theorem 3(b) even an unbounded
domain ) can be written as a union of finitely many subdomains Q;(1=<j=<k)
each of which is a union of parallel translates of a fixed open parallelepiped P;
having one vertex at the origin; say

Q]'= U (x+Pj), 1S]Sk.
x€A;
The dimensions of P; depend only on the cone C determining the cone
property for Q.
Let R" =Jg Qg be a tesselation of R" into closed cubes of edge length p and
set

Ajg=A; N Qg; Q= L/J\ (x+P).
XEAjp
Evidently Q= ;g Qs (no longer necessarily a finite union) and for any § >0
there exists an integer R = R(n, p, §, C) such that any ball of diameter 3
intersects at most R of the sets );q. It is also shown in the proof of Gagliardo’s
theorem that for p sufficiently small (depending only on the dimensions of the
parallelepipeds P; and thus on C) each ), is a bounded Lipschitz domain; in
fact (x +P)N(y+P;)+#0 for every x, y € Aja.

For given ue W™?(Q), mp >n, and given £ >0 it is shown in the proof of
the imbedding theorem (see, for example, [1] lemma 5.17) that there exists
8>0 depending only on &, ||ullmp0, and the cone C, such that if x, y e Qg for
some j, B and |x—y| <8 then |u(x)—u(y)|<e.

With these observations the proof of Theorem 1 for bounded domains
extends to arbitrary domains—one uses in place of v the number R =
R(n, p, 1, C); in place of & the collection {Q;s:Q;s N B, # J} where B, is a ball
of unit diameter containing B. (We assume & =1.) The remaining details are
left to the reader.

5. An example. We conclude by showing that Theorem 1 may hold, at least
in part, for domains not having the cone property. Specifically, we consider
2-dimensional domains of the following type:

Q={x=(x1, x2)eR*:0<x; < a, 0< x, < f(x)}

where the positive, increasing function f satisfies

lim 10—
x—>0+ X,

0,
so that () has a cusp at the origin.

Given X, 0<X <a, we set Ox={xeQ:x>X}. Then Qx is a bounded
Lipschitz domain, and if we are given ue W™?(Q) N Wg'(Q) where mp >2 we
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may conclude at once that for any X we have ue C(Qx) and u(x)=0 for
x €3Qx N 4Q. In order to conclude that u € C({) it is evidently sufficient to show
that lim,cq y—o u(x)=0.

First suppose that p >2. Let x = (x4, x,) € () be given. For x, sufficiently small
the open triangle T with vertices at (x;, X»), (x1, 0) and (x; + x5, 0) lies in €. Let
(r, 8) denote polar coordinates of an arbitrary point of () with respect to x as
pole. The bottom edge of T has equation r=g(0), —m/2=<60=<-—mu/4, where
0<g(0) <+/2x,</2f(x,). Denoting by v the function u expressed in terms of
these polar coordinates, and applying Holder’s inequality to the identity

g(60) d
u(x)=0(0, 6)= —I o v(t, 0) dt

we obtain

g(0)

p g(6) p—1
tdt - U (~HeD dt}
0

g(6)

|u(x)|P sj % v(t, )

0

p

tdt,

ke[ |4 o0

0

where K, depends only on p. Integration of 6 from —m/2 to —m/4 leads to the
estimate

o =g 2 Jarad utyl ay
= KiFG) > fulf g

Hence lim,.q x—0 u(x) =0 in this case.

The case mp >2, p=2 remains to be considered; we may assume m =2. The
technique used above cannot be generalized to involve a repeated integral of
the second derivative of v since grad u is not known to vanish on the lower
edge of T. The following ad hoc argument will yield the desired result
providing p>4/3. Let R be a rectangle of breadth b and height h=<1. A
change of variable mapping R onto a rectangle of breadth b and unit height
yields the following form of the norm inequality for the imbedding of W"?(R)
into L*(R), q=2p/(2—p) (q finite if p=2).

[Wllo.ar = Kh™[Wlls .
where K may depend on b but is independent of h. Note that ¢ >2 if p>1.

For x; sufficiently small the open rectangle R having vertices at (xi,0),
(x1, f(x1)), (x1+(a/2), f(x1)) and (x;+(a/2), 0) is contained in () and contains T.
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Since b =a/2 and h = f(x;) for this rectangle we obtain

GOl = KaLf(x)1 7 lulf ar
= KK fe)l" L )T |ull por
= K )] Julld po-

We may conclude that u(x)—0 as x—0, x€{ provided g>4, that is,
provided p >4/3.

The method of this example can, of course, be extended to more general
cusp domains but it remains uncertain whether the conclusion of Theorem 1 is
valid in its entirety for arbitrary domains.
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