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A classification of groups with a

centralizer condition 1l

Zvi Arad and Marcel Herzog

Let G be a finite group. A nontrivial proper subgroup M of

G 1is called a C(C-subgroup if M contains the centralizer in G
of each of its nonidentity elements. In this paper groups
containing a ((C-subgroup of order divisible by 3 are

completely determined.

1. Introduction

The purpose of this paper is to prove the following:

THEOREM 1. Let G be a finite group and let M be a CC-subgroup
of G . Assume that 3 | |M| . Then one of the following statements is

true:

() G = PSL(2, q) ;
(i1) G 1is a Frobenius group with M as the Frobenius kernel
or a Frobenius complement;
(i21) M <is a noncyclic elementary abelian Sylow 3-subgroup of
G ;
(iv) M 1is a cyclic subgroup of G of odd order.
Groups satisfying (i17Z) or (iv) were completely classified in [2] and
[6], respectively. Simple groups satisfying the assumptions of Theorem 1
were listed in Theorem B of [1]. In order to prove Theorem 1 it suffices,

in view of [/, Theorem A], to establish:
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THEOREM 2. Let G be a finite group and let M be a CC-subgroup
of G . Assume that N,(M) =M and 3 | |M| . Then either

G = PSL(2, q) or G <s a Frobenius group with M as a Frobenius
complement.

Sections 3 and 5 contain related results of independent interest.

In this paper all groups are finite. If G is a group, then m(G) ,
G# , and Sp denote, respectively, the set of primes p dividing IGI s

the nonidentity elements of G , and a Sylow p-subgroup of ¢ . If m is

a set of primes, 0".(0) denotes the maximal normal 7'-subgroup of G .

The signs € and C will denote containment and proper containment of
subgroups, respectively. By a simple group we mean a nonabelian simple
group. We shall use freely the bar-convention for images in a quotient

group.

2. Two lemmas

The following lemmas are necessary for induction arguments in the next

section. The letter ( denotes a group.

LEMMA 1. Let H< G and let x € G satisfy (|x|, |H|)=1.
Denote G/H =G . Then

CE(E) = CG(x)H/H .

Proof. Clearly > holds. Now let ¢ € CG(x mod H) ;  then
2°H = z8 and consequently (2°)H = (2)H . By the Schur-Zassenhaus Theorem
there exists h € H such that (z%) = (x)h . Let % ©be an integer
satisfying 2 = (:z:i)h . Then
oti = o°hl = haH = hoH .

1-1 i

L-lGH;hencea: =1, z' =z ,and 2 =2z".

As x—lthH, x

Thus ch ™t € Cg(x) , as required.

LEMMA 2. Let M be a Hall mu-subgroup of G . Suppose that H 4 G
and either H is a T'-group or Mi 1is solvable. Denote G/H = G . Then
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IVE(M) = IVG(M)H/H .
Proof. Clearly 2 holds. Now let n € IVG (M mod H) ; then

1|{l H = MH ,and by the Schur-Zassenhaus Theorem or Hall's Theorem there

exists h € H satisfying oM = IJL . Thus nh_l € NG(M) , as required.

3. A general theorem
In order to prove Theorem 2 we need the following:
THEOREM 3. Let G be a finite group containing a CC-subgroup M .
Suppose that IVG(M) =M . Then one of the following statements is true:
(1) G 1is a Frobenius group with a complement M ;
(i1) G has a simple section K/H = K satisfying

(a) MCc IVG(K) n IVG(H) R

(b) MH/H s a CC-subgroup of MK/H ,
(¢) KnM is a (nontrivial) CC-subgroup of X ,
(d) NAKnM)=KnM.

As an immediate corollary we get the following characterization of

soluble Frobenius groups.

THEOREM 4. Let G be a soluble group containing a CC-subgroup M .
Then IVG(M) =M <f and only if G is a Frobenius group with a complement

M.

Proof of Theorem 3. Let G be a counter-example of minimal order.
It is well known that M is & Hall 7-subgroup of G , where 1 = (M) .
Clearly G is not simple. Thus, by [8, Theorem 1], 2 | |M| and by the

Feit-Thompson Theorem, M 1is solvable.
Suppose that O“,(G) #1. As G = G/O_n,(G) is not isomorphic to

M , it follows by Lemmas 1 and 2 that M is a CC-subgroup of G
satisfying IVE(H) =M . Hence, by induction, (ZZ) holds; a contradiction.

Assume, from now on, that On,(G) =1 . Let N be a minimal normal
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subgroup of G . Clearly M n N #1 .

Case 1. N is an elementary abelian p-group. Clearly N S M and,

defining V by

vn{M | zec},

we have 1 € VC M . It follows that V is a normal ((C-subgroup of G .
Thus both & and M are Frobenius groups with the kernel V . Let C be
a complement of ¥V in M . Then (C 1is a CC-subgroup of G and, as
NG(C) c IVG(M) =M, IVG(C) = (C . By Lemmas 1 and 2 we may apply induction

to G = G/V and C. As G isa counterexample, G 1is a Frobenius group
with a complement C . However, since (¢ is a Frobenius group with V as
its kernel, by [5, Theorem V, 8.18], G = G/V has a nontrivial center,

a contradiction.

Case 2. N 1is a direct product of »n isomorphic simple groups. As
R=MnlN is a (C-subgroup of N , it is a Hall subgroup of ¥ and
consequently #n = 1 . Suppose that IVN(R) #R; then T = IVG(R) oM. If

T = G , then a contradiction is reached as in Case 1. Thus T C G ;
hence, by the minimality of G , T 1is a Frobenius group with a complement

M , contradicting R < T . Thus we have shown that IVN(R) = R . But then

G satisfies (iZ) with X =N and H =1 , a final contradiction.

4. Proof of Theorem 2

Let G be a counterexample of minimal order. Thus (7Z) of Theorem 3

holds. If 2 | |M| , then, by [8, Theorem 1], ¢ = PsL(2, 2°") . so
suppose, from now on, that 2 [ |¥| .
Case 1. Suppose that 3 | |[K n M| . By Theorem B of [1], K is one

of a known list of simple groups, none of which except PSL(2, q) satisfies
NAK aM) =KnM end 2 f |kny .
Case 2. Suppose that 3 [ |[K n M| . Thus 3/ |X| and,

Let m be an

by Thompson's 3'-theorem, K is isomorphic to Sz (22n+1)

element of M of order 3 . Then, by (ii) (a) of Theorem 3 and by [3,

Theorem 6.2.2 (i)], m normalizes the center of an S5, of X , which has
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2n+1l

order 2 . As 3 ) &L

1l , m centralizes an involution in X .
Since 2 | |M| , we have reached a final contradiction to (iZ) (b) of

Theorem 3.

5. A generalization

The result of this section generalizes [!, Theorem Bl, [4, Theorem

111, [6, Theorem B}, and [7, Theorems 1 and 2].
THEOREM 5. Let G be a simple group containing a subgroup X X Y
which satisfies the following conditions:

(1) whenever x € X# then CG(x) =XxY;

(i2) 3| |x] and 2} |¥| ;
(iii) if 2] |x| then 3} |Y| .

Then G s isomorphic to one of the following groups:
(a) PSL(3, L) ;

(b) PSL(2, q) for some gq ;

(c) Psu(3, 2%) for some n .
Proof. Suppose, first, that 2 | |x] . As 2] |¥] , X contains an
52 of G . Hence (G has an abelian 52 and by [9] either (b) holds or
G 1is isomorphic to one of the following groups:
(o) J(11) , Janko's smallest group, or
(B) a group of Ree-type.

However, groups of type (A) or (B) have a self-centralizing 5, 5 in

contradiction to 3 | |X| .
Suppose, finally, that 2 | |¥| . Then X contains an 53 of G
and consequently (G has no elements of order 6 . Recent and as yet

unpublished results of Stewart and Fleitcher, Gleuberman, and Stel Imacher,
classifying groups without elements of order 6 , imply then that (a), (b),
or {e¢) holds.
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