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Abstract

By using the pseudo-Hermitian connection (or Tanaka–Webster connection) ∇̂, we construct the
parametric equations of Legendre pseudo-Hermitian circles (whose ∇̂-geodesic curvature κ̂ is constant
and ∇̂-geodesic torsion τ̂ is zero) in S3. In fact, it is realized as a Legendre curve satisfying the ∇̂-Jacobi
equation for the ∇̂-geodesic vector field along it.
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1. Introduction

Given a contact structure η, we have two compatible structures. One is a Riemannian
structure (or metric) g, and then we call (M; η, g) a contact Riemannian manifold.
The other is an almost CR-structure (η, L), where L is the Levi form associated with
an endomorphism J on D such that J 2

=−I . In particular, if J is integrable, then
we call it the (integrable) CR-structure. The associated almost CR-structure is said
to be pseudo-Hermitian, strongly pseudo-convex if the Levi form is Hermitian and
positive definite. We call such a manifold a contact strongly pseudo-convex pseudo-
Hermitian (or almost CR-)manifold. There is a one-to-one correspondence between
the two associated structures by the relation

g = L + η ⊗ η,

where we denote by the same letter L the natural extension of the Levi form to a (0, 2)-
tensor field on M . From this point of view, we have two geometries for a given contact
structure, that is, one is formed by the Levi-Civita connection ∇, the other is derived
by the Tanaka–Webster connection ∇̂ (or the pseudo-Hermitian connection), which is
a canonical affine connection on a strongly pseudo-convex CR-manifold.
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In the present paper, we study the contact pseudo-Hermitian geometry in a three-
dimensional Sasakian space form whose holomorphic sectional curvature with respect
to ∇̂ is 2c. Generalizing a Legendre curve in a three-dimensional contact metric
manifold, we consider a slant curve whose tangent vector field has constant angle
with the characteristic direction ξ (see [9]).

Corresponding to biharmonicity for ∇ we investigate the ∇̂-Jacobi equation for a
∇̂-geodesic vector field:

(C)

{
∇̂γ̇ γ̇ = T̂(γ ),

∇̂
2
γ̇ T̂(γ )+ ∇̂γ̇ T̂ (T̂(γ ), γ̇ )+ R̂(T̂(γ ), γ̇ )γ̇ = 0,

where T̂ , R̂ denotes the pseudo-Hermitian torsion tensor and the pseudo-Hermitian
curvature tensor, respectively. Then we prove that no nongeodesic slant curve
satisfying (C) exists when c ≤ 0 (Corollary 3.10). In Section 4 we determine a
slant curve satisfying (C) in S3. In particular, a Legendre curve satisfying (C) in
S3 is realized as a pseudo-Hermitian circle, whose pseudo-Hermitian curvature κ̂ = 2
and pseudo-Hermitian torsion τ̂ = 0. We obtain their explicit parametric equations
in Theorem 4.4. It is notable [10, 11] that there does not exist a Legendre proper
biharmonic curve in S3.

2. Preliminaries

We start by collecting some fundamental material about contact metric geometry.
We refer to [3] for further details.

A three-dimensional manifold M3 is said to be a contact manifold if it admits a
global 1-form η such that η ∧ (dη) 6= 0 everywhere. Given a contact form η, there
exists a unique vector field ξ , the characteristic vector field, which satisfies η(ξ)= 1
and dη(ξ, X)= 0 for any vector field X . It is well known that there exists an associated
Riemannian metric g and a (1, 1)-type tensor field ϕ such that

η(X)= g(X, ξ), dη(X, Y )= g(X, ϕY ), ϕ2 X =−X + η(X)ξ, (2.1)

where X and Y are vector fields on M . From (2.1), it follows that

ϕξ = 0, η ◦ ϕ = 0, g(ϕX, ϕY )= g(X, Y )− η(X)η(Y ).

A Riemannian manifold M equipped with the structure tensors (η, ξ, ϕ, g)
satisfying (2.1) is said to be a contact Riemannian manifold. We denote it by
M = (M; η, ξ, ϕ, g). Given a contact Riemannian manifold M , we define an operator
h by h = 1

2 Lξϕ, where Lξ denotes Lie differentiation in the characteristic direction ξ .
Then we may observe that the structural operator h is symmetric and satisfies

hξ = 0, hϕ =−ϕh,

∇Xξ =−ϕX − ϕh X, (2.2)

https://doi.org/10.1017/S0004972708000737 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000737


[3] Slant curves 385

where ∇ is the Levi-Civita connection. A contact Riemannian manifold for which ξ
is a Killing vector field, is called a K -contact manifold. It is at once shown that a
contact Riemannian manifold is K -contact if and only if h = 0. We note that three-
dimensional K -contact manifold is Sasakian (or normal contact Riemannian manifold)
(see [3, p. 76]).

The sectional curvature function of holomorphic planes invariant by ϕ is called
the holomorphic sectional curvature. In particular, Sasakian 3-manifolds of constant
holomorphic sectional curvature are called three-dimensional Sasakian space forms.
Simply connected and complete three-dimensional Sasakian space forms M3(H) of
constant holomorphic sectional curvature H are classified as one of the following
unimodular Lie groups with left invariant Sasakian structures: the special unitary
group SU(2) for H >−3, the Heisenberg group for H =−3 or the universal covering
group S̃L(2,R) of the special linear group SL(2,R) for H <−3. The three-
dimensional Sasakian space forms are naturally reductive homogeneous spaces. In
particular, M3(1) is the unit 3-sphere S3 with the canonical Sasakian structure.

Let c be a real number and set

D =
{
(x, y, z) ∈R3(x, y, z)

∣∣∣∣ 1+
c

2
(x2
+ y2) > 0

}
.

Note that D is the whole R3(x, y, z) for c ≥ 0. On the region D, we equip the
following Riemannian metric:

gc =
dx2
+ dy2

{1+ (c/2)(x2 + y2)}2
+

(
dz +

y dx − x dy

1+ (c/2)(x2 + y2)

)2

. (2.3)

Take the following orthonormal frame field on (D, gc):

u1 =

{
1+

c

2
(x2
+ y2)

}
∂

∂x
− y

∂

∂z
, u2 =

{
1+

c

2
(x2
+ y2)

}
∂

∂y
+ x

∂

∂z
,

u3 =
∂

∂z
.

Then the Levi-Civita connection ∇ of this Riemannian 3-manifold is described as

∇u1u1 = c yu2, ∇u1u2 =−c yu1 + u3, ∇u1u3 =−u2,

∇u2u1 = −c xu2 − u3, ∇u2u2 = c xu1, ∇u2u3 = u1, (2.4)

∇u3u1 = −u2, ∇u3u2 = u1, ∇u3u3 = 0,

[u1, u2] = −c yu1 + c xu2 + 2u3, [u2, u3] = [u3, u1] = 0. (2.5)

Define the endomorphism field ϕ by

ϕu1 = u2, ϕu2 =−u1, ϕu3 = 0.

The dual one-form η of the vector field ξ = u3 is a contact form on D and satisfies

dη(X, Y )= g(X, ϕY ), X, Y ∈X(D).
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Then we see that the structure (ϕ, ξ, η, gc) is Sasakian and further that (D, gc) is
of constant holomorphic sectional curvature H =−3+ 2c (see [1, 13]). Hereafter
we denote this model (D, gc) of a Sasakian space form by M3(H). The one-
parameter family of Riemannian 3-manifolds {M3(H)}H∈R is classically known by
Bianchi [2], Cartan [6] and Vranceanu [16] (see also Kobayashi [12]). The model
M3(H) of Sasakian 3-space form is called the Bianchi–Cartan–Vranceanu model of
three-dimensional Sasakian space form.

The Reeb flows are the translations in the z-directions. Hence the orbit space
M2(H + 3)=M3(H)/ξ is given explicitly by

M2 =

({
(x, y) ∈R2

∣∣∣∣ 1+
c

2
(x2
+ y2) > 0

}
,

dx2
+ dy2

{1+ (c/2)(x2 + y2)}2

)
.

The natural projection π :M3(H)→M2(H + 3) is

π(x, y, z)= (x, y).

We briefly recall the harmonic or the biharmonic maps. Let (N , h) and (M, g) be
Riemannian manifolds. For a smooth map φ : N → M , the Levi-Civita connection ∇
of (N , h) induces a connection ∇φ on the pull-back bundle φ∗T M =

⋃
p∈N Tφ(p)M .

The section T(φ) := tr ∇φ dφ is called the tension field of φ. Then φ is said to be
harmonic if its tension field vanishes identically. The bitension field T2(φ) of φ is
defined by

T2(φ)=−4φT(φ)+ tr R(T(φ), dφ) dφ,

where R is the Riemannian curvature tensor of M defined by R(X, Y )= [∇X , ∇Y ]

− ∇[X,Y ]. The operator 4φ is the rough Laplacian acting on 0(φ∗T M) defined by

4φ := −

n∑
i=1

(∇φei
∇
φ
ei
−∇

φ

∇N
ei

ei
),

where {ei }
n
i=1 is a local orthonormal frame field of N . It is obvious that every harmonic

map is biharmonic. Nonharmonic biharmonic maps are called proper biharmonic
maps.

Now let γ (s) : I → M be a curve parametrized by arc length s and denote the
tangent vector field by T = γ̇ . Then the harmonic equation becomes T(γ )=∇T T = 0
and the biharmonic equation reduces to

T2(γ )=∇
3
T T + R(∇T T, T )T = 0. (2.6)

Obviously, every geodesic is biharmonic. A nongeodesic biharmonic curve is called a
proper biharmonic curve. For the facts and related results regarding biharmonic maps,
we refer the interested reader to [4, 5, 10, 7]. The biharmonicity (for∇) in S3 is studied
and the following results are obtained.
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THEOREM 2.1 [4]. Let γ be a proper (∇−)biharmonic curve in S3. Then κ ≤ 1 and
we have two cases:

(i) κ = 1 and γ is a circle of radius 1/
√

2;
(ii) 0< κ < 1 and γ is a helix, which is a geodesic in the Clifford minimal torus

S1(1/
√

2)× S1(1/
√

2).

THEOREM 2.2 [10, 11]. There exists no nongeodesic biharmonic Legendre curve (for
∇) in S3.

3. Pseudo–Hermitian contact 3-manifolds

For a three-dimensional contact Riemannian manifold M = (M3
; η, ξ, ϕ, g), the

tangent space Tp M of M at a point p ∈ M can be decomposed as the direct sum
Tp M = Dp ⊕ {ξ}p, with Dp = {v ∈ Tp M | η(v)= 0}. Then D : p→ Dp defines a
two-dimensional distribution orthogonal to ξ , called the contact distribution. We see
that the restriction J = ϕ|D of ϕ to D defines an almost complex structure on D. Then
the associated almost CR-structure of the contact Riemannian manifold M is given by
the holomorphic subbundle

H= {X − i J X | X ∈ D}

of the complexification T MC of the tangent bundle T M . Then we see that each fiber
H p is of complex dimension one, H ∩H= {0}, and CD =H⊕H. Furthermore, the
associated almost CR-structure is always integrable, that is [H, H] ⊂H. For H we
define the Levi form by

L : D × D→F(M), L(X, Y )=−dη(X, JY ),

where F(M) denotes the algebra of differential functions on M . Then we see that the
Levi form is Hermitian and positive definite. We call the pair (η, L) a contact strongly
pseudo-convex, pseudo-Hermitian structure on M . Now, we review the Tanaka–
Webster connection [14, 17] on a contact strongly pseudo-convex CR-manifold
M = (M; η, L) with the associated contact Riemannian structure (η, ξ, ϕ, g). The
Tanaka–Webster connection ∇̂ is defined by

∇̂X Y =∇X Y + η(X)ϕY + (∇Xη)(Y )ξ − η(Y )∇Xξ

for all vector fields X, Y on M . Together with (2.2), ∇̂ may be rewritten as

∇̂X Y =∇X Y + A(X, Y ), (3.1)

where we have put

A(X, Y )= η(X)ϕY + η(Y )(ϕX + ϕh X)− g(ϕX + ϕh X, Y )ξ. (3.2)

We see that the Tanaka–Webster connection ∇̂ has the torsion

T̂ (X, Y )= 2g(X, ϕY )ξ + η(Y )ϕh X − η(X)ϕhY. (3.3)
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In particular, for a Sasakian manifold (3.2) and the above equation, we reduce as
follows:

A(X, Y ) = η(X)ϕY + η(Y )ϕX − g(ϕX, Y )ξ,

T̂ (X, Y ) = 2g(X, ϕY )ξ. (3.4)

Furthermore, the following result was proved in [15].

PROPOSITION 3.1. The Tanaka–Webster connection ∇̂ on a three-dimensional
contact Riemannian manifold M = (M3

; η, ϕ, ξ, g) is the unique linear connection
satisfying the following conditions:

(i) ∇̂η = 0, ∇̂ξ = 0;
(ii) ∇̂g = 0, ∇̂ϕ = 0;
(iii-1) T̂ (X, Y )=−η([X, Y ])ξ , X, Y ∈ D;
(iii-2) T̂ (ξ, ϕY )=−ϕT̂ (ξ, Y ), Y ∈ D.

Let γ : I → M3 be a curve parameterized by arc length in M3. We may define the
Frenet frame fields (T, N , B) along γ for the pseudo-Hermitian connection ∇̂. Then
they satisfy the following Frenet–Serret equations for ∇̂:

∇̂T T = κ̂N
∇̂T N =−κ̂T + τ̂ B
∇̂T B =−τ̂N

(3.5)

where κ̂ = |∇̂T T | is the pseudo-Hermitian curvature of γ and τ̂ its pseudo-Hermitian
torsion. A pseudo-Hermitian helix is a curve where both its pseudo-Hermitian
curvature and pseudo-Hermitian torsion are constants. In particular, curves with
constant nonzero pseudo-Hermitian curvature and zero pseudo-Hermitian torsion are
called pseudo-Hermitian circles. Note that pseudo-Hermitian geodesics are regarded
as pseudo-Hermitian helices where both their pseudo-Hermitian curvature and pseudo-
Hermitian torsion are zero.

Let M be a contact metric 3-manifold and γ (s) a Frenet curve parametrized by
the arc length s in M . The contact angle α(s) is a function defined by cos α(s)
= g(T (s), ξ). A curve γ is said to be a slant curve if its contact angle is constant.
Slant curves of contact angle π/2 are traditionally called Legendre curves. The Reeb
flow is a slant curve of contact angle zero. Let γ be a nongeodesic Frenet curve in
a Sasakian 3-manifold. Differentiating the formula g(T, ξ)= cos α along γ for the
pseudo-Hermitian connection ∇̂, then it follows that

−α′ sin α = g(̂κN , ξ)+ g(T, ∇̂T ξ)= κ̂ η(N ).

This equation implies the following result.

PROPOSITION 3.2. A nongeodesic curve γ for ∇̂ in a three-dimensional Sasakian
manifold M is a slant curve if and only if it satisfies η(N )= 0.
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Hence, we put
ξ = cos α0T + sin α0 B. (3.6)

Differentiating (3.6) along γ and using the Frenet–Serret equations, we obtain

(̂κ cos α0 − τ̂ sin α0)N = 0. (3.7)

This implies that the ratio of τ̂ and κ̂ is a constant. Thus, we obtain the following
result.

PROPOSITION 3.3. If a nongeodesic curve for ∇̂ in a three-dimensional contact
Riemannian manifold is a slant curve, then its ratio of κ̂ and τ̂ is constant.

Let M be a three-dimensional Sasakian manifold. Then for a curve γ in M , from
(3.1) and (3.4) we obtain

∇̂γ̇ γ̇ =∇γ̇ γ̇ + 2η(γ̇ )ϕγ̇ . (3.8)

Equation (3.8) says that a Legendre ∇̂-geodesic is coincident with a ∇-geodesic. We
note that the characteristic vector field ξ is a ∇-geodesic and at the same time a ∇̂-
geodesic. However, in general, ∇̂-geodesic is not coincident with ∇-geodesic.

Now we return to the Bianchi–Cartan–Vranceanu model space M =M3(H),
where H =−3+ 2c. Let γ = γ (s) be a curve parametrized by arc length s on
Sasakian space form M . From (3.1) and (3.4), the Tanaka–Webster connection ∇̂
of the Bianchi–Cartan–Vranceanu model space is described as

∇̂u1u1 = c yu2, ∇̂u1u2 =−c yu1, ∇̂u2u1 =−c xu2, ∇̂u2u2 = c xu1, (3.9)

all others are zero.
We put γ ′(s)= T (s)= T1u1 + T2u2 + T3u3. Then by using (3.9) we have the

geodesic equation for γ :

∇̂T T = {T ′1 − T2(cyT1 − cxT2)}u1 + {T
′

2 + T1(cyT1 − cxT2)}u2 + T ′3u3 = 0.

Hence, γ is a ∇̂-geodesic if and only ifT ′1 − T2(cyT1 − cxT2)= 0,
T ′2 + T1(cyT1 − cxT2)= 0,
T ′3 = 0.

We may put T1(s)= sin α(s) cos β(s), T2(s)= sin α(s) sin β(s), T3(s)= cos α(s).
Here we call the angle function α of T and ξ the contact angle of γ . Then γ is a
∇̂-geodesic if and only ifα

′ cos α cos β − sin α sin β(β ′ + cy sin α cos β − cx sin α sin β)= 0,
α′ cos α sin β + sin α cos β(β ′ + cy sin α cos β − cx sin α sin β)= 0,
α′ sin α = 0.

(3.10)

From the third equation in the above, it follows that the contact angle α = α0 is
constant. So, we have the following result.
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PROPOSITION 3.4. A ∇̂-geodesic in a three-dimensional Sasakian space form is a
slant curve.

In the next step, we study the ∇̂-Jacobi equation for a ∇̂-geodesic vector field T̂(γ ).
Actually, we investigate the following system of the second-order ordinary differential
equations (ODEs) for the Tanaka–Webster connection ∇̂:{

∇̂γ̇ γ̇ = T̂(γ ),

∇̂
2
γ̇ T̂(γ )+ ∇̂γ̇ T̂ (T̂(γ ), γ̇ )+ R̂(T̂(γ ), γ̇ )γ̇ = 0.

(3.11)

Since ∇̂ parallelizes the characteristic vector field ξ (∇̂ξ = 0) and the metric tensor
g (∇̂g = 0) we obtain

g(R̂(X, Y )Z , ξ)= g(R̂(X, Y )ξ, Z)= 0,

for any vector fields X , Y and Z . Thus, we have the following result.

LEMMA 3.5. For a slant curve γ , ∇̂γ̇ γ̇ , ∇̂3
γ̇ γ̇ and R̂(∇̂γ̇ γ̇ , γ̇ )γ̇ are all orthogonal to

ξ along γ .

Hence, together with (3.4) and (3.11) we have a system of the ∇̂-Jacobi equations
for T̂(γ )(= ∇̂γ̇ γ̇ ) along a slant curve γ :{

g(ϕ∇̂2
γ̇ γ̇ , γ̇ )= 0,

∇̂
3
γ̇ γ̇ + R̂(∇̂γ̇ γ̇ , γ̇ )γ̇ = 0.

(3.12)

By using (3.5), we calculate

∇̂
3
T T = ∇̂T (∇̂T (∇̂T T )) (3.13)

= −3̂κκ̂ ′T + (̂κ ′′ − κ̂3
− κ̂ τ̂ 2)N + (2τ̂ κ̂ ′ + κ̂ τ̂ ′)B.

Together with (3.9), we calculate the Tanaka–Webster curvature tensor:

R̂(X, Y )Z = ∇̂X (∇̂Y Z)− ∇̂Y (∇̂X Z)− ∇̂[X,Y ]Z .

Then we find that

R̂(u1, u2)u2 = 2cu1, R̂(u1, u2)u1 =−2cu2, (3.14)

all others are zero.
By using these relations we compute

R̂(̂κN , T )T = 2cκ̂B3(B3 N − N3 B)

and

∇̂
3
T T + R̂(̂κN , T )T

= (−3̂κκ̂ ′)T + [̂κ ′′ − κ̂3
− κ̂ τ̂ 2

+ 2cκ̂B2
3 ]N + [2τ̂ κ̂

′
+ κ̂ τ̂ ′ − 2cκ̂B3 N3]B

with respect to {u1, u2, u3}.
Thus, we have the following result.
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PROPOSITION 3.6. Let M be a three-dimensional Sasakian space form and let
γ : I → M be a nongeodesic slant curve for ∇̂ parametrized by arc length, then γ
satisfies ∇̂3

γ̇ γ̇ + R̂(∇̂γ̇ γ̇ , γ̇ )γ̇ = 0 if and only if γ satisfies
κ̂ = constant 6= 0,

κ̂2
+ τ̂ 2

= 2cη(B)2,

τ̂ ′ = 2cη(N )η(B).

From Propositions 3.3 and 3.6, we have the following result.

PROPOSITION 3.7. Let M be a three-dimensional Sasakian space form and let
γ : I → M be a nongeodesic slant curve for ∇̂ parametrized by arc length, then γ
satisfies ∇̂3

γ̇ γ̇ + R̂(∇̂γ̇ γ̇ , γ̇ )γ̇ = 0 if and only if γ is a pseudo-Hermitian helix such

that κ̂2
+ τ̂ 2

= 2cη(B)2.

Using (3.5) a direct computation gives

∇̂
2
T T =−κ̂2T + κ̂ ′N + κ̂τ B,

and hence, it follows that

g(ϕ∇̂2
T T, T ) = −g(̂κ2, ϕT )

= g(̂κ2T − κ̂ ′N − κ̂τ B, ϕT ). (3.15)

However, since γ is a slant curve we may put

T = sin α0{cos β(s)e1 + sin β(s)e2} + cos α0ξ,

N = − sin β(s)e1 + cos β(s)e2

for any unit vector field e1 ⊥ ξ . From these and e2 = ϕe1, we have the following
relation:

ϕT = sin α0 N .

Then together with (3.15) we obtain

g(ϕ∇̂2
T T, T )=−κ̂ ′ sin α0.

Thus, we have the following result.

PROPOSITION 3.8. A slant curve γ in a Sasakian 3-manifold M satisfies
g(ϕ∇̂2

γ̇ γ̇ , γ̇ )= 0 if and only if κ̂ = constant or γ is a integral curve of ξ .

In view of (3.12), from Propositions 3.7 and 3.8 we have the following result.

THEOREM 3.9. Let M be a three-dimensional Sasakian space form and let
γ : I → M be a nongeodesic slant curve for ∇̂ parametrized by arc length, then γ
satisfies the ∇̂-Jacobi equations for a ∇̂-geodesic vector field T̂(γ ) if and only if γ is
a pseudo-Hermitian helix such that κ̂2

+ τ̂ 2
= 2cη(B)2.
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COROLLARY 3.10. Let M be a three-dimensional Sasakian space form with c ≤ 0.
Then there no nongeodesic slant curve for ∇̂ exists satisfying the ∇̂-Jacobi equations
for a ∇̂-geodesic vector field.

The above corollary implies that there no nongeodesic slant curve exists for ∇̂
satisfying the ∇̂-Jacobi equations for a ∇̂-geodesic vector field in the Heisenberg group
H3 or the special linear group SL2R.

4. Pseudo-Hermitian circles in S3

In this section, we study a slant curve satisfying ∇̂-Jacobi equation for a ∇̂-geodesic
vector field T̂(γ ) in S3.

First of all, it follows from (3.9) that

∇̂u1u1 = 2yu2, ∇̂u1u2 =−2yu1, ∇̂u2u1 =−2xu2, ∇̂u2u2 = 2xu1, (4.1)

all others are zero. By using the above data, we obtain

R̂(u1, u2)u1 =−4u2, R̂(u1, u2)u2 = 4u1, (4.2)

all others are zero for i, j, k = 1, 2, 3. This yields that the unit sphere S3 has a constant
holomorphic sectional curvature 4 for ∇̂, namely, L(R̂(X, ϕX)ϕX, X)= 4 for any
unit vector X ⊥ ξ (see [8]).

Now, let γ : I → S3 be a slant curve parametrized by arc length s. Then we may
put

T = sin α0 cos β(s)u1 + sin α0 sin β(s)u2 + cos α0u3.

By using (4.1), we calculate

∇̂T T = sin α0(β
′
+ 2y sin α0 cos β − 2x sin α0 sin β)(− sin βu1 + cos βu2),

and we obtain κ̂ = |sin α0(β
′
+ 2y sin α0 cos β − 2x sin α0 sin β)|. Since γ is a

nongeodesic, we may assume that sin α0(β
′
+ 2y sin α0 cos β − 2x sin α0 sin β) > 0

without loss of generality. Then by using the first Frenet equation (for ∇̂),

N =−sin βu1 + cos βu2,

and
B = T × N =−cos α0 cos βu1 − cos α0 sin βu2 + sin α0u3.

Furthermore, we calculate

∇̂T N = (β ′ + 2y sin α0 cos β − 2x sin α0 sin β)(−cos βu1 − sin βu2). (4.3)

Applying the second Frenet equation, then

τ̂ = cos α0(β
′
+ 2y sin α0 cos β − 2x sin α0 sin β).

It is notable that every Legendre curve in S3 has a vanishing pseudo-Hermitian torsion.
By Theorem 3.9, we have the following result.
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PROPOSITION 4.1. Let γ : I → S3 be a slant curve parametrized by arc length. Then
γ is nongeodesic for ∇̂ and satisfies the ∇̂-Jacobi equations for a ∇̂-geodesic vector
field T̂(γ ) if and only if sin α0 6= 0 and

β ′ + 2y sin α0 cos β − 2x sin α0 sin β − 2 sin α0 = 0. (4.4)

COROLLARY 4.2. Let γ : I → S3 be a Legendre curve parametrized by arc length.
Then γ is nongeodesic (for ∇̂) and satisfies (3.11) if and only if γ is a pseudo-
Hermitian circle with constant κ̂ = 2, namely,

β ′ + 2y cos β − 2x sin β = 2.

For the rest of the paper, our aim is to obtain explicitly the parametric equations of
the above nongeodesic slant curve satisfying (3.11). Let γ (s)= (x(s), y(s), z(s)) be
a curve in S3. Then the tangent vector field T of γ is represented by

T =

(
dx

ds
,

dy

ds
,

dz

ds

)
=

dx

ds

∂

∂x
+

dy

ds

∂

∂y
+

dz

ds

∂

∂z
.

From this it follows that

dx

ds
= (1+ x2

+ y2)T1,
dy

ds
= (1+ x2

+ y2)T2,

dz

ds
= T3 −

1

1+ x2 + y2

(
dx

ds
y − x

dy

ds

)
.

Hence, we obtain the following result.

LEMMA 4.3. Let γ : I → S3 be a slant curve parametrized by arc length s in S3.
Then the system of differential equations for γ is as follows:

dx

ds
(s) = sin α0 cos β(s)(1+ x(s)2 + y(s)2), (4.5)

dy

ds
(s) = sin α0 sin β(s)(1+ x(s)2 + y(s)2), (4.6)

dz

ds
(s) = cos α0 + sin α0{x(s) sin β(s)− y(s) cos β(s)}. (4.7)

We try to solve the above equations. By virtue of (4.4), the equation (4.7) becomes

dz

ds
=

1
2
β ′ + cos α0 − sin α0.

Thus,

z(s)=
1
2
β(s)+ (cos α0 − sin α0)s + z0, (4.8)

where z0 is constant.
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Next, we compute the x(s) and y(s). We put h(s)= 1+ x(s)2 + y(s)2. Then (4.5)
and (4.6) becomes

dx

ds
= sin α0 cos β(s)h(s),

dy

ds
= sin α0 sin β(s)h(s).

Moreover, we easily see that h(s) satisfies the following ODE:

d

ds
ln h(s)= 2 sin α0(cos β(s)x(s)+ sin β(s)y(s)). (4.9)

If dβ/ds = 0, then (x(s), y(s)) is a line in the orbit space. Indeed, we have the
following parametrization:

x(s) = sin α0 cos β0

∫
h(s) ds, (4.10)

y(s) = sin α0 sin β0

∫
h(s) ds, (4.11)

where β = β0 (constant). Since M is homogeneous, we may choose x0 = y0 = 0.
Then the primitive function H(s)=

∫ s
0 h(t) dt is a solution of

d

ds
H(s)= 1+ sin2 α0H(s)2.

This is a special case of the well-known Riccati equation. However, we can see
that no solution H(s) exists for the above equation. In general, for a model space
M =M3(H),

H(s)=

√
−

2
c

∣∣∣∣ 1
sin α0

∣∣∣∣+ 1

a exp(−
√
−2c|sin α0|s)−

√
−(c/8)|sin α0|

, a ∈R,

where H =−3+ 2c. So, we conclude that β is not constant along γ .
We differentiate (4.4) again and use (4.9), then

d2

ds2β(s)=
d

ds
β(s)

d

ds
ln h(s). (4.12)

We assume that β ′ > 0, and we readily solve (4.12):

h(s)= r
dβ

ds
(s), r ∈R+. (4.13)

Then (4.5) and (4.6) are easily solved:{
x(s)= r sin α0 sin β(s)+ x0,

y(s)=−r sin α0 cos β(s)+ y0.

https://doi.org/10.1017/S0004972708000737 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000737


[13] Slant curves 395

In this case, the orbit space is then the whole plane R2(x, y). The projected curve
γ (s) is a circle (x − x0)

2
+ (y − y0)

2
= r2 sin2 α0. We may assume γ (s) is a circle

centered at (0, 0). Then since h(s)= 1+ r2 sin2 α0, from (4.13), we have the angle
function β(s) for γ (s):

β(s)= 2 sin α0(r sin α0 + 1)s + β0,

where β0 is constant.
Thus, together with (4.8), we have the following result.

THEOREM 4.4. Let γ : I → S3 be a nongeodesic slant curve for ∇̂ parametrized by
arc length s. Then the parametric equations of γ satisfying (3.11) are given by

x(s)= r sin α0 sin(2 sin α0(r sin α0 + 1)s + β0)+ x0,

y(s)=−r sin α0 cos(2 sin α0(r sin α0 + 1)s + β0)+ y0,

z(s)= (r sin2 α0 + cos α0)s + z0,

where r ∈R+, and β0, x0, y0 and z0 are constants.

COROLLARY 4.5. Let γ : I → S3 be a nongeodesic Legendre curve parametrized by
arc length s. Then the parametric equations of pseudo-Hermitian circles satisfying
(3.11) are given by 

x(s)= r sin(2(r + 1)s + β0)+ x0,

y(s)=−r cos(2(r + 1)s + β0)+ y0,

z(s)= rs + z0,

where r ∈R+, and β0, x0, y0 and z0 are constants.

We finally remark that no proper (∇-)biharmonic Legendre curve exists in S3

(see [10, 11]).
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