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Abstract

By using the pseudo-Hermitian connection (or Tanaka-Webster connection) V., we construct the
parametric equations of Legendre pseudo-Hermitian circles (whose v- geodesic curvature ¥ is _constant
and V- -geodesic torsion T is zero) in S3. In fact, it is realized as a Legendre curve satisfying the V-Jacobi
equation for the V- geodesic vector field along it.
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1. Introduction

Given a contact structure 7, we have two compatible structures. One is a Riemannian
structure (or metric) g, and then we call (M; n, g) a contact Riemannian manifold.
The other is an almost CR-structure (n, L), where L is the Levi form associated with
an endomorphism J on D such that J2 = —1. In particular, if J is integrable, then
we call it the (integrable) CR-structure. The associated almost CR-structure is said
to be pseudo-Hermitian, strongly pseudo-convex if the Levi form is Hermitian and
positive definite. We call such a manifold a contact strongly pseudo-convex pseudo-
Hermitian (or almost CR-)manifold. There is a one-to-one correspondence between
the two associated structures by the relation

g=L+n®n,

where we denote by the same letter L the natural extension of the Levi form to a (0, 2)-
tensor field on M. From this point of view, we have two geometries for a given contact
structure, that is, one is formed by tﬁe Levi-Civita connection V, the other is derived
by the Tanaka—Webster connection V (or the pseudo-Hermitian connection), which is
a canonical affine connection on a strongly pseudo-convex CR-manifold.

The second author was supported by the Korea Research Council of Fundamental Science & Technology
(KRCF), Grant No. C-RESEARCH-2006-11-NIMS.

© 2009 Australian Mathematical Society 0004-9727/09 $A2.00 + 0.00

383

https://doi.org/10.1017/5S0004972708000737 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000737

384 J. T.Cho and J.-E. Lee 2]

In the present paper, we study the contact pseudo-Hermitian geometry in a three-
dimensional Sasakian space form whose holomorphic sectional curvature with respect
to V is 2c¢. Generalizing a Legendre curve in a three-dimensional contact metric
manifold, we consider a slant curve whose tangent vector field has constant angle
with the characteristic direction & (see [9]). R
__ Corresponding to biharmonicity for V we investigate the V-Jacobi equation for a
V-geodesic vector field:

Vo7 =T,
VIZ() + VyTE(). ¥) + REW). 1)y =0,

where 7'\, R denotes the pseudo-Hermitian torsion tensor and the pseudo-Hermitian
curvature tensor, respectively. Then we prove that no nongeodesic slant curve
satisfying (C) exists when ¢ <0 (Corollary 3.10). In Section 4 we determine a
slant curve satisfying (C) in S3. In particular, a Legendre curve satisfying (C) in
$3 is realized as a pseudo-Hermitian circle, whose pseudo-Hermitian curvature ¥ = 2
and pseudo-Hermitian torsion T =0. We obtain their explicit parametric equations
in Theorem 4.4. It is notable [10, 11] that there does not exist a Legendre proper
biharmonic curve in S3.

2. Preliminaries

We start by collecting some fundamental material about contact metric geometry.
We refer to [3] for further details.

A three-dimensional manifold M3 is said to be a contact manifold if it admits a
global 1-form 7 such that n A (dn) # 0 everywhere. Given a contact form 7, there
exists a unique vector field &, the characteristic vector field, which satisfies n(§) = 1
and dn (&, X) = O for any vector field X. It is well known that there exists an associated
Riemannian metric g and a (1, 1)-type tensor field ¢ such that

n(X)=g(X. &), dn(X,Y)=g(X,eY), ¢°X=—X+nX)%E, (2.1)
where X and Y are vector fields on M. From (2.1), it follows that
9§ =0, nop=0, gpX, ¢Y)=gX,Y)—nXn).

A Riemannian manifold M equipped with the structure tensors (7, &, ¢, g)
satisfying (2.1) is said to be a contact Riemannian manifold. We denote it by
M = (M; n, &, ¢, g). Given a contact Riemannian manifold M, we define an operator
hby h =1 Lsg, where Lg denotes Lie differentiation in the characteristic direction £.
Then we may observe that the structural operator h is symmetric and satisfies

héE =0, hp=—ph,

Vx§ =—¢X — phX, (2.2)
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where V is the Levi-Civita connection. A contact Riemannian manifold for which &
is a Killing vector field, is called a K-contact manifold. It is at once shown that a
contact Riemannian manifold is K-contact if and only if 7 = 0. We note that three-
dimensional K -contact manifold is Sasakian (or normal contact Riemannian manifold)
(see [3, p. 76]).

The sectional curvature function of holomorphic planes invariant by ¢ is called
the holomorphic sectional curvature. In particular, Sasakian 3-manifolds of constant
holomorphic sectional curvature are called three-dimensional Sasakian space forms.
Simply connected and complete three-dimensional Sasakian space forms M?3(H) of
constant holomorphic sectional curvature H are classified as one of the following
unimodular Lie groups with left invariant Sasakian structures: the special unitary
group SU(2) for H > —3, the Heisenberg group for H = —3 or the universal covering
group SL(2, R) of the special linear group SL(2, R) for H < —3. The three-
dimensional Sasakian space forms are naturally reductive homogeneous spaces. In
particular, M?3(1) is the unit 3-sphere S* with the canonical Sasakian structure.

Let ¢ be a real number and set

D= {(x, y, Z) €R3(~x9 Y Z)

c
1+ §(x2+y2) >O}.

Note that D is the whole R3(x, v, z) for ¢ >0. On the region D, we equip the
following Riemannian metric:

dx? + dy? ydx —xdy 2
7 vz T4t 2. )
{1+ (c/2)(x=+ y9)} L+ (c/2)(x + y7)
Take the following orthonormal frame field on (D, g.):

8c = (2.3)

c 5 s ] 9 a C 5 ] 0 0
up =1+ +y)t—=y—, uw=11+-Ga"+y)—+x—
2 ax 2 dy

0z’ 9z’
9
uz = %
Then the Levi-Civita connection V of this Riemannian 3-manifold is described as
Vulu1 =cyuy, Vuluzz—cym + us, Vulu3:—u2,
Vit = —c xup —u3, Vyuza=cxuy, Vy,U3z=1ui, 2.4)
Vusur = —uz,  Vyuz=uy, Vyuz=0,
[ur, up] = —c yuy + ¢ xup +2u3, [uz, uz] =[uz, u1] =0. (2.5)

Define the endomorphism field ¢ by
puy =uz, Qur=—uy, @u3z=>~0.
The dual one-form 5 of the vector field & = u3 is a contact form on D and satisfies

dn(X,Y)=gX, ¢Y), X, YeX(D).
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Then we see that the structure (¢, &, 1, g¢) is Sasakian and further that (D, g.) is
of constant holomorphic sectional curvature H = —3 + 2¢ (see [1, 13]). Hereafter
we denote this model (D, g.) of a Sasakian space form by M?3(H). The one-
parameter family of Riemannian 3-manifolds {M3(H )}HeRr is classically known by
Bianchi [2], Cartan [6] and Vranceanu [16] (see also Kobayashi [12]). The model
M3 (H) of Sasakian 3-space form is called the Bianchi—Cartan—Vranceanu model of
three-dimensional Sasakian space form.

The Reeb flows are the translations in the z-directions. Hence the orbit space

M2(H + 3) = M3(H)/¢ is given explicitly by

dx? + dy? )

. 2
Wt_(h*”ER (11 /D2 1)

C
1+5u2+y%>0}

The natural projection 77 : M3 (H) — W(H +3)is
T(x,y,2)=(x,y).

We briefly recall the harmonic or the biharmonic maps. Let (N, h) and (M, g) be
Riemannian manifolds. For a smooth map ¢ : N — M, the Levi-Civita connection V
of (N, h) induces a connection V¥ on the pull-back bundle ¢*T M = | pen Top(mM.
The section T(¢) :=tr V? d¢ is called the fension field of ¢. Then ¢ is said to be
harmonic if its tension field vanishes identically. The bitension field T»(¢p) of ¢ is
defined by

T(P) = =Dy Z(P) +tr R(Z(9), dop) do,

where R is the Riemannian curvature tensor of M defined by R(X, Y) =[Vy, Vy]
— Vix,y)- The operator Ay is the rough Laplacian acting on I'(¢*T M) defined by

n
Boi= = 3VEVE V)
i=1 !

where {e;}!_, is alocal orthonormal frame field of N. Itis obvious that every harmonic
map is biharmonic. Nonharmonic biharmonic maps are called proper biharmonic
maps.

Now let y(s): I — M be a curve parametrized by arc length s and denote the
tangent vector field by 7' = y. Then the harmonic equation becomes T(y) = V7T =0
and the biharmonic equation reduces to

To(y) =ViT + R(VrT, T)T =0. (2.6)

Obviously, every geodesic is biharmonic. A nongeodesic biharmonic curve is called a
proper biharmonic curve. For the facts and related results regarding biharmonic maps,
we refer the interested reader to [4, 5, 10, 7]. The biharmonicity (for V) in $3 is studied
and the following results are obtained.
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THEOREM 2.1 [4]. Let y be a proper (V—)biharmonic curve in S3. Then k < 1 and
we have two cases:

(1) « =1andy is a circle of radius 1/«/2;

(i) O<«k <1 and y is a helix, which is a geodesic in the Clifford minimal torus

S'(1//2) x S'(1/3/2).
THEOREM 2.2 [10, 11]. There exists no nongeodesic biharmonic Legendre curve (for
V)in S3.

3. Pseudo-Hermitian contact 3-manifolds

For a three-dimensional contact Riemannian manifold M = (M3; n, &€, @, g), the
tangent space T, M of M at a point p € M can be decomposed as the direct sum
TyM =D, ®{&},, with D, ={ve T,M | n(v) =0}. Then D:p— D, defines a
two-dimensional distribution orthogonal to &, called the contact distribution. We see
that the restriction J = ¢|p of ¢ to D defines an almost complex structure on D. Then
the associated almost CR-structure of the contact Riemannian manifold M is given by
the holomorphic subbundle

H={X—-iJX|XeD)

of the complexification T M of the tangent bundle 7M. Then we see that each fiber
H, is of complex dimension one, H N H = {0}, and CD = H & H. Furthermore, the
associated almost CR-structure is always integrable, that is [H, H] C H. For H we
define the Levi form by

L:DxD—FM), LX,Y)=-dnlX,JY),

where F (M) denotes the algebra of differential functions on M. Then we see that the
Levi form is Hermitian and positive definite. We call the pair (1, L) a contact strongly
pseudo-convex, pseudo-Hermitian structure on M. Now, we review the Tanaka—
Webster connection [14, 17] on a contact strongly pseudo-convex CR-manifold
M = (M; n, L) with the associated contact Riemannian structure (7, &, ¢, g). The
Tanaka—Webster connection V is defined by

VxY = Vx¥ +n(X)pY + (Vxm(V)§ — n(¥)Vx§
for all vector fields X, ¥ on M. Together with (2.2), v may be rewritten as
VxY =VxY + A(X, Y), 3.1)
where we have put
AX, Y) =n(X)pY +n(Y)(9X + ¢hX) — g(pX + ¢hX, Y)§E. (3.2)
We see that the Tanaka—Webster connection V has the torsion

T(X,Y)=2g(X, 9Y)& + n(Y)phX — n(X)phY. (3.3)
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In particular, for a Sasakian manifold (3.2) and the above equation, we reduce as
follows:

AX,Y) =n(X)eY +n(Y)pX — g(pX, Y)E,
T(X,Y) = 2g(X, pY)E. (3.4)

Furthermore, the following result was proved in [15].

PROPOSITION 3.1. The Tanaka—Webster connection N on a three-dimensional
contact Riemannian manifold M = (M>; n, ¢, &, g) is the unique linear connection
satisfying the following conditions:

i Vn=0Ve=0;

(i) Vg=0,Vp=0;

(iii-1) f(X, Y)=-n(X,YDE X, Y e D;

>iii-2) TE, oY) =—¢T(E,Y), Y € D.

Let y : [ — M? be a curve parameterized by arc length in M3. We may define the
Frenet frame fields (7', N, B) along y for the pseudo—/}\Iemlitian connection V. Then
they satisfy the following Frenet—Serret equations for V:

VT =%N
VrN = KT +7B (3.5)
VrB =—7N

where k¥ = |/V\T T| is the pseudo-Hermitian curvature of y and T its pseudo-Hermitian
torsion. A pseudo-Hermitian helix is a curve where both its pseudo-Hermitian
curvature and pseudo-Hermitian torsion are constants. In particular, curves with
constant nonzero pseudo-Hermitian curvature and zero pseudo-Hermitian torsion are
called pseudo-Hermitian circles. Note that pseudo-Hermitian geodesics are regarded
as pseudo-Hermitian helices where both their pseudo-Hermitian curvature and pseudo-
Hermitian torsion are zero.

Let M be a contact metric 3-manifold and y (s) a Frenet curve parametrized by
the arc length s in M. The contact angle a(s) is a function defined by cos a(s)
=g(T(s), ). A curve y is said to be a slant curve if its contact angle is constant.
Slant curves of contact angle 7 /2 are traditionally called Legendre curves. The Reeb
flow is a slant curve of contact angle zero. Let y be a nongeodesic Frenet curve in
a Sasakian 3-manifold. Differentiating the formula g(7', §) = cos « along y for the
pseudo-Hermitian connection V, then it follows that

—o' sina = g(®N, &) + g(T, V7€) =% n(N).

This equation implies the following result.

PROPOSITION 3.2. A nongeodesic curve y for V in a three-dimensional Sasakian
manifold M is a slant curve if and only if it satisfies n(N) = 0.
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Hence, we put
& =cosagT + sinayB. (3.6)

Differentiating (3.6) along y and using the Frenet—Serret equations, we obtain
(K cosag — T sinag)N =0. (3.7)

This implies that the ratio of T and & is a constant. Thus, we obtain the following
result.

PROPOSITION 3.3. If a nongeodesic curve for V in a three-dimensional contact
Riemannian manifold is a slant curve, then its ratio of K and T is constant.

Let M be a three-dimensional Sasakian manifold. Then for a curve y in M, from
(3.1) and (3.4) we obtain

Viy =Vyy +2n(y)ey. (3.8)
Equation (3.8) says that a Legendre /V\—geodesic is coincident with a V-geodesic. We
note that the characteristic vector field § is a V-geodesic and at the same time a V-
geodesic. However, in general, V-geodesic is not coincident with V-geodesic.

Now we return to the Bianchi—Cartan—Vranceanu model space M = M3(H),
where H = —3+2c. Let y =y(s) be a curve parametrized by arc length s on
Sasakian space form M. From (3.1) and (3.4), the Tanaka—Webster connection V
of the Bianchi—Cartan—Vranceanu model space is described as

o~ o~ o~

V1 = ¢ yua, /V\u]uz =—cyuy, Vyui=-—cxuz, Vyur=cxui, (3.9)
all others are zero.

We put y'(s) =T (s) = Tyu; + Tous + Tsus. Then by using (3.9) we have the
geodesic equation for y:

VrT ={T] = Ta(cyTi — exTa)}uy + {T5 + Ti(cyTi — exTo)}uz + Tiuz = 0.
Hence, y is a §—geodesic if and only if

T{ — Tr(cyT) — cxTr) =0,
T, 4+ Ti(cyTy — cxTr) =0,
T =0.

We may put 77 (s) = sin a(s) cos B(s), T>(s) = sin «(s) sin B(s), T3(s) = cos a(s).
Here we call the angle function o of 7" and & the contact angle of y. Then y is a
V-geodesic if and only if

o’ cos o cos B —sina sin B(B" + ¢y sina cos B — cx sina sin ) =0,
o’ cosasin B+ sina cos B(B’ + cysina cos B —cxsinasin ) =0, (3.10)
o sina =0.

From the third equation in the above, it follows that the contact angle « = «p is
constant. So, we have the following result.
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PROPOSITION 3.4. A V-geodesic in a three-dimensional Sasakian space form is a
slant curve.

In the next step, we study the V-Jacobi equation for a $—geodesic vector field "E\(y).
Actually, we investigate the following system of the second-order ordinary differential

equations (ODEs) for the Tanaka—Webster connection V:
Yy =%(y),

B I S (3.11)

ViEW) + Vi T(E(), v) + R(E(), y)y =0.

Since v parallelizes the characteristic vector field & (%%‘ = () and the metric tensor
g (Vg =0) we obtain

g(R(X,Y)Z. &) =g(R(X, V), Z) =0,
for any vector fields X, ¥ and Z. Thus, we have the following result.

LEMMA 3.5. For a slant curve vy, §y Y, /V\f,y and ﬁ(/V\);)}, y)y are all orthogonal to
& along y.

Hence, together with (3.4) and (3.11) we have a system of the V-Jacobi equations
for T(y)(= Vyy) along a slant curve y:

g@V3y, 1) =0,
Viy +R(Vyp. )y =0.
By using (3.5), we calculate
ViT = Vr(Vr(VrT)) (3.13)

= -3RKT + ® =% —RTHN + 27 +T)B.

(3.12)

Together with (3.9), we calculate the Tanaka—Webster curvature tensor:
RX, Z=Vx(VyZ) - Vy(VxZ) — Vix.vZ.
Then we find that
Ruy, u)uy =2cuy,  R(uy, up)uy = —2cus, (3.14)

all others are zero.
By using these relations we compute

R®N, T)T = 2c¢kB3(B3N — N3B)
and
VAT + R®N, T)T
= (=3RKNT + [K" — &> —RT* + 2cRB3IN + [2TR' + X7 — 2K B3N31B

with respect to {uy, uy, uz}.
Thus, we have the following result.
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PROPOSITION 3.6. Let M be a three-dimensional Sasakian space form and let
y : 1 — M be a nongeodesic slant curve for v parametrized by arc length, then y
satisfies V;)} + R(Vyy, y)y =0ifand only if y satisfies
K = constant # 0,
2 +7% =2en(B)?,
7' =2cn(N)n(B).
From Propositions 3.3 and 3.6, we have the following result.
PROPOSITION 3.7. Let M be a three-dimensional Sasakian space form and let
y : I — M be a nongeodesic slant curve for V parametrized by arc length, then y
satisfies V]%)) + R(Vyy,v)y =0 if and only if y is a pseudo-Hermitian helix such
that ©2 + 72 = 2¢n(B)>.
Using (3.5) a direct computation gives
VT = —&°T +%'N +%tB,
and hence, it follows that
g@ViT. T) = —g®, ¢T)
=g(®’T —®X'N —%tB, ¢T). (3.15)
However, since y is a slant curve we may put
T = sin ag{cos B(s)e; + sin B(s)ez} + cos apé,
N = —sin B(s)e] + cos B(s)er

for any unit vector field e; L £. From these and e; = pe;, we have the following
relation:
oT =sinogN.

Then together with (3.15) we obtain
g((p/ﬁ% T, T)=—« sinay.
Thus, we have the following result.

PROPOSITION 3.8. A slant curve y in a Sasakian 3-manifold M satisfies
g(gav)%)}, y) =0 if and only if ¥ = constant ory is a integral curve of &.

In view of (3.12), from Propositions 3.7 and 3.8 we have the following result.

THEOREM 3.9. Let M be a three-dimensional Sasakian space form and let
y : I — M be a nongeodesic slant curve for v parametrized by arc length, then y
satisfies the V-Jacobi equations for a v- geodeszc vector field f(y) if and only if y is
a pseudo-Hermitian helix such that i k2472 = 2cn(B) .
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COROLLARY 3.10. Let M be a three-dimensional Sasakian space form with ¢ < 0.
Then there no nongeodesic slant curve for V exists satisfying the V-Jacobi equations
for a V-geodesic vector field.

The above corollary implies that there no nongeodesic slant curve exists for v
satisfying the V-Jacobi equations for a V-geodesic vector field in the Heisenberg group
Hi or the special linear group SLoR.

4. Pseudo-Hermitian circles in S3

In this section, we study a slant curve satisfying V-Jacobi equation for a g—geodesic
vector field T(y) in S°.
First of all, it follows from (3.9) that

%lul =2yus, %uluz =—2yuy, /V\uzul = —2xu,, /V\,Quz =2xuy, (4.1)
all others are zero. By using the above data, we obtain
R(uy, up)uy = —duz,  R(uy, up)uz = 4duy, (4.2)

all others are zero fori, j, k=1,2,3. T I/l\is yields that t}l? unit sphere $3 has a constant
holomorphic sectional curvature 4 for V, namely, L(R(X, pX)pX, X) =4 for any
unit vector X L & (see [8]).
Now, let y : I — §3 be a slant curve parametrized by arc length s. Then we may
put
T = sin g cos B(s)uy + sin ag sin B(s)ur + cos apu3.

By using (4.1), we calculate
)V\TT =sin (B’ + 2y sin o cos B — 2x sin g sin B)(— sin Bu; + cos Buy),

and we obtain k¥ = |sin ag(B’ + 2y sin ag cos B — 2x sinag sin B)|. Since y is a
nongeodesic, we may assume that sin ag(8’ + 2y sin g cos 8 — 2x sig\ apsin 8) >0
without loss of generality. Then by using the first Frenet equation (for V),

N = —sin Bu; + cos Bus,

and
B=T x N =—cos g cos Bu; — cos ag sin Bus + sin agus.

Furthermore, we calculate
/V\TN = (B’ + 2y sin ag cos B — 2x sin ag sin B)(—cos Bu; — sin Buy). 4.3)
Applying the second Frenet equation, then
T =cosag(B’ + 2y sin ag cos B — 2x sin o sin B).

It is notable that every Legendre curve in S has a vanishing pseudo-Hermitian torsion.
By Theorem 3.9, we have the following result.
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PROPOSITION 4.1. Lety : I — S3 be a slant curve parametrized by arc length. Then
y is nongeodesic for V and satisfies the V-Jacobi equations for a V-geodesic vector
field T(y) if and only if sin agy £ 0 and

B’ + 2y sin ag cos B — 2x sin o sin B — 2 sin ap = 0. “4.4)

COROLLARY 4.2. Let y : [ — S3 be a Legendre curve parametrized by arc length.
Then y is nongeodesic (for V) and satisfies (3.11) if and only if y is a pseudo-
Hermitian circle with constant € = 2, namely,

B’ +2ycos B —2xsinf=2.

For the rest of the paper, our aim is to obtain explicitly the parametric equations of
the above nongeodesic slant curve satisfying (3.11). Let y(s) = (x(s), y(s), z(s)) be
a curve in $3. Then the tangent vector field T of y is represented by

_(dx dy dz\ dx 9 +dy8+dza
" \ds’ ds’ds) dsdx dsdy dsdz

From this it follows that

dx
ds

dz T 1 dx dy
— = - | — v —x— ).
ds 3 14+ x2+y2 dsy ds

Hence, we obtain the following result.

d
— (142 + )T, % = (1 + x>+ )T,

LEMMA 4.3. Let y : I — S3 be a slant curve parametrized by arc length s in S°.
Then the system of differential equations for y is as follows:

dx : 2 2

g(s) = sin ag cos B(s)(1 4+ x(s)” + y(s)7), 4.5)
Z—i(s) = sin ag sin B(s)(1 + x(5)% + y(5)?), (4.6)
%(s) = cos g + sin ag{x(s) sin B(s) — y(s) cos B(s)}. 4.7)

We try to solve the above equations. By virtue of (4.4), the equation (4.7) becomes

d_z = 1,3/ + cos ap — sin ay.
ds 2
Thus,
z(s) = %/B(s) + (cos ag — sin ag)s + zo, 4.8)

where zq is constant.
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Next, we compute the x(s) and y(s). We put 2(s) =1 + x(s)% + y(s)z. Then (4.5)
and (4.6) becomes

dx ) dy . .
— =sinag cos B(s)h(s), —— =sinag sin B(s)h(s).
ds ds

Moreover, we easily see that /(s) satisfies the following ODE:
d . .
75 In A(s) = 2 sin ag(cos B(s)x(s) 4 sin B(s)y(s)). 4.9
s

If dB/ds =0, then (x(s), y(s)) is a line in the orbit space. Indeed, we have the
following parametrization:

x(s) = sin g cos By / h(s) ds, (4.10)
y(s) = sin ag sin By / h(s)ds, “4.11)

where 8 = By (constant). Since M is homogeneous, we may choose xg = yp = 0.
Then the primitive function H(s) = f(; h(t) dt is a solution of

iH(s) =1 + sin® agH(s)>.
ds

This is a special case of the well-known Riccati equation. However, we can see
that no solution H(s) exists for the above equation. In general, for a model space
M = M3(H),

[ 2] 1 1
H §) = . + ) € )
) C | sIn g a exp(—+/—2clsin ag|s) — /—(c/8)|sin ag|
where H = —3 + 2¢. So, we conclude that 8 is not constant along y .
We differentiate (4.4) again and use (4.9), then
dzﬂ() dﬁ()dlh() (4.12)
— =— —In . .
as2P = 4P g g
We assume that 8’ > 0, and we readily solve (4.12):
d
h(s):rd—'B(s), reRT. (4.13)
s

Then (4.5) and (4.6) are easily solved:

x(s) = r sin ag sin B(s) + xo,
y(s) = —r sinag cos B(s) + yo.
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In this case, the orbit space is then the whole plane R?(x, y). The projected curve
Y (s) is a circle (x — x0)% + (y — yo)2 = rZsin? ap. We may assume ¥ (s) is a circle
centered at (0, 0). Then since h(s) =1 + r2 sin® g, from (4.13), we have the angle
function B(s) for y(s):

B(s) =2 sin ap(r sinag + 1)s + Bo,

where By is constant.
Thus, together with (4.8), we have the following result.

THEOREM 4.4. Let y : I — §3 be a nongeodesic slant curve for v parametrized by
arc length s. Then the parametric equations of y satisfying (3.11) are given by

x(s) = r sin ag sin(2 sin «o(r sin g + 1)s + Bo) + xo,
y(s) = —r sin g cos(2 sin ag(r sin g + 1)s + Bo) + Yo,
z(s) = (r sin® oo + cos g)s + 2o,

where r € R, and Bo, xo, Yo and zq are constants.

COROLLARY 4.5. Lety : I — S be a nongeodesic Legendre curve parametrized by
arc length s. Then the parametric equations of pseudo-Hermitian circles satisfying
(3.11) are given by

x(s) =rsinQ2(r + 1)s + Bo) + xo,
y(s) = —r cos2(r + 1)s + Bo) + Yo,
z(s) =rs + 20,

where r € R, and By, xo, Yo and zo are constants.

We finally remark that no proper (V-)biharmonic Legendre curve exists in $3
(see [10, I1]).
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