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IDEMPOTENT MULTIPLIERS OF HX(T) 

I. KLEMES 

1. Introduction. Let as usual T = R/ITTZ be the circle, and H] the 
subspace of L (T) of all / s u c h that f(n) = 0 for all integers n < 0. 
The norm 

ll/lli = fj \f(0\dt/2^ / e L 1 , 
restricted to H , makes it a Banach space. By a multiplier of / / we mean 
a bounded linear operator m:H —» / / such that there is a sequence 
R?}r=o i n C with 

mlj)(n) = c„/(w) for all « ^ 0 and all / e 7/1. 

We use the notation 

m*f= m(f) and m(«) = c,r 

m is called idempotent if 

w(w) <= {0, 1} for all n ^ 0. 

A measure /x e M(T) is called idempotent if 

fan) <E {0, 1} for all n <= Z. 

Recall that the mapping /i—» /x * / = convolution of it and f f ^ L\ 
defines a multiplier, which restricts to a multiplier m of H such that 

ra(«) = M(ft), n = 0. 

The support (abbreviated supp) of a sequence will mean the set of all 
indices at which the sequence is not 0. For idempotent measures we have 
the following characterization. 

1.1 ( [3] ). A set E c Z is of the form 

E = supp /x 

Jor some idempotent fi e M(T) <̂> 

(1) E = (.u Û ;Z + />,)/F 

for some N e N, #,, Z?, e Z, 1 = i = Ny and some finite set F c Z. 
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1224 I. KLEMES 

In this paper we will characterize the sets E c [n <E Z:n â 0} of the 
form 

E = supp m 

for some idempotent multiplier m of H . We first note that the 
collection of such sets is closed under finite intersection and comple­
mentation in {n ~ 0}, and that it includes the intersections of {n i^ 0} 
with all sets of the form (1) above. It also includes lacunary sets: 
E = {/7, < n2 < . . . } c N is called lacunary if there exists q e R, 
q > 1 such that 

nk. + j ^ qnk for all k: i^ 1. 

This is a consequence of Paley's inequality [8]: 

0 0 A \ l / 2 

2 i/(",)l2 ^c(^) II/II,, /<= //. 
A = l > 

This means that there is a bounded linear operator m:H —> //" c / / such 
that 

"H?) = X/-/ for a l l / e / / . 

These remarks prove the easy direction (<£=) of the following conjecture of 
A. Pefczyhski. 

1.2 A set E a {n e Z:^ ^ 0 } is of the form 

E = supp m 

/ ; r ^ome idempotent multiplier m of H <=̂  £" z's a finite Boolean combination 
of lacunary sets, finite sets, and sets of the form 

(aZ + b) O {n <= Z:w S 0} 

(/.(?., arithmetic sequences). 

2. Proof of 1.2 (=>). Our first step is to remove the arithmetic sequences 
from supp m using weak* limits. This idea has appeared before for 
measures; see for instance [4] and [2, Chapter 1]. We prove: 

2.1 For some idempotent measure \x, the multiplier m() defined by 

(2) m{) *f=m*f-iL*f< f G H] 

has the gap property: for all y = 0 there is x = 0 such that 

[x, x 4- y] Pi supp m0 = 0. 

Proof of 2.1. For each J? ^ 0 let A',, denote the Fejér kernel 

https://doi.org/10.4153/CJM-1987-062-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-062-5


I D E M P O T E N T M U L T I P L I E R S 1225 

K„(t)= 2 (l - ~ ^ M ^ t^T 
j=-„ \ n + \1 

Recall that Kn ^ 0 and 

IMUh = / r Kn{t)dt/2« = 1 
for all n. For n e Z let yA; denote the function 

Y„(0 = <"'". 

Since the functions Y„ATW are in / / , we may define functions gn by 

fti = y-nm * (%,*«)> « = 0, 1, 

Then 

HgJI, ^ HmlMI^II, = ||m|| for all n\ 

hence the sequence {gndt/27T}^L0 has a weak* limit point v in M(T). This 
implies that, for some increasing sequence {«^}^Li and for all / e Z, 

lim £ (/) = £(/). 
A'->oo * 

Note that for |/| ^ n we have 

g„(/) = Kn{l)m(n + /) = ( l - -^—)Mn + I). 
V « + 1 / 

Now for fixed / e Z we eventually have |/| ^ nk so that 

lim gw (/) = lim 1 — \*h(nk + 0 = u m ^ (^A + 0-
A-^oo * A-^oo \ nk + 1 / £—»oo 

Since m(«^ + /) e {0, 1}, this limit is 0 or 1; hence ^ is idempotent. By 
1.1, there exist p ^ 1 and /0 = 0 such that 

v(i + P) = £(/), U\ s /0. 

Consider the remainders of {nk} modulo p. There must be some r, 
0 = r ^ p — 1 such that nk = r mod p for infinitely many nk. 
Defining 

dii(t) = y^i<0 

satisfies 2.1, as will be verified: 
Clearly 

(i(n) = v(n — r) for all n e Z, 

and ju is idempotent. Let >> = 0 be given. For fixed /, v(l) = m(nk + /) 
eventually, and thus for all sufficiently large k we have 
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(3) v{l) = Hnk + /), / = /o, /o + 1, - - • , /o + y-

By the definition of r, there is also some «A == r mod/?, nk = r such that (3) 
holds. For this nk we also have 

£(/) = £(/ -f W;t - r) = A(^ + /), for all / ^ /0. 

Hence 

m0(n) = m(n) — jl(n) = 0 for all n e [nk + /0, /?A + /0 + >>], 

so we can take x = nk. + /0. 
Now observe that by (2), 

supp m = (supp m0)A( {/? = 0} Pi supp /I) 

where A denotes symmetric difference. So, to prove 1.2 (=»), it remains to 
show supp m0 is a finite union of lacunary and finite sets. This follows by 
taking m, = m0 in 2.2 below. 

2.2 Suppose the multiplier mx\H —» H has the gap property (see 2.1) 
and 

\mx(n) | = 1 /or «// n e supp ra^ 

77ie« supp m] is a finite union of lacunary and finite sets. 

We need lower and upper bounds on certain 1-norms: 

2.3 ( [7] ). There exists c > 0 such that for any trigonometric polynomial 
f on T, 

K 

ll/lli ^c 2 \f(nk)\/k, 
k = \ 

K A 

where {nk}k = x are the elements of supp /* /« either strictly increasing or 
strictly decreasing order. 

2.4 Suppose f is a trigonometric polynomial of the form 

N 

f(0 = 2 cke
xk%_x(t) 

k = \ 

where y e N, Kn is the Fejér kernel, {ck}'k^] c C, a/7 J ///£ integers 
{xk}k==] satisfy 

** + i ^ * A + ^ k = 1 , 2 , . . . , T V - 1. 

77*e/7 

/ ^ . \ 1 / 2 

ll/lli ^ 2 Iqf • 
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Proof of '2.4. Since K \ ê 0, the Cauchy-Schwartz inequality gives 

dtllm 
i f2* 1 ^L 

-i(0 

/ f27T 1 ^ 
v* 

^/rd^xl 
Since 

*V-|(0 = 2 
7 = - > ' + ! V 

l -

\//Ç70 \/K^W<"/2«) 

au, 
y I 

and since |y| ^ ^ - 1, x^ + 1 - xk ^ j ; imply 

xk — Xj + j = 0 <=> k = I, j = Q, 

we see that the last integral equals 

N 

2 |2 
*l 

* = 1 

We will only make use of the case cx = c2 • • • = c^ = 1 of 2.4. 

iVro/o/2.2. 

LEMMA. There exists c > 0 ŵc/z that for any multiplier m.H —> H 
satisfying 

\m(n) | = 1 y^r a// n e supp ra, 

and for any pair of adjacent intervals in N of the form 

/ = [ * , * + j>), / ' = [x + >>, x + 2y) 

where x, y e N, je = .y, */*£ cardinalities 

A = |/ H supp raj, yT = |/' O supp ra| 

\ l + A't 

Proof of the lemma. Since x = y, the function V defined by 

(4) = c\\m\\. 

V(t) = (e'xt + ei(x+y)')Ky_x(t\ t e T, 
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is i n / / 1 . Also ||K||, ^ 2 and 

f l f o r y 
lOfory 

VU) »n f™. ,; ^ [x + 2y, co). 

Therefore 

(5) | m ^ > ( 7 ) | = |/fc(y)llR/)l 

( \m{j) I ^ 1 for 7 <E [x, x + y] C) supp m 
0 for j <= [je 4- 2y, 00). 

To apply 2.3 to m * F, write 

sup m * K = {ftj > n2 > . . . > «#}, 

and observe that nk e [JC, * + _y) for ^T < A: ^ ^T + v4. Then 2.3 gives 

A: ^ ^ 
\\m * F||j = c 2 |w * K(/7A.) |//c 

A'+A ^ ^ 

è c 2 |m * F(^) | / fc 

= c 2 |m(" , ) | /£ (by (5)) 

A'+A 

S c 2 1/A: 

^ C log! 

clog 

1 + A' 

1 4- A 

A + .4' 

Therefore 

1 + A 
INI ^ | |m* Klh/HKH, ^ (c/2)log 

1 + ,4' 

For the case A <C A' there is a similar argument using, instead of V, the 
function W e / / defined by 

H/(/) = (</<*+>'>' + <?{x+ly)t)KY_x(t\ t e T. 

The only change is that we enumerate supp m * W from left to right; 

supp m * W = («j < ft2 < . . . < /7^}, 

when applying 2.3. 

https://doi.org/10.4153/CJM-1987-062-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-062-5


IDEMPOTENT MULTIPLIERS 1229 

Now, from the conclusion (4) of the lemma, we can deduce that there is 
an integer;? ^ 2, depending only on ||m||, such that 

(6) -Af ^ A ^ pA' provided max(^4, A') ^ /?. 
P 

We let/? be this constant for the multiplier m = mx in what follows. The 
conclusion of 2.2 is clearly equivalent to the estimate 

(7) sup | [3y, 6y) Pi supp mx\ < oo. 

To obtain (7), fix, if possible, some y e N such that 

(8) |[3y, 6y) n supp mj ^ 3/7, 

and let 

S = | [3y, 6y) Pi supp mx\. 

Define TV e N by 

3 / ^ < 3pN+]. 

We claim that there is a sequence 

{xk)k = \ c N, with 3y ^ xx < x2 < . . • < xN, 

satisfying 

(9) xk + } ^ xk + 3y, k = 1, 2, . . . , N - 1, and 

(10) | [**, xA. + 3y) n supp wjl = 3pN~k + \ k = 1, 2, . . . , TV. 

To prove this, let xx be the first integer i?3y satisfying (10) with k = 1. 
It clearly exists, since on the one hand, by the gap property, there exists 
x ^ 3y with 

| [x, x + 3y) Pi supp raj = 0 , 

and on the other hand 

| [3y, 6y) n supp m| - S â 3/A 

by definition. Inductively, suppose that 1 ^ n ^ TV — 1 and that 
JCJ < . . . < xn have been defined and satisfy (9) for 1 ^ k = n — 1 and 
(10) for 1 ^ k ^ n. Consider the adjacent intervals 

/ = [x„, xn + 3y), F = [xn + 3y, xn + 6y), 

and note that by (10) we have 

|7 O supp mx\ = 3pN~fl + l ^ 3/72 g /7. 

Thus (6) applies and gives 
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^ 1 1, 
(11) \r n supp mx\ = A' ^ -A = -\I Pi supp mj 

/> P 
N - ( « + l) + l = 3/7 

So define JCW + 1 to be the first integer ^xn + 3y satisfying (10) with 
k = n + 1. The gap property and (11) again show that -xw + j exists, and, by 
definition we now have (9) for 1 ^ k ^ n and (10) for 1 ^ k ^ n + 1. 
By induction, the claim is true. 

One more property of the {xk } will be needed. Fix /c, 1 ^ /c ^ N, and 
consider the 3 adjacent intervals 

1 = [**> ** + J 0 ,
 / r = [*k + >>> *A + iy\ 

I» = [xk + 2y, x, + 3y), 

whose union is [JCA, xk -h 3y). By (10), we have 

A + A' + A" = 3pN~k + l. 

Suppose A' < pN~k + x. Then either 

^ ^ ^ - * + 1 or A" ^pN-k + \ 

so by (6) applied to either the pair A, A' or the pair A\ A" we get 

A' ^ V~* + 1 = /,"-*. 
/> 

Therefore 

(12) | [JCA + j , xA + 2y) O supp w,| ^ /?*"*, A: = 1, 2, . . . , N. 

To finish the proof of (7), define / Œ H] by 

N 

fit) = 2 (el{x'+y)t + ^'(A/+2v)X,-i(0, * e T. 

By (9) and 2.4, we have | | / | | | ^ ^/2N. As m t n e P r o°f of the lemma, 
write 

supp mx * / = { W l > w2 > . . . > ^ } 

yv 
= U (x/, X/ -f 3>>) Pi supp m,, 

and observe that if nk e (JC/9 x ; + 3y) then 

k ^ 2 I (*„, *„ + 3_y) n supp mx\ 
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VII 

N 

2 
n=l 

V - / 7 + 1 (by (10)) 

VII V -i+: " (since/? = 2). 

So 2.3 gives 

IK *f\\ 

All 

K 

A- = l 
\rÇ^f(nk)\/k 

All 

N 

l=\ 
2 ki 

«A.e[x/+v,A"/+2v) 

^f(nk)\/k 

= 
N 

c2 
l=\ 

2 ki \{nk)\/k 

(since / = 1 on [xj + >\ xt + 2y] ) 

= c 2 I [*/ + J> X/ + 2y) Pi supp Wj|/3/? ~ " 

( |A,(**) | ^ h k ^ 3pN~l+2) 

^ 2 / - ' / 3 / - / + 2 (by (12)) 
/ = 1 

= cN/3p2. 

Therefore 

(13) HmJI ^ K * / | | 1 / | | / | | 1 ^ (cN/3p2)/y/2N 

= (c/3y/2p2)VN ë c(/>)(log S) , / 2 . 

In particular, S is bounded independently of y and this proves (7). Thus 
the proofs of 2.2 and 1.2 (=») are complete. 

The sequence (10) was motivated to an extent by a certain "geometric 
gap theorem" for measures, and by its proof [1, Theorem 6]. Since the 
average length of a gap in [xh xk -f 3y) is « 3y/3pN~"k + x = ypk~N~\ 
the gaps grow geometrically in this sense. 

3. Some refinements. Let 

£ à = { / : / e j y \ / ( 0 ) = 0>. 

The result 1.2 also holds for idempotent multipliers 

m:Hl -> LX/HXQ. 
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In fact all the steps in the proof of 1.2 (=>) can be adapted to this weaker 
assumption on m: In the proof of 2.1, change gn to 

8n = y-M * (yn
K„) + Kl 

where hn G H0 is such that 

\\m * (ynKn) + h„\\t ^ 1 + IMI(,Az.V/7i)-

This does not affect ji since for each / e Z, 

lim Y O » ( 0 = 0-

In the lemma and the proof of 2.2, we only need to check that the lower 
bounds for \\m * V\\u \\m * W\\x, and \\m] * f\\x also hold for the norm 
|| ll/V/71- This is clear for m * F and mx *f since the {nk} were taken 
from right to left when applying 2.3. For \\m * WII/J//71 we use a 
well-known trick: for any h e HQ we can write 

where 

v{) = (yx + Y,+V + yx-f2v + Yx+3>-)̂ v-i-

Therefore, 

\\m * Ŵ H, ^ \Wo\UWm * ^ | | L . / / 7 i ^ 4||m * W\\l}/flK 

It may be of interest to remark that 1.1 has a similar refinement: the 
so-called semi-idempotent theorem [4]. One way to state this theorem is 
that if 

m:L] -> Lx/R\ 

is an idempotent multiplier, then 

supp m = {n = 0} D E 

where E is of the form (1). 
Our final point is this: To obtain a sequence with properties similar to 

(9), (10) and (12), one does not really need the lemma or (6). A purely 
combinatorial argument exists [6] for the following fact: 

Given any E c N, and any pair of intervals of the form 

I = [xy x + y), 7* = [x*9 x* + _y) 

where xy x*, y e N, JC = 2y, x* = x 4- _y, /<?/ 

.4 = |7 n £|, ,4* = |7* n £|, 

a/7̂ / suppose A > A*. Then there is a sequence of integers x — y = x] < 
x2 < . . . < xN = x* — y such that: 
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X / + 1 ^ X[ + y I = 1, 2, . . . , W - 1, 

w a " l 08(rr^)+ * 

N 

F = U (x/ — >?, X/ + 2y) tf«<i 

F n £ = {«J > n2 > . . . > nK}, 

then 

2 2 i / * £ c 3 i o g ( - ^ ) + c 4 , 
/=1 ^ G ^ A V + V) M + A*/ 

where cx > 0, c3 > 0, c2, c4 «re absolute constants. 

Applying this with E = supp m, where the multiplier m:H —» / / 
satisfies |w(«) | ^ 1, « e supp m, and then considering a test function 

N 

/ = 2 (Y,, + Y,,+,)*,._, 
/ = 1 / - -

as before, one gets 

(13)* l|m|| è ^( logf^^)) 1 7 2 . 

If m has the gap property, one can choose /* such that A * = 0 and thus 
retrieve (13), with the improvement that c5 is an absolute constant, 
whereas c(p) depends on ||m|| (via the lemma and (6)). In view of the 
Littlewood conjecture, one may ask whether the 1/2 can be removed or 
improved when A* = 0; this is left open. 
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