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IDEMPOTENT MULTIPLIERS OF H'(T)
I. KLEMES

1. Introduction. Let as usual T = R/27Z be the circle, and H' the
subspace of L'(T) of all f such that f(n) = 0 for all integers n < 0.
The norm

27

I = fo \f@ ldi/2m, f € L',
restricted to H', makes it a Banach space. By a multiplier of H' we mean
a bounded linear operator m:H'" — H' such that there is a sequence
{c, }n2o in C with

PN A 1

m(f)(n) = ¢, f(n) foralln = 0andall f e H'.
We use the notation

mx*f=m(f) and m(n) = c,
m is called idempotent if

m(n) € {0, 1} foralln = 0.
A measure p € M(T) is called idempotent if

f(n) € {0,1} foralln € Z

Recall that the mapping f > p * / = convolution of p and f, f € L'
defines a multiplier, which restricts to a multiplier m of H' such that

m(n) = wn), n = 0.

The support (abbreviated supp) of a sequence will mean the set of all
indices at which the sequence is not 0. For idempotent measures we have
the following characterization.

1.1 ([3]). A set E C Z is of the form

E = supp p

for some idempotent p € M(T) =
N
) E-= ( U aZ + b,)/F
for some N € N, a, b, € Z, 1 =i = N, and some finite set F C L.
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In this paper we will characterize the sets £ C {n € Z:n = 0} of the
form

E = supp m

for some idempotent multiplier m of H'. We first note that the
collection of such sets is closed under finite intersection and comple-
mentation in {# = 0}, and that it includes the intersections of {n = 0}
with all sets of the form (1) above. It also includes lacunary sets:
E = {n, < n, <...} C N is called lacunary if there exists g € R,
g > 1 such that

.y = gn, forall k = 1.

This is a consequence of Paley’s inequality [8]:

® L, _ _
(S 1/wor) " = c@ifi. e

This means that there is a bounded linear operator m:11' — H* ¢ H' such
that

T n . 1
m(f) = x,f forall fe H.

These remarks prove the easy direction (<) of the following conjecture of
A. Pefczynski.

1.2 A set E € {n € Z:n = 0} is of the form
E = supp m

for some idempotent multiplier m of H' < E is a finite Boolean combination
of lacunary sets, finite sets, and sets of the form

(aZ + by N {n € Z:n = 0}
(i.e., arithmetic sequences).
2. Proof of 1.2 (=). Our first step is to remove the arithmetic sequences

from supp m using weak* limits. This idea has appeared before for
measures; see for instance [4] and [2, Chapter 1]. We prove:

2.1 For some idempotent measure p, the multiplier my, defined by
Q) myxf=mxf—pxf feH
has the gap property: for all y Z 0 there is x = 0 such that
[x. x + y] N supp m, = P.

Proof of 2.1. For each n = 0 let K, denote the Fejér kernel
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K, (1) = 2' (1 __M )e’f/’, teT.

j==n

Recall that K, = 0 and

n -

27

1Kl = K, ()dt/2m = 1

0
for all n. For n € Z let y, denote the function

y, (1) = ™.

Since the functions v, K|, are in H', we may define functions g, by
g =v..m*K,), n=0,1....

Then
lg.lly = llmll IK,Il, = llmll for all n;

hence the sequence {g,dt/2n}, o has a weak* limit point » in M(T). This
implies that, for some increasing sequence {n, },~, and for all / € Z,

k—0c0
Note that for |/| = n we have

A A A / A
g,() = K,(hmn + 1) = (1 - ;—'_%T)m(n + ).

Now for fixed / € Z we eventually have |/| = n, so that

Il

ny

lim g, (/) = lim (1 — )r?l(nk + 1) = lim mn, + 1)
k=00 K 1 k—00

k—>c0

Since m(n;, + ) € {0, 1}, this limit is 0 or 1; hence » is idempotent. By
1.1, there exist p = 1 and [, = 0 such that

M+ py = D), |l =4,

Consider the remainders of {n,} modulo p. There must be some r,
0 =r = p — 1 such that n, = r mod p for infinitely many n,.
Defining

d,u,(t) = Yrdy([)

satisfies 2.1, as will be verified:
Clearly

Un) = p#(n — r) foralln € Z,

and p is idempotent. Let y = 0 be given. For fixed /, »(/) = m(n, + 1)
eventually, and thus for all sufficiently large k we have
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(3) ﬁ(l) == r’h(n/\ + 1), [= l(), l() + l,...,l() + y.

By the definition of r, there is also some n, = r mod p, n;, = r such that (3)
holds. For this n, we also have

Hence
my(n) = m(n) — filn) =0 foralln € [n, + ly, n, + 1) + y].

so we can take x = n; + /.
Now observe that by (2),

supp m = (supp mp)A( {n = 0} N supp f)

where A denotes symmetric difference. So, to prove 1.2 (=), it remains to
show supp 7, is a finite union of lacunary and finite sets. This follows by
taking m; = m, in 2.2 below.

2.2 Suppose the multiplier mI:Hl — H' has the gap property (see 2.1)
and

lmy(n)| = 1 for all n € supp m,.
Then supp m, is a finite union of lacunary and finite sets.
We need lower and upper bounds on certain 1-norms:

2.3 ([7]). There exists ¢ > O such that for any trigonometric polynomial
fonT,

K
Al = e 21700 1/k,

A
where {n, },’le are the elements of supp [ in either strictly increasing or
strictly decreasing order.

2.4 Suppose f is a trigonometric polynomial of the form
N .
/([) _ kgl Ckel.\'[\[Kv_ ](t)

where y € N, K, is the Fejér kernel, {c,}r_, © C, and the integers
{(x 30 satisfy
x,\+l§xl\+y, k:1,2,...,NAl.

Then

Al = (/\%1 Icklz)l/zi
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Proof of 2.4. Since K, _; = 0, the Cauchy-Schwartz inequality gives

5
(I

2w N ) N A
= /0 ( > Cke"x"t)(z Eleﬂm)Kv_l(t)dl/%r,
k=1 )

N ) 2
> Cke,xktKv_,(t)‘dt/h)
k=1 :

2

N .
2 Ckel.\kt
k=1

VK, () \/K},;l(t)dt/?.w)

=1
Since
S Ul
Kl"‘l(t) = 2 (1 - _)elﬂ>
' Jj=—y+l y
and since |j| =y — 1, x,,;, — x;, = y imply
x,‘—x1+j=0©k=1,j=0,

we see that the last integral equals

N
2 IC/(‘Z-
k=1

We will only make use of the case ¢; = ¢,... = cy = 1 of 2.4.

Proof of 2.2.

LEMMA. There exists ¢ > 0 such that for any multiplier m:H' — H'
satisfying

Im(n)| = 1 forall n € supp m,
and for any pair of adjacent intervals in N of the form
I=[x,x+y), I'=[x+y x+ 2)
where x,y € N, x Z y, the cardinalities
A = |I N supp m|, A" = |I' N supp M

satisfy

10(1+A)
M+

= d|mll.

(C))

Proof of the lemma. Since x Z y, the function V defined by
V(ty = (€Y + &TNK (1), tET,
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isin H'. Also [[V]|, = 2 and

1 forj € [x, x + y]

Vi) = {Oforj € [x + 2y. o0).

Therefore
S AL N

(5)  Im = V()| = Im() V()|

~[ImG)l =1 forj € [x,x + y] N supp m

B 0 for j € [x + 2y, co).

To apply 2.3 to m * V, write
S

supm * V= {n, >ny, >... > ng},
and observe that n; € [x, x + y)for 4’ < k = A" + A. Then 2.3 gives
K
S
lm* VI, Z ¢ 2 |m* Vin,)|/k
k=1

A +A

N
=c X mx* Vin)l/k
k=A"+1
A +A
=c 2 lmm) I’k (by (5))
k=A4"+1
A +A
=c > 1/k
k=A+1
14+ 4 + 4
= clog(——)
1+ A
1+ 4
= clog( )
1+ 4

Therefore

1+ A4
= = VI|[,/IIVIll, = (¢/2) lo ( )
llml| = [lm 1/Z1IVIL = (¢/2) log T

For the case A << A’ there is a similar argument using, instead of V, the
function W € H' defined by

W) = (0 4+ JOFNK 1), tE€T.
. v /\ .
The only change is that we enumerate supp m * W from left to right;
S
supp m * W = {n; < n, <...<ng},

when applying 2.3.
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Now, from the conclusion (4) of the lemma, we can deduce that there is
an integer p = 2, depending only on ||m||, such that

1
(6) ;A' = A = pA’ provided max(4, A’) = p.

We let p be this constant for the multiplier m = m,; in what follows. The
conclusion of 2.2 is clearly equivalent to the estimate

(7)  sup |[3y, 6y) N supp my| < oo.
yEN

To obtain (7), fix, if possible, some y € N such that
®) 113y, 6y) N supp Ayl = 3p,
and let

S = |[3y, 6y) N supp my|.
Define N € N by

pY =5 < 3pNtlL
We claim that there is a sequence

() © N, with3y S x, <x, <...<xp
satisfying
® x4 =2x,+3y, k=12,...,N—1, and
(10) |[x;. x;, + 3y) Nnsupp iy = 3p¥ *1 Kk =1,2,... N

To prove this, let x; be the first integer =3y satisfying (10) with k& = 1.
It clearly exists, since on the one hand, by the gap property, there exists
x = 3y with

[[x, x + 3y) N supp m,| = 0,
and on the other hand
| [3y, 6y) N supp m| = § = 3p",

by definition. Inductively, suppose that 1 = n = N — 1 and that
x; <...< x, have been defined and satisfy (9) for 1 = kK =n — 1 and
(10) for 1 = k = n. Consider the adjacent intervals

I =[x, x,+3), I' =[x, + 3y, x, + 6py)

n

and note that by (10) we have

v

II N supp | = 3pN " = 3p? = p.

Thus (6) applies and gives
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A 1 1 A
(1) |I' nsuppmy| = A" = -4 = —|I N supp m,|
p P

_ 3pN“(n+l)+l'

So define x,,, to be the first integer =x, + 3y satisfying (10) with
k = n + 1. The gap property and (11) again show that x, | , exists, and, by
definition we now have (9) for 1 = k = nand (10)forl =k =n + 1.
By induction, the claim is true.

One more property of the {x, } will be needed. Fix k&, 1 = k = N, and
consider the 3 adjacent intervals

I =[x x, +p), I' =[x +y,x + 2),
I" =[x, + 2y, x, + 3y),
whose union is [x;, x;, + 3y). By (10), we have
A+ A + 47 =3pN kL
Suppose A’ < p¥ **! Then either

A ipNVI\+l or A” ;pN—kﬁLl

’

so by (6) applied to either the pair A, 4’ or the pair A, A” we get

4 = le—/\‘“f'l _ pN—/\"
p
Therefore
(12) |[x; +y.x, +2) Nnsupp Ayl = pV K k=1,2,...,N.

To finish the proof of (7), define f € H' by
N . .
Jf@) = /% (& e"""”'”[)Krl(’)’ t €T.

By (9) and 2.4, we have ||f]||, = /2N. As in the proof of the lemma,
write

T~
supp my * f = {n; > ny, > ... > ng}
N A
= 191 (x;, x; + 3y) N supp my,

and observe that if n, € (x,, x, + 3y) then

N
= [(x,, x, + 3y) O supp |

n=
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N
> 3pMTT (by (10))

n=/

IA

= 3pN 12 (since p = 2).

So 2.3 gives

;
Iy =l = ¢ 3 fmy = fom) Vk

v
(o
M=

Sy i) 1k

I €0x,+yx,+2y)

—c X > |y (ny) |/ k

=1 n €[x;+y.x,+2p)

~
It

(since f =lon[x, +y,x, + 2y])
N 7
=c > [[x; + y, x, + 2y) N supp l’?’l||/3p'N_[+2
=1

(Imyn) ] 2 1,k = 3pN 112

v

N
e 2 pNTl3pN I (by (12))
/=1

= cN/3p2,
Therefore
(13) lmyll = lmy = £, /1F)l, = (eN/3p*)/\/2N

(¢/3V2pH)V/N = c(p)(log $)"%

In particular, S is bounded independently of y and this proves (7). Thus
the proofs of 2.2 and 1.2 (=) are complete.

The sequence (10) was motivated to an extent by a certain ‘“‘geometric

gap theorem” for measures, and by its proof [1, Theorem 6]. Since the

average length of a gap in [x, x, + 3y)is = 3y/3pN—l‘+' = yp"'_Nﬁ',

the gaps grow geometrically in this sense.

3. Some refinements. Let
Hy = {J-f € H'. f(0) = 0}.
The result 1.2 also holds for idempotent multipliers

m:H' — L'VH),.
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In fact all the steps in the proof of 1.2 (=) can be adapted to this weaker
assumption on m: In the proof of 2.1, change g, to

& = Y—u(m* (v,K,) + h,),
where h, € H| is such that

lm * (v,K,) + Rl = 1+ lImllgp 50
This does not affect p since for each / € Z,

Y
lim y_,h,() = 0.

Hn—>00

In the lemma and the proof of 2.2, we only need to check that the lower
bounds for ||m = V|||, llm = W||,, and |lm, * f||, also hold for the norm
Il It /75 This is clear for m * V and m, * f, since the {n, } were taken
from right to left when applying 2.3. For |lm * W1, 71 we use a
well-known trick: for any h € P_I(') we can write

m*x W= Vyx(m=* W+ h),
where

Vo = (v + Yoty T Yooy + Yet+3)K 1
Therefore,

llm = Wil = IVILlm = Wil g0 = 4llm < Wil g0

It may be of interest to remark that 1.1 has a similar refinement: the
so-called semi-idempotent theorem [4]. One way to state this theorem is
that if

m:L' — L'/H)
is an idempotent multiplier, then
suppm = {n Z 0} N E

where E is of the form (1).

Our final point is this: To obtain a sequence with properties similar to
(9), (10) and (12), one does not really need the lemma or (6). A purely
combinatorial argument exists [6] for the following fact:

Given any E C N, and any pair of intervals of the form
I =[x, x+y), I*=][x*x*+y)
where x, x*, y € N, x = 2y, x* = x + y, let
A= NE, A* =|I* N E|

and suppose A > A*. Then there is a sequence of integers x — y = x; <
Xy < ... <Xxy = x* — y such that:
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XI+];X/+)/ l:1,2,...,N_1,

1+A)

MW
OB 4

Cy,

and such that, if

N
F = /91 (x;, —y,x, +2) and

FNE={n>n>...>ng}

then

%21/1(

=1 n€x.x;+y)

1+ 4
C310g‘7 +C4,

where ¢; > 0, ¢; > 0, ¢,, ¢4 are absolute constants.

Applying this with E = supp 1, where the multiplier m:H' — H'
satisfies |#(n)| = 1, n € supp m, and then considering a test function

N
f = [21 (Yr, + Yx,+y)1<y—|

as before, one gets

1+ 4|2
030 i = sfrogf )

If m has the gap property, one can choose I* such that A* = 0 and thus
retrieve (13), with the improvement that ¢y is an absolute constant,
whereas c(p) depends on ||m]|| (via the lemma and (6) ). In view of the
Littlewood conjecture, one may ask whether the 1/2 can be removed or
improved when A* = 0; this is left open.
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