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Abstract

Several effective upper bounds are known for the solutions of Thue equations, Thue-Mahler
equations and superelliptic equations. One of the basic parameters occurring in these bounds
is the height of the polynomial involved in the equation. In the present paper it is shown that
better (and, in certain important particular cases, best possible) upper bounds can be obtained
in terms of the height, if one takes into consideration also the discriminant of the polynomial.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 D 41, 11 D 61.

1. Thue equations and Thue-Mahler equations

Let F(X, Y) be a binary form of degree n > 3 with relatively prime inte-
ger coefficients and with non-zero discriminant D(F). Further, let m be a
nonzero integer. By using his fundamental results on linear forms in loga-
rithms, Baker [1] derived in 1968 an explicit upper bound for the absolute
values of the solutions of the Thue equa tion

(1) F(x,y) = m tax, yeZ.

This bound depends only on n, \m\ and the height H(F) of F, that is the
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maximum of the absolute values of the coefficients of F . This result was
extended by Coates [4] to the Thue-Mahler equation

(2) F(x,y) = mpz
l
1--p*s in x, y, zx,... , zs e Z with

(x,y,Pi---ps) = 1 a n d z , , . . . , zs > 0 ,

where / ? , , . . . , ps (s > 0) are distinct, fixed prime numbers. (Baker [1] and
Coates [4] made the assumption that F is irreducible.) The bounds obtained
by Baker and Coates were later considerably improved by several authors; for
references see, for example, [22], [20] and [5]. It was proved in [12] (see also
[14]) that all solutions (x, y, zx, ... , zs) of (2) satisfy

(3) max(|x|, \y\, pz> • • -pz/) < cx(H(F) • \m\)c>

where c{, c2 are effectively computable numbers depending only on n, s,
the maximum, say P, of p , , . . . , ps (with P = 1 if 5 = 0) and the splitting
field, say G, of F over Q.

In the present paper, we show that the upper bound (3) for the solu-
tions of (1), (2) can be replaced by another one which has a much bet-
ter dependence on H(F), provided that we take the discriminant D(F)
(which by assumption is nonzero) into consideration. Every binary form
F\X, Y) = F(aX + bY, cX + dY) w i th a,b,c,deZ a n d ad-bc = ±\,
has the same discriminant as F. This shows that the height of a binary form
can be arbitrarily large compared with its discriminant.

Let S = {/?,,..., ps} . Every a e Q can be expressed uniquely as a =

±/>i' • • -P-i • a/b, where kx,... ,ks are rational integers and a, b positive
integers such that (a, b) = 1 and (ab, p{ • • -ps) = 1. We put |a | s = a/b.
We call \a\s the 5-free part of a . By using some effective results on S-
unit equations (see [10], [6]) we shall prove the following theorems. Let
DG be the discriminant of the splitting field G of F over Q. Further, let
g = [G : Ql.

THEOREM 1. Let {x,y,zl,...,zs) be a solution of (2). Then

(4) max(|x|, |y|) < c,H(Ffn\D(F) • m\c*,

where c3, c4 are effectively computable positive numbers depending only on
n,g,s,P and \DG\.

The binary form F(X, Y) considered above is called monic if F ( l , 0) =
1. In the monic case, we can further improve the right-hand side of (4).

T H E O R E M 2. Assume that F is monic. Then for each solution (x, y , zx,
..., zs) of (2) we have

(5) \y\<cs\D(F).m\$
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and

(6) |JC| < c7(\D(F)\w"-l) + | f (0, I)!17") • \D(F) • m\ci ,

where c5, c6, c7, c8 are effectively computable numbers depending only on
n, g,s,P and \DG\.

Observe that the bound in (5) is independent of H(F). The following
example shows that, in (6), the dependence of \D(F)\ cannot be dropped.
Let in particular S = {2} , let (x0, y0) e Z2 with x^y0 # 0, (x0, y0, 2) = 1
and F(xo,yo) = m, and let F*(X, Y) = F{X, 2kY) for k = 1, 2 , . . . .
Then \D(Fk*)\s = \D(F)\S. Further, x = 2kx0, y = yQ, z = nk is a
solution of Fk(x,y) = m-2Z in x,y,z£Z with (x, y, z) = 1 and
z > 0. This shows that for large k, \x\ cannot be estimated from above by
a bound which depends on \D(F£)\S but not on 1^(^)1.

We now consider equation (1); S is still a set of prime numbers, the
largest of which is P.

THEOREM 3. Assume that F is monk. Then every solution {x, y) of (I)
satisfies

(7) \y\<c9\m\l/n\D(F)-m\c«

and

(8) \x\ < cn\m\l/n(l + \F(0, l)\l/H)\D{F) • m\c» ,

where c9, cl0, cn , cl2 are effectively computable numbers depending only on
n, g,s,P and \DG\.

We can compare (7) with a recent estimate of Brindza [3]; he derived the
sharper estimate

\y\ < cfni)in2)

for the solutions (x, y) e Z2 of (1); however, he made the assumptions that
m = 1, that F is monic and irreducible and that the unit rank of G is less
than n - 1.

The following example shows that the exponent l /« of |.F(0, 1)| in
(6) and (8) are already best possible. Let m = a" for some a e N, let
P(X, Y) = X" + Yn and let Fk(X, Y) = P(X + kY, Y) for k= 1 , 2 , . . . .
Then D{Fk) = D(P), Fk and P have the same splitting field over Q,
x = -ka, y = a is a solution of Fk(x, y) = m and, for large k, H(Fk) =
\Fk(0, 1)| = kn + l and |JC| > \m/2\l/n\Fk(0, l ) | l / n .

It is possible to reduce the number of parameters on which the bounds
in Theorems 1, 2 and 3 depend. Obviously, g < n\. Further, from prime
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number theory it follows that s < 2P/logP (cf. [17]). Finally, in Section 3
we shall prove that

(9) \DG\ < (nP)sng\D(F)\8
s.

When we combine these inequalities for instance with Theorem 1, we get
that every solution (x, y, z , , . . . , zs) of (2) satisfies

(10) m^{\x\,\y\) <c^H{Ffln -\m\c-,

where cl3, cl4 are effectively computable numbers depending only on n, P
and \D(F)\S. We remark that the upper bound in (10) is no longer poly-
nomial in \D(F)\S. Similar consequences can be deduced from Theorems 2
and 3.

By a result of Gydry [8] we have

(11) n ^

By inserting this bound into (4) with 5 = 0 and using again g < n\ and
(9), we get that every solution {x, y) of (1) satisfies

(12) mzx(\x\,\y\)<cl5H(Ffn\m\c«,

where c15, c16 are effectively computable and depend only on \D(F)\. Again,
it is possible to derive a similar consequence from Theorem 3.

In Theorems 1, 2 and 3, it is possible to replace \D(F)\S by some number
depending only on the largest prime factor P(D(F)) of D(F). Let S' be
the set consisting of p l , ... , ps and the primes dividing D(F). By applying
(10) with S"1 instead of S we get

COROLLARY 1. Every solution (x, y, zx,..., zs) of (2) satisfies

max(W, \y\)<cl7H(F)3/n\mQ?,

where c17, clg are effectively computable numbers depending only on n, P
and P(D(F)).

Again, Theorems 2 and 3 have similar consequences.
We note that the above-mentioned results of [10] and [6] which provide

the main tools in the proofs of Theorems 1, 2 and 3 above were all proved by
means of the theory of linear forms in logarithms and its p-adic analogue.
Further, these results in [10] and [6] were established in a more general sit-
uation, over algebraic number fields. By using these more general versions

https://doi.org/10.1017/S1446788700033267 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033267


12 B. Brindza, J. H. Evertse and K. Gy6ry [5]

from [10] and [6], the results of this section can be easily extended to the
algebraic number field case.

2. Super-elliptic equations

Let f(x) e Z[X] be a polynomial of degree n with at least two distinct
roots, and consider the super-elliptic equation

(13) f(x)=yz va.x,y,z£i with \y\ > 1, z > 1.

By using the theory of linear forms in logarithms, Schinzel and Tijdeman
[18] proved that for all solutions of (13), z < c19 where c19 is an effectively
computable number depending only on n and the height H(f) of / . For
various generalizations and related results, we refer to [20] and [24]. In the
case when / is monic and its discriminant D(f) is different from zero, it
follows from a theorem of Gy6ry [9] (see also Lemma 3 in Section 4) that
f(X) = f(X + a) with some a € Z and f e Z[X] for which H(f) < c20

where c20 is an effectively computable number depending only on n and
\D(f)\. Then (13) implies f(x + a) = yz for each solution and, by the the-
orem of Schinzel and Tijdeman, z is less than some effectively computable
number which depends only on n and \D(f)\, and not on H(f). This gives
a much better estimate for z if H(f) is large with respect to \D(f)\.

In our paper, we shall deal with equation (13) in the important special
case when / is irreducible. It is straightforward, but technically more com-
plicated, to generalize our results to arbitrary polynomials / e 1<[X] with no
multiple zeros. By applying a recent estimate of Philippon and Waldschmidt
[ 16] for linear forms in logarithms, we shall derive upper bounds for z which
depend not only on n and H(f) but also on \D(f)\. For latter applications,
the upper bounds will be given in completely explicit form.

THEOREM 4. Suppose that f{X) e Z[X] is an irreducible monic polynomial
of degree n>2. Then all solutions of (13) satisfy

z < max{wlog2(2tf(F) + 3), c2l\D(f)\2}

with some c21>220(n+3)(n + 2)15n.

Theorem 4 and Lemma 3 imply immediately

THEOREM 5. Suppose that f e Z[X] is an irreducible monic polynomial of
degree n>2. Then all solutions of (13) satisfy

/ r 3 \ 30/1 i w-v/ y^v|5n

z < (6n ) • \D(f)\ .
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The proof depends on an effective estimate in Lemma 3 which can be
improved in terms of n by using some recent effective estimates for linear
forms in logarithms.

It follows from a result of Gydry [8, Theorem 1 and Remark 1.2] that if
/ e Z[X] is monic and irreducible with discriminant \D(f)\ < D (D > ee)
then

(14) deg(/) < log£>.

Hence, estimating z, we can eliminate the dependence on n and we obtain
from Theorem 5 the following

COROLLARY 2. Suppose that f € Z[X] is an irreducible monic polynomial
of degree at least 2 with \D(f)\ < D (D > ee). Then all solutions of (13)
satisfy

logz < 100(logZ))3loglogZ).

It is easy to see that if x, y, z is a solution of (13) then, for |JC| , there ex-
ists no upper bound depending only on \D(f)\. However, combining Corol-
lary 2 with Lemma 3, (14) and a result of Baker [2] on super-elliptic equa-
tions, we have

THEOREM 6. If f e Z[X] is an irreducible monic polynomial of degree at
least 2, then all solutions of (13) satisfy \y\z < c22, where c22 is an effectively
computable number depending only on \D(f)\.

In fact, Baker's theorem applies to (13) only if n = deg(/) > 3 or n =
2, z > 3 . However, it is easy to see that if n = z = 2 then \y\2 < \D(f)\2

and hence our Theorem 6 is true in the present form.
In other words, Theorem 6 says that the power values of an irreducible

monic polynomial / e 1\X\ of degree at least two are bounded by an effec-
tively computable number which depends only on the discriminant of / .

3. Proofs of Theorems 1, 2 and 3

In this section, we shall prove Theorems 1, 2 and 3 and the inequality (9).
To do so, we shall need some further notation and one lemma.

Let (7 bean algebraic number field of degree g with ring of integers OG.
Let MG denote the set of places (equivalence classes of multiplicative valu-
ations) on G. In every place v we choose a valuation | • \v in the following
way: if v is an infinite place corresponding to an embedding a: G -* C then
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we put, for every a e G, \a\v = \a(a)\l/g or \a\v = \a(a)\2/g , according as
<j(G) c R or a(G) <£ R; if v is a finite place corresponding to the prime
ideal p in G then we put \a\v = NG/Q(pyord>{a)/g for a e <?\{0} and
10)̂  = 0. The valuations thus defined satisfy the product formula

(15) [ ] |< = 1 foraeG\{0}.

Further, for a vector a = ( a , , . . . , aN) e GN and for v e MG, we put

|«|t,=inax(|fl1 ! „ , . . . , \aN\v)

and we define the homogeneous height of a by

We note that, by (15), A*(Aa) = h*(a) for every A e G\{0}. For a e G,
we define the absolute height h(a) of a by h{a) = h*{\,a). The absolute
height has the following elementary properties:

h(a~l) = h(a) foraeG\{0}

and

h{a-p)<h(a)h{P), h{a + p)<2h{a)h{p) fora.jSeG.

If Q e G[XX, ..., XN] is any polynomial then the homogeneous height
h*{Q) of Q is defined as the homogeneous height of the vector consist-
ing of the coefficients of Q. Further, we define \Q\V as the maximum of
the v -values of the coefficients of Q. We note that h* (a), h(a) and h*(Q)
depend only on a, a and Q, and are independent of the choice of the num-
ber field G. Finally, for any nonzero algebraic number a with minimal
polynomial a011"= i ( ^ ~ a,0 e Z W > w e nave> bY [15» Pa8e 54], that

l/n

(16) ( I I )

and (see, for example, [7]) that

2l~"H(a) < (h(a))n < v/«TT • H(a),

where H(a) denotes the usual height of a , that is, the maximum absolute
value of the coefficients of the minimal defining polynomial of a over Z. If
in particular a e Q, then h(a) coincides with H(a).

Let T be a finite set of places on G containing t finite places. Denote
by OT the ring of T-integers:

OT = {a e G: \a\v < 1 for v € MG\T}.
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By an <9r-ideal we mean a finitely generated Oy-module contained in G; an
0r-ideal contained in OT is called integral. Let p , , . . . , pt be prime ideals
corresponding to the finite places in T, and let P be the maximum of the
rational primes lying below p{,... , p{ (with P = 1 if t = 0 ) . Then, for
every 0r-ideal a there is a unique OG-ideal a*, composed of prime ideals
outside { p j , . . . , p,} , such that a = a*OT. We put

If o is any Or-ideal and b, c are integral Or-ideals such that o = be"1,
b + c = OT, then we put

nT{a) = \b\T • \c\T.

In particular, if a is the Or-ideal generated by a then we put

\a\T = \a\T, nT(a) = nT(a).

It is not difficult to prove that

Mr=IlH>' nAa)= II m a x (K' M^1)-
vBT v€MG\T

We shall use frequently the fact that if hG, RG and DG denote the class
number, regulator and discriminant of G then

(17) hGRG<*eg-\DG\xl\\o%\DG\)g-1 and RG > 0.056.

The first inequality is due to Siegel [21], the second one to Zimmert [25].
The proof of Theorem 1 is based on the following lemma, in which c23, c24

and c25 denote effectively computable positive numbers depending only on
t,P,g and \DG\.

LEMMA 1. Let u = (M, V) G (G\{0})2 with u + v = 1 and nT(u) < A,
nT{v) < A. Then we have h*{u) < c23A°2\

PROOF. There is an integral O^-ideal o such that MO and va are integral,
and that |o | r < A2. By [6, Lemma 3]., it is possible to choose a € o with
a ^ 0 such that | a | r < Cjjlalj. < c25A

2 . Putting u = au, v = av , w' = -a
we have u + v + w' = 0, u , v , w' e OT and max(|M'|r, \v'\T, \w'\T) <
c2iA

3. The lemma now follows from [6, Lemma 11] which was a direct
consequence of [10, Lemma 6].

In what follows, c26, c27,..., c42 are numbers of the form c'\D(F)m\c
s ,

where c , c" are effectively computatble positive numbers depending only
on n,s,P, g and |Z>C|. Consider the binary form F(X) = F(X, Y) of
degree n occurring in Theorem 1, and suppose that G is the splitting field
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of F over Q with the parameters g, DG specified above. Let T denote
now the finite set of places on G lying above those in S and the absolute
value on Q, and let t be the number of finite places in T. Then t<gs.
Further, for every a € Q we have \a\T = \a\s.

PROOF OF THEOREM 1. It suffices to prove Theorem 1 for solutions (x, y,
Z j , . . . , zs) with (x, y) = 1. Indeed, assume that Theorem 1 holds for
solutions with (x, y) = 1. If (x, y, zx, . . . , zs) is an arbitrary solution
with (x, y ,px, ..., ps) = 1 and with (x, y) = d, say, then

max(\x/d\, \y/d\) < c,H(F)yn\D{F)m/dn\c
s\

which implies that max(|x|, \y\) < c3H(F)y"\D{F)m\c
s
4, provided that c4 >

1/H.

We can express F(X) as

(18)

where each /((X) is a linear form in X, Y with coefficients in G. Let Ay =
det(/(, /.) be the coefficient determinant of /, and / . Since, by assumption,
D(F) ^ 0, we have AI; ^ 0 for all distinct i, j e {I,..., n} . Further, we
have, for all distinct i, j , k e {I,..., n}, that

identically in X.
Let now x = (x, y) be an arbitrary but fixed pair of integers such that

(x,y) = I and (x,y,zl,...,zs) is a solution of (2) for some non-negative
integers zx,... , zs. Put

^() _

Then we get

(19) u + v = l.

We claim that

(20) nT(u) < \D(F) • m\s, nT(v) < \D(F) • m\s.

Let ( / ( ) r be the Or-ideal generated by the coefficients of /( for j = 1 , . . . , « ,
and, for a e G, let {a)T be the C^-ideal generated by a . Put
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for all distinct i, j e {1, ... , n}. Then the Or-ideals DJ7 and a,(x) are
integral. Further, we have Tlw*u\(D(F))T and Il"=i o,(x)|(F(x))r in OT

and

(u) - ^ a ' ( X )

Hence
• |a,(x)|r • | 3 0 . | r • \ak(x)\T

< \D(F)\T • \F(x)\T = \D{F)\S • \F{x)\s < \D(F) • m\s.

The inequality for nT(v) follows in the same way.
By Lemma 1 and the product formula we have

(21) A*(V,(x), Akilj(x)) = h\u, v) < c26.

Put

ll(x) = alx + fi,y, and /y(x) = aj

Then if

j j

we have, by Cramer's rule,

KX = AktPju' ~ AjkPiv' > W = -Akiaju' + Ajkaiv'-

Let co(v) = logmax(l, |2|r)/log2 for v e MG. Then

\KX\V < f(v) ™mkiPj\v . \A
jk, 0,\v) • max(\u'\v, \v'\v)

We can derive the same upper bound for \KJ>\V . By taking the product over
all v e MG and using (21) and the product formula, we get

(22)

• * V V) <M (̂/X(',)
Further, we have [15, Ch. Ill, Proposition 2.4] that

(23)

Hence we can choose i, j , k such that

h*(lt)h*(lj)h'(lk) < c2ih*(Ff.
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By inserting this into (22), we obtain

(24) . h\x)<c29h\Ff.

Since (x, y) = 1, we have h*(x) = max(|x|, \y\). Further, by assump-
tion, F has relatively prime rational integer coefficients, and hence h*(F) =
H(F). Now Theorem 1 follows at once from (24).

PROOF OF THEOREMS 2 AND 3. We shall prove Theorems 2 and 3 simulta-
neously. By a similar argument to that in the beginning of the proof of The-
orem 1, it follows that we can restrict ourselves to solutions with (x, y) = 1.
So let (x, y, z{, ... , zs) (with z{ = • • • = zs = 0 when we are proving
Theorem 3) be an arbitrary but fixed solution of (2) with (x, y) = 1. Then
we have

(25) F(x, y) = mp? • • -pz
s° = ±\m\sp™> • • -p™<zn ,

where wt is an integer with 0 < wt < n-1 for i = I, ... , s and z is an inte-
ger composed of primes from S = {rl, ..., ps} . Put m = ±\m\sp™1 • • -p™s,
x = x/z and y' = y/z. Then (25) becomes

F(x', y) = m.

Note that

(26) \m\s = \m'\s<\m'\<Pns\m\s.

Since F is monic, we have F(X, Y) = n"=i(* + PtY) > whence

(27) fl(x+fiiy') = m

for certain distinct / ? , , . . . , /?n e OG. For /, j , k e { 1 , . . . , n) with / ^
j ±k±i, put

u _P_rA X> + V hzA x> + ^
ijk fifi ' '

Then we have Siegel's identity

(28) utJk + v.Jk = l.

Note that Pp - Pq\D{F) in OT for distinct p, q e {1, . . . , n). Further, by
(27), we have x + Ppy'\m in OT for p e { 1 , . . . , « } . Together with (26),
this implies that

nAuijk) < \fij - ^I r l* ' + fiiy\T\fij - PM* + Pky\r £ c30.
One can derive a similar upper bound for nT(vijk). Therefore, by Lemma
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which is the same as

( 2 9 )

From the identity

from /?p - pq\D(F) for p, q e {I,... , n} and from Lemma 1, it follows
that

(30) * f j / " «*) <cn fori,j,ke{\,...,n

By combining this with (29), we get

Using (27), we get

' + W\ <k(f\x' + fi'y>) <f\h(x> + fi'y>) <c
ni ) ~ H{1\ x' + p/J -^W + fi/)-^

Together with (26) this implies that

(32) h{x + /?,/) < h{m')l/nc35 = \m'\l/nci5 < c36.

By applying (32) for two different subscripts / , j we get

(33) *((£ - fyy') < 2h(x + py'Mx + /?/) < c31.
W e r e m a r k t h a t ( y , z) = 1 ( i n Z ) , s i n c e z \ F ( x , y ) , F(x ,y) = x n +y{ )
and (x, y) = 1. In general, if a e G\{0} and [a] = ob"1 (here [ ] is used
to denote 0r-ideals), where o, b are integral (9G-ideals such that a+b = [1],
then

h(a) > max(iVc/Q(a), NG/Q{b))1" (g = [G : Q]).
/ Q / Q

For a = (fi, - Pj)y' we can take o = {[fi, - Pj]/[fii - fi., z])[y] and b =
[z]/[0i ~ Pj, A, since y' = y/z, (y, z) = 1 and Pt - pj e OG. This implies
that

(34) h{{Pt - Pj)y') > NG/Q(a)l/g =

and

? /? l 11' s

)l<* = NG/Q (
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By combining (33) and (34) we get

(36) \y\ < c37.

This proves (5) (of Theorem 2) and (7) (of Theorem 3; note that the term
\m\l/n disappears when (x, y) = 1). In order to estimate \z\, we have to
determine an upper bound for h(fit-fij). By (30) we have for all i,j,k,le
{1, . . . , n} (i ^ j , I ^ k), by interchanging some of the subscripts, that

Hence

This implies that

h{fit - fij)

By combining this with (33) and (35) we get

(37) \z\ < h{fit - flj)h((fit - fij)y) < \D(F)\1/HlH-\l.

We now estimate |x| from above. Fix an extension | . | to G of the
ordinary absolute value on Q. Choose fit such that either /?, = 0 (if
F(0, 1) = 0) or \fif\ < \F(0, l) | 1 / n (if F(0 , 1 ) ^ 0 ) . Note that for ev-
ery a e G one has \a\ < h(a)g . By combining this with (32), (36) and (37)
one gets

This proves (6) of Theorem 2. If (x, y) is a solution of (1), then, trivially,
\z\ < \m\lln • By u s m 8 this estimate instead of (37) and using again (32) and
(36),oneobtains(8)ofTheorem3. (We must replace |m|1 / n+|F(0, l) |1 / n by
\m\i/n{l + \F(0, l)|1/n) since we must take also solutions x,y with {x,y)>
I into consideration). This completes the proofs of Theorems 2 and 3.

PROOF OF THE INEQUALITY (9). Let Px {X, Y),..., Pr(X, Y) be the irre-
ducible factors of F(X, Y) in Z[X, Y] which are not proportional to Y.
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Let ai be a root of Pt{X, 1) = 0 in G, let Mi = Q(a,), and let DM be the
discriminant of Mt/Q for i = 1, . . . , r. It is proved in [6] (see the proof of
[6, Theorems 2 and 3]) that

(38) f[\DM}<(nP)sn-\D(F)\s.

Further, G is the composite of the conjugates of the fields Ml,... , Mr over
Q. Hence we have, by [23, Lemma 7], that

1=1

Now (38), (39) and g < n\ imply (9).

4. Proof of Theorem 4

In the proof of Theorem 4 we need some notation and two lemmas, one
on linear forms in logarithms and one on monic polynomials of given dis-
criminant.

For an algebraic number a , we denote by [a] the maximum of the absolute
values of the conjugates of a . If a is an algebraic integer of degree n, then
we have (see, for example, [7]) that

R < (h(a))n < R".
Further, if a and fi are nonzero algebraic integers in an algebraic number
field of degree n, then (see [13])

Let K be an algebraic number field of degree n, let ax, ... , ak be
nonzero elements of K, let Ax,... , Ak be positive numbers with Aj >

max{i/(a ) , ek}, let A = max{^41 , . . . , Ak, ee}, and let bx,... ,bk be ra-
tional integers with B = max1<7<fe \bj\.

LEMMA 2. / / A = aj1 • • - a^ - 1 ^ 0 then

where c43(k) <2*k+l)+5i(k + 1)

PROOF. This follows easily from Philippon and Waldschmidt [16, Theo-
rem 1.1] by using a standard argument (see, for example, [19, page 66] or
[16, page 285]).
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LEMMA 3. Let f e Z[AT] be a monk polynomial of degree n > 2 with
discriminant 0 < \D(f)\ < D (D > 2). Then there exists a e Z such that, for

H{f) < exp{c

with c44(/i) = (6n3)3On3.

PROOF. This is an immediate consequence of Theorem 1 of [9].

PROOF OF THEOREM 4. For brevity, we shall write D and H instead of
D{f) and H{f), respectively. Let al,... , an be the zeros of / in C, let
K = Q(a{), and let x, y, z be an arbitrary but fixed solution of

(13) / ( * ) = / inx,y,zeZ with \y\ > 1, z > 1.

The greatest common divisor of the principal integral ideals [x - a{] and
[(x-a2)---{x-an)] in K divides the ideal [ /(a,)] . Since NKIQ{f'{ax)) =
±D, it follows from (13) that there are integral ideals a, b, c in K such
that

(40) a[x - a,] = b • cz

and

Denote by h, R and DK the class number, regulator and discriminant of
K over Q. Then, as is known (see, for example, [22, Chapter A]), DK\D.

Further, o* , bh, ch are principal ideals. Then, by a well-known lemma (see,
for example, [11, Lemma 3]) and by (17), ah and bh have generators a , /?
such that

{ | |
(41)

<exP{c46|Z)|1/2(log|Z)|)"}

with c45 = r(6rn2)r, c46 = r(17r«2)"~1, where r denotes the unit rank of
K. Relation (40) yields

(42) a(x - a/= efiy2
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where y is a generator of ch and e is a unit in K. There exists an inde-
pendent system {r\x, ... , r\r} of units for K such that

(43)

where c47 = (6rn2)r [11, Lemma 2]. Further, e can be written in the form

/"/*'•• Vrr where /c,, . . . , kr are rational integers and p is a unit in # with

f̂ l < exp{c46|JD|1/2(log|Z>|)"}

(see [11, Lemma 3]). Moreover, we can assume by incorporating every zth
power in y, that ma\x<i<r\ki\ < z and, for simplicity, we can write /? in

(42) instead of pfi , by taking c46 = 2r(17rw2)"~1.
If |JC| < H + 2 then (13) implies that

2Z < \y\z < {2H + 3)"

and Theorem 1 is proved. In the sequel we assume that \x\ > H + 2 . Then,
by |a(| < H + 1, we have

\x - at\ > 1 for / = 1, . . . , n

which, together with (13), implies

(44) | * - a , . | < | y | z for i = 1, . . . , n.

Denote by <p{ the Q-isomorphisms between the fields K = Q(at) and Q(af),
i = 2,... ,n. Then (42) implies

h '~ *'

(x-a() ={<pt{ri

for each <pi, whence, by (44),

Hence

Together with (41), (43) and (17), this gives

1/2 n

(45) logH(y/q>2(y)) < nlog2 + log|7| < 2nc46\D\ (log|Z)|) log\y\.

We may assume without loss of generality that
lot, — a,I |a , — a, I

(46) min — J- - J-2 l-ij \x-at\ \x-a2
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It follows from (13) and

[17]

that

n K ~ <*j\ = \D\

whence, by (46),

(47)
X -

Now (46) implies that \x - a j < \x — a2\. Further, we may assume that
\y\z > (h\D\)2n , for otherwise our theorem is proved in view of (17). Hence,
by (47), we have

(48) x_-a1y_
x-aj

X - a ,

x - a,
- 1 L \D\h•h < -1—V- <

\y\zln \y\z/2n'

In the next step we show that ((x - ax)/(x - a2)) = 1 implies z <
n2log2 \D\. Indeed, in this case (a{ - a2)/(x - a,) must be an algebraic
integer, and hence, by (13),

< \y\Z = \NK/Q(x - a,) | < (a, - a2)| <

where L = Q(al, a 2 ) .

If \((x - al)/(x - a2)) - 1| is nonzero then we use Lemma 2 together
with (41), (43), (45) and (17) to deduce from the relation

( nr \
hr"( Va \( v V*

that

(49) exP{-c48|Z>|3/2(log|Z>|)3n+1 log|>;|logz}
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where c4g < 220"+49(n + 2)12"~2 . Now comparing (48) and (49), we see that

follows.
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