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Plasmas are high temperature, rarefied dynamical systems made of a very large
number of charged particles where the typical collisional time scale is much longer
than any dynamical time scale. Equivalently, by comparing spatial instead of temporal
scales, we get that the diffusive scale length is typically many orders of magnitude
larger than any other characteristic length. As a consequence, a plasma can be
considered as collisionless, at least in a first approximation, and the dynamics as
Hamiltonian. For instance, in solar wind plasmas the collisional mean free path is of
the order of the size of the system, one astronomical unit, and indeed non-Maxwellian
distribution functions are today routinely observed by satellite measurements (Christon
et al. 1989; Collier 1999; Maksimovic et al. 2005). The role of the physical processes
at play in a collisionless plasmas and their ability to replace collisions to redistribute
the energy cascading from the large scales is one of the outstanding and most
challenging problems in plasma physics, and was addressed relatively recently by
in situ measurements in the solar wind (Bale et al. 2005). Furthermore, space
plasmas appear today more and more as one of the best plasma physics laboratories,
where in situ measurements span from large scale magnetohydrodynamics dynamics
to kinetic processes, as is the case, for instance, for the well-known CLUSTER
mission (Goldstein et al. 2015).

Plasmas occurring in magnetic-confinement fusion experiments, although to a lesser
extent, are also by and large collisionless and their dynamical properties mainly
determined by ‘anomalous’ (i.e. collisionless) transport (Connor & Wilson 1994),
which dominates over collisional transport.

The possibility to support non-Maxwellian distributions is doubtless one of the most
interesting features of collisionless plasmas, and allows, in particular, collisionless
long-lived electrostatic and electromagnetic coherent structures (Schamel 2000;
Galeotti et al. 2005) on a macroscopic scale to be sustained. Many examples are
available in space plasmas as, e.g. in the auroral zone (Ergun et al. 1998), in the
plasma sheet boundary layer of the magnetotail (Matsumoto et al. 1998), close to the
bow shock (Bale et al. 2002), in the solar wind (Mangeney et al. 1998). Recently,
Alfvén-vortex structures playing a key role in the development of the sub-proton
kinetic spectrum have been detected by in sifu measurements (Lion, Alexandrova
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& Zaslavsky 2016). Furthermore, coherent structures have been observed in large
scale kinetic simulations of the Vlasov equation in all fields of plasma physics using
both a Lagrangian Particle in Cell (PIC) (Goldman, Oppenheim & Newman 1999)
or a Eulerian (so-called Vlasov) approach (Ghizzo et al. 1988; Briand, Mangeney
& Califano 2007). Starting from the famous electrostatic ‘phase space holes’, also
known as Bernstein—Greene—Kruskal (BGK) modes (Bernstein, Greene & Kruskal
2007), many analytical solutions of the Vlasov equation have been found to account
for experimental evidence of such structures (Manfredi & Bertrand 2000). In particular,
high-resolution space observations have evidenced the occurrence of electrostatic and
electromagnetic coherent structures at the electron kinetic scale with corresponding
non-Maxwellian distribution functions (Perrone et al. 2016).

More recently, laboratory experiments also gave evidence of similar structures of
typical width of the order of several Debye lengths. Coherent structures, such as
electromagnetic solitons and magnetic vortices, are also found in laser-generated
plasmas (Pegoraro et al. 2000), and electron vortices are routinely displayed in
non-neutral plasma experiments (Romé & Lepreti 2011). Very recently, magnetized
vortices known as Alfvén vortex-like structures were detected by in sifu spacecraft
measurements in the terrestrial environment and shown to have a typical width of the
order of the inertial ion scale length (Alexandrova 2008). Finally, non-Maxwellian
distributions are frequently observed in experiments and simulations of plasma-wall
interactions (Valsaque et al. 2002).

All the above experimental and computational results highlighted the unimportant
role of collisions, even at the kinetic scale, even though it has been recently argued
that the effects of collisions can be enhanced by the sharp velocity gradients generated
in the particle distribution function by wave—particle interaction processes (Pezzi,
Valentini & Veltri 2016). Thus, the theoretical analysis of the generation and evolution
of coherent structures and the associated kinetic processes is considered as one of
today’s outstanding problems in plasma physics, for instance in the case of plasma
turbulence where such structures play a leading role in particular concerning the
transition across the ion cyclotron frequency.

In spite of that, fluid models such as magnetohydrodynamics (MHD) have a
long history in plasma physics, and are widely used to describe all sorts of
systems, laboratory, space and fusion plasmas alike. Although they are known
to neglect important effects at the kinetic scale, first of all Landau damping
and microinstabilities, fluid models have been successfully used to describe the
low-frequency large-scale plasma dynamics in laboratory and space plasmas. And
indeed it can be shown that the fluid equations, the few first moments of the
Vlasov equation, offer an adequate representation of the plasma motion at such
scales. However, the MHD approach rapidly breaks down as soon as nonlinear
or geometrically driven interactions start to inject energy at kinetic scale lengths.
The injected energy then cascades towards smaller and smaller scales, first to the ion
Larmor radius then down to the electron scale, often producing an important feedback
also towards the large-scale motions. As a result, the system undergoes a transition
through different physical regimes that are not all amenable to hydrodynamic
modelling. We must nevertheless mention that a strong effort has been made to
include the main ion kinetic effects and even Landau damping in a fluid approach
(Dorland & Hammett 1993). Such models, also known as nonlinear Landau fluid
models (Sulem & Passot 2015) are very promising and could constitute an excellent
compromise between fluid MHD-like approaches and the kinetic Vlasov models or,
at least, to make an important bridge between such two approaches.
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In such multi-scale, multi-physics scenarios, one has to rely on a kinetic description
based on the Vlasov equation for the single-species distribution function (d.f.) f,,
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where a is the species index. Coupled to the Maxwell equations that provide the self-
consistent electric and magnetic fields E and B, the resulting Vlasov—Maxwell system
represents the fundamental physical model to describe the dynamics of a collisionless
plasma in a six-dimensional phase space, thus representing a formidable computational
challenge even with the help of the most powerful supercomputers.

The electrostatic model, where the Vlasov equation is coupled to the Poisson
equation, still represents formally a very difficult computational task; however, many
‘real’ systems can be investigated in this limit because of the possibility of reducing
the phase space dimensionality without altering the main physics. This leads to the
possibility of investigating fundamental processes such as those, for instance, in the
near Earth environment, parametric Langmuir decay (Henri et al. 2010), Langmuir
wave dynamics (see Briand 2015 and references therein), auroral bipolar wave
structures (Ergun et al. 2001), Langmuir turbulence (Henri et al. 2011), Langmuir
wave packets (Ergun et al. 2008).

The Vlasov—Maxwell system is capable of describing at once all the different
physical regimes, from the large-scale hydrodynamic to the small-scale kinetic
regime, but neglects collisional effects. It is worth adding that kinetic effects, in
particular microinstabilities, are often very efficient to redistribute the ‘ordered’ energy,
cascading from the large (hydrodynamic) scales towards the small-scale particle
motions. This redistribution drives the system towards a kind of ‘isotropization’ even
in the absence of collisions. Thus, collisionless kinetic processes can in some sense
replace or mimic the role of collisions (Zelenyi & Artemyev 2008). For instance, it
was pointed out recently that the effective thermalization observed in a plasma—wall
transition can be ascribed, at least in part, to purely collisionless effects (Coulette &
Manfredi 2015).

Theoretically, the Vlasov equation is obtained from the Liouville equation for the
N-particles distribution in the mean field limit, where each particle interacts with
an average field generated by all plasma particles, while two-body and higher-order
correlations are completely neglected. A fundamental feature of this (Hamiltonian)
model is that the d.f. is subjected to strong topological constraints that reduce the
degrees of freedom of the system. For example, the d.f. can be transported and
rolled up in complex ways in phase space, but different d.f. isolines never break
and reconnect. As a result, transitions in phase space from a laminar-type state
(i.e. free streaming) to a vortex-type state (i.e. particle trapping) are forbidden. This
situation is similar to that of an ideal MHD plasma, where the magnetic field lines
frozen-in condition prevents transitions between magnetic energy states with different
magnetic connections. However, the intricate structure of the d.f. can often effectively
mimic the formation of a phase-space vortex, although the distribution isolines always
remain open. A tiny number of collisions (or of numerical diffusion, in the case of
simulations) is then enough to complete the transition to a true vortex-type state.
However, this transition violates, at least locally, the Vlasov equation.

In order to study the plasma dynamics, the Vlasov equation for the ions and
electrons must be solved self-consistently together with the Maxwell equations. Given
the nonlinearity of the problem, this is a formidable task and, apart from a few very
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special cases such as Landau damping or linear wave propagation, it is practically
impossible to obtain analytical solutions. For this reason, the majority of today’s
work rely on a computational approach, mainly based on Lagrangian or Eulerian
numerical codes. Fully six-dimensional problems (three dimensions for space and
three dimensions for velocity) can barely be attacked with modern supercomputers,
and in most cases one must adopt some kind of reduced model. For phenomena on
the ion time scale, it is often useful to adopt the so-called hybrid approach (Valentini
et al. 2007, 2014; Servidio et al. 2015), where the electrons are considered as a
(possibly massless) fluid. For high-frequency phenomena, one can instead treat the
ions as a fixed neutralizing background and only solve the Vlasov equation for the
electrons. In either cases, one avoids the problem of taking into account both the
ion and the electron time scales, thus dramatically reducing the computational effort
in term of CPU hours and memory requirements. More recently, PIC codes that use
stable implicit schemes were introduced aiming at including, as far as possible, the
kinetic dynamics of both species (see Lapenta (2012) and references therein).

The Special issue ‘The Vlasov equation: from space to laboratory plasmas’ takes its
origin from a recent conference on the Vlasov equation held in Copanello (Calabria,
Italy) in June 2016. This is part of the series of the ‘Vlasovia’ conferences, organized
every three years alternatively in Italy and in France since 2003. Previous editions
were held in Nancy (2003), Florence (2006), Marseilles (2009) and again Nancy
(2013). Most papers appearing here originate from contributions and discussions
presented at the 2016 Vlasovia Conference. Nevertheless, this Special Issue is open
to contributions from all interested scientists, provided they are related in some way
to the physics and mathematics of the Vlasov equation. The forthcoming articles
cover a wide range of plasma physics research: theory of magnetized plasmas, space
and laboratory plasmas, nonlinear dynamics and Hamiltonian systems, astrophysics,
laser—plasma interactions, computational plasma physics. A few oral contributions
were also devoted to other applications of the Vlasov equation, notably to solid-state
plasmas (Hurst et al. 2014) and the physics of self-gravitating systems (Colombi
2015).

One of the successes of the Vlasov approach lies in the modelling of kinetic
plasma turbulence by means of large-scale direct numerical simulations (see Cerri
et al. (2016) and references therein). Currently, a strong effort is focused on making
the relevant models as realistic as possible, in particular for what concerns solar wind
applications, where there is today a wealth of high accuracy in situ measurements
by satellites. These measurements have reached higher and higher resolutions, now
approaching the electron scale, such as for instance for the Magnetospheric MultiScale
(MMS) satellite, providing us with the unique opportunity to investigate experimentally
the kinetic physics of fundamental processes, from the problem of how energy is
‘dissipated’ in plasmas to the understanding of the electron sub-layer in magnetic
reconnection (Burch et al. 2016; Egedal et al. 2016).

In an effort to couple computational and experimental approaches, the 2016
Vlasovia conference featured a session dedicated to the Turbulence Heating ObserveR
(THOR) spacecraft (Vaivads et al. 2016), a candidate for the next M4 space mission
of the European Space Agency, currently undergoing the study phase. THOR aims
at providing high-resolution measurements of the electromagnetic fields and, in
particular, of the particle distribution functions with unprecedented phase-space
resolution, allowing for a significant increase in our understanding of the dynamics
of the interplanetary medium at kinetic scales.

We finally mention that large-scale simulations of magnetically confined plasmas
also rely on a the so-called gyrokinetic Vlasov equation, whereby the fast gyration
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of the particles around the magnetic field lines is neglected, thus reducing the phase
space to five dimensions. Gyrokinetic codes, both PIC and Vlasov, have reached a
remarkable degree of sophistication and fine resolution, and are able to tackle realistic
problems of plasma turbulence and transport in tokamaks.

In conclusion, the oral presentations at the 2016 Vlasovia conference and the articles
published in this Special Issue testify to the vibrant status of current research on the
Vlasov equation, be it experimental, theoretical or computational. For a model that
was put forward almost 80 years ago by Vlasov (and even earlier by Jeans), it still
holds a very promising future.
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