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GENERAL NERON DESINGULARIZATION
DORIN POPESCU®

§1. Introduction

Let R C R’ be an ‘“‘unramified” extension of discrete valuation rings
in the sense that a local parameter p of R is also a local parameter in
R’. Suppose that the inclusion R — R’ induces separable extensions on
fraction and residue fields. Then

(1.1) TueoreEM (Néron [N]). R’ is a filtered inductive limit of its finite
type smooth sub-R-algebras.

In other words every finite type sub-R-algebra B of R’ can be embedded
in a smooth finite type sub-R-algebra B’ of R’.

Let T be a valuation ring containing a field 2 of characteristic zero.
Then

(1.2) TaEOREM (Zariski [Z]). T is a filtered inductive limit of the finite
type smooth sub-k-algebras.

Actually the above result is stated only in the case when the fraction
field of T is an algebraic function field over k; but always we can reduce
the problem to this case because the fraction field of T is certainly a
filtered inductive union of algebraic function fields over k.

Theorems as above are very useful when we want to reduce the
solvability in R’ (resp. T) of some polynomial equations over R (resp. k)
to the solvability of some polynomial equations for which it is possible to
apply the Implicit Function Theorem. For this reason many results of
Artin approximation theory are based on them. Attempts for extensions
of these theorems were made in [KMPPR] Ch. V, [P,], [CP] and [P,] but
they preserved too much from Néron’s case. In [P,] (4.2.1) we put the
following:
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(1.3) QuEesTION. Is a regular morphism a filtered inductive limit of
finite type smooth morphisms?

Let u: A— A’ be a morphism of noetherian rings (all the rings con-
sidered here are supposed to be commutative with identity). Then u is
a filtered inductive limit of finite type smooth morphisms iff for every
finite type A-algebra B and every A-morphism f: B> A’ there exist a
finite type smooth A-algebra B’ and two A-morphisms g: B— B/, h: B’ — A’
such that hg = f (apply e.g. [AD] Lemma (5.2)). Roughly speaking (B’, g, h)
is a “desingularization” (in fact smoothification) of (B,f) and we can
reformulate the above Question in the following form:

(1.4) QuEestioN. Let (B, f) be as above and suppose that u is a regular
morphism. Then has (B, f) a “desingularization”?

This Question has already some positive answers in higher dimensions
in the case when u is the inclusion

i) K{X}—-K[X], X=(X, ---,X,), where K is a nontrivial valued
field of characteristic zero and K{X} is the convergent power series ring
in X over K (see [P1], or [A])

i) K{(X)— K[X], where K{(X) is the algebraic power series ring
in X= (X, ---,X,) over an arbitrary field K (see [A]).

In [A] M. Artin put the following

(1.5) ConJECTURE. Let u; A — A’ be a regular morphism of excellent
local rings, B a finite type A-algebra, DcSpec B the (open) smooth locus
of B over A and f: B— A’ an A-morphism. Then there exists a finite
type smooth A-algebra B’ and two A-morphisms g: B— B/, h: B'— A’
such that kg = f and B’ is smooth over B at A(f-(D)), where h: Spec A
— Spec B/, f: Spec A’ — Spec B are given by A, f.

A recent progress is made by the following result (see [AD]):

(1.6) TreEOREM (M. Artin-J. Denef). The Conjecture (1.5) holds when
either

1) A=A, u=1, and A is a normal domain, or

2) A’ is an excellent, normal, henselian local ring of dimension two
and u induces the trivial extension on residue fields.

Moreover V. Nica [Ni] proved that a regular morphism of noetherian
(not necessarily normal) domains of dimension one is a filtered inductive
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limit of finite type smooth morphisms. Also he slightly improved Theorem
(1.6).

Our aim is to give a positive answer to Question (1.4) (and so to (1.3)).
Here we show this under some conditions of separability, for instance in
the case when A contains a field of characteristic zero (see Theorem (5.2)
and Corollary (5.4)). The proof is mainly contained in Sections 7-9. The
Desingularization Principle (Section 7) is very technical and so in order
to get an idea of it we feel necessary to present it first on Néron’s case
(Section 6). Some easy examples of desingularization are given in Section
4 and in Sections 2-3 we give some preliminaries. This paper forms an
improved extended version of a part of [P,].

We would like to thank Professor M. Artin for his very helpful talks.
Also we would like to thank The Institute for Advanced Study for their
hospitality during the decissive stages of this work, their excellent condi-
tions and stimulative atmosphere.

I express also my thanks to V. Nica, N. Radu and C. Rotthaus for
useful conversations on the subject.

§2. The smooth locus of an algebra

21) Let f=(f, --,f) be a system of polynomials in some variables
Y=(Y, ---,Y,) over a ring A. For a system g = (g, ---,8,), r<n of
r-polynomials from the ideal (f), we consider the ideal 4, generated in
A[Y] by all rxXr-minors of the Jacobian matrix (dg/oy) associated to g.
Denote H,:= v(f) + 2., 4.((g): (f)), where the sum is taken over all sys-
tems g of r-polynomials from (f), r being variable positive integer and at
most n. By dJacobian criterion of smoothness ([M] (29. E)), V(H,) is just
the nonsmooth locus of B:= A[Y]/(f), i.e. B,, ¢ € Spec B is smooth over
A iff gpH,B. Then for every finite presentation A-algebra B, let us say
B=A[Y]/(f), we can define an ideal Hy,,:= H,Bc B which does not depend
of the presentation chosen for B over A.

(2.2) Note (Composition). Let w: B— C be a morphism of finite
presentation A-algebras. Then it holds

w(Hy )CNH T H,.,.

Indeed, let g € Spec C, g »w(H,,)CNH,z. Then w'gNH,,, and g Hy)p
and so B,-., is smooth over A and C, is smooth over B. Thus C, is
smooth over A ie. ¢NH,,,.
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(2.3) Note (Base change). Let B, C be two A-algebras and D:=
B%®,C. Suppose that B is of finite presentation over A. Then

H, ,DcH,,.

Indeed, let w: B-— D be the canonical map and qC D a prime ideal which
does not contain Hy,,D. Then w'qNH;, and so B,-,, is smooth over
A. By base change B, ,,&X,C is smooth over C. Thus D, is smooth
over C and so ¢NHp,.

(2.4) LEmMMA., Let u: A— A’ be a morphism of rings, B a finite
presentation A-algebra, xc¢ B an element and f: B— A’ an A-morphism.
Suppose that

f(x) e \/?(HB/A)A/ .

Then there exist a finite presentation A-algebra C and two A-morphisms
v: B— C, w: C— A’ such that
) o) e Ho
i) wv =,
1) v(Hg )CCHgs (in particular Hy, ,CZH,,, (see Note (2.2))).

Proof. Let b =(b, ---,b,) be a system of generators of H,, By
hypothesis we have

fy = 3 f(b)z

for a certain positive integer n and some elements z = (z, - - -, 2z,) from
A’. Put C:= B[Z]/(x» — >35..0,Z), Z =(Z, ---,Z,) and let w: C-—> A’ be
the extension of f given by Z—~—>z. Clearly one has b, ¢ H;; and so the
structure morphism v of C over B satisfies iii). Since v(x*) € >3, b,CCHgp
we get 1). Q.E.D.

(2.4.1) Note. Let D:= Spec B\V(Hy,,). Then iii) says in fact that
C is smooth over B at U-'(D) (compare with (1.5)), U being given by v.

(2.5) Lemma. Let B be a finite presentation A-algebra let us say
B= A[YI(f), Y=, ---, Yo), f=(f, -- -, fn), the A-isomorphism being
given by Y-—~>ye B". Suppose that A is regular and B is a domain.
Then

(2.5.1) HB/A = \/Zg Ag(Y)
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where the sum is taken over all systems g of r-polynomials, r:= ht(f) from

(-

Proof. Indeed, let g be a prime ideal from B such that ¢, 4.(y)
and @ < A[Y], @ D (f) the prime ideal corresponding to ¢ by the above
isomorphism. Then there exists a system g = (g, -+, &) of polynomials
from (f) such that 4,5 €. By Jacobian criterion of regularity [M] (40.4),
the ring (A[Y]/(g)), is regular of dimension ht@ — r. In particular
g-A[Y], is a prime ideal of height r and so g-A[Y], = (f)A[Y],. Thus
((8): (fNZQ and we get 4.(8): (HZQ. 1e. Hy,Zg. Hence

N/Zg: Ag(y)CHB/A .

Conversely, let 2 be a system of e-polynomials from (f) such that
d.(m: () (y)#0. By [M] (40.A) the local ring A[Y],/(h) is regular
of dimension r — e because 4,(y) = 0. Since ((h): (/)(y) = 0 it follows
r = e and we are ready because

(R (PN S 4i(9) . Q.E.D.

(2.6) Note. The above well known Lemma has in [P,] the following
extension (we do not use it here):

“Let Ac B be two reduced rings such that the inclusion A=—»B is
of finite presentation and preserves nonzero divisors; let us say B =
AlYYH), Y=Y, ---,Y), f=(f, -, [n), the A-isomorphism being given
by Y-~—>ye B". Suppose that

1) A is normal,

2) the minimal prime ideals of B form a finite set Min B,

3) t:= trdegAW B, = constant for all g € Min B.

Then

Hy = \/Zg: Ag(yj ,

the sum being taken over all systems g of (n — ¢)-polynomials from (f)”

§3. Standard elements for algebras

(3.1) Let B be a finite presentation algebra over a ring A;let us
say B = A[Y])/a, Y=(Y, ---, Y,), the A-isomorphism being given by
Yo~y = (y, - --,¥,) € B~. In concrete situations when we want to apply
some variants of the Newton Lemma we find difficult to deal with elements
d from H,,, unless there exists a system of polynomials g = (g, ---,g,)
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from a such that de+/4,((g): @))(y); in this case we say that d is a stand-
ard element for the presentation B = A[Yl/a. If B has a presentation for
which d is a standard element then we say that d is a standard element
for B over A. When 1 is a standard element for B over A than we call
B standard smooth over A. Thus standard smooth algebras are in partic-
ular smooth of finite presentation. Note that a multiple of a standard
element is still a standard element.

Let E be a Cohen algebra over a noetherian local ring (D, m), i.e.

1) E is flat over D,

2) (E, mE) is a noetherian complete local ring,

3) the residue field extension D/m — E/mE is separable.

(3.2) LEMMA. E is the completion of a noetherian local ring F which
is a filtered inductive limit of some standard smooth sub-D-algebras of E.

Proof. Using a transfinite induction argument it is easy to show
that E is a completion of a filtered inductive limit F of some sub-D-algebras
of E of the form D[Y], or G.s G:= D[YI.[ZI/(f), Y=(Y, ---,Y,), neN,
where f is a monic polynomial in Z inducing modulo m an irreducible
separable one. Thus it is enough to see that D[Y], and G,; are filtered
inductive limits of some standard smooth sub-D-algebras of E of the form
D[Y],, resp. (D[Y1[Z]/(f)),, where ge D[Y]\mD[Y], he D[Y],[Z] being a
multiple of of/oz. Q.E.D.

Since artinian local rings are complete, Question (1.3) has a positive
answer in artinian rings.

(3.3) ComoLLARY. Let A— A’ be a regular local morphism of artinian
local rings. Then A’ is a filtered inductive limit of its standard smooth
sub-A-algebras,

The following result is inspired from [E].

(3.4) LeEMMA. Let A be a noetherian ring, A’, B two A-algebras the
last one being of finite type and u: B— A’ an A-morphism. Then there
exist a finite type A-algebra C and two A-morphisms v: B—C, w: C— A’
such that

1) wv=u,

1) v(Hg . )CHy (in particular v(H ) CH,,),

1ii) there exists a presentation of C over A for which all elements of
v(Hy,,) are standard.
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Proof. Suppose that B = A[Y]/(f), Y=(Y, ---,Y), f=(f, -, [
the A-isomorphism being given by Y-~ ye B* and choose a system of
generators p, = (Pu, ~+ -, Pim), £ =1, -+, ¢ for the kernel of the map
ALY~ (NHIFY given by (L, ---, L,) ———> > ", L.f,, where “~” denotes
the residue modulo (f). Put h,:= > pu.Z, k=1, --,e, C:= B[Z]/(h),
Z=Z, -,2,), h =C(hy, ---,h,) and let w: C — A’ be the map extending
u by Z—~—>0 and v the composite map B — B{Z] — C.

Fix an element x¢ H,, Then B, is a smooth A-algebra and so
E:= (HI(f) ®; B, is a projective B,-module. Since C,., is the symmetric
B,-algebra associated to E we deduce that C,., is a smooth B,-algebra
and so v(x) e Hgp, i.e. ii) holds.

Let Y/ =(Y7, ---, Y,) be some new variables and I=(f, Y, h)A[Y, Y, Z].
We claim that the elements of Hj,, are standard for the presentation
C= A[Y, Y, Z]/I of C over A. Indeed, let de H;,, and Fe A[Y] a poly-
nomial such that d = F(y). The above construction of I from (f) is exactly
the one considered in the proof of Elkik’s Theorem (see [E] or [KMPPR]
(I; 6.1)) and like there we get that I./I% is a free C,=(AlY, Y’, Z]/I),-
module. Let g = (g, ---, g,) be a system of polynomials from I inducing
a base in I,/I%. Thus we have

I = (9)ALY, Y, Z], + I}

By Nakayama’s Lemma there exists an element « from 1 + I, such that
al. c(g)A[Y, Y’ Z]p, i.e. there exist a certain positive integer ¢ and a
polynomial Me F* + I such that MIc(g). Thus v(d) e ({(g): I)y,0, 2),
where z is the element induced by Z in C. Since C,, is smooth over A

we get also Fe+/4, and so

v(d) e V4 (g): D), 0, 2)
l.e. iii). Q.E.D.

(3.4.1) Note. In general the presentation C = AlY, Z]/(f, h) does
not satisfy iii) from the above lemma. Thus an element can be standard
for a presentation and nonstandard for another one.

(3.5) CoroLLARY. Let A be a noetherian ring, A’, B two A-algebras,
the last one being smooth of finite type and u: B— A’ an A-morphism.
Then there exist a standard smooth A-algebra C and two A-morphisms
v: B—C, w: C— A’ such that

https://doi.org/10.1017/50027763000000246 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000246

104 DORIN POPESCU

) wv=u
1) C is smooth over B.

(3.6) CororLARY. Let A be a noetherian ring, A’, B two A-algebras and
u: B— A’ an A-morphism. Suppose that B is of finite type over A and

w(H, A = A,

Then there exist a standard smooth A-algebra C and two A-morphisms
viB—C, w: C— A’ such that

1) wv=uy,

i) v(Hp.) CTHesp

For the proof apply Lemma (2.4) for x = 1€ B and then the result
follows from Corollary (8.5).

§4. Examples of desingularization: the linear case

(4.1) Exampre. Let (A, m) be a two dimensional regular local ring
and {a, b} a regular system of parameters in A. Let A’ be a domain-flat
A-algebra and x,ye A’ two elements such that

1) trdeg,B =1, B:= Alx, y],

2) ax + by =0.

By flatness, {a, b} is still a regular sequence in A’ and so every
solution of the linear equation

3 aX+bY=0
in A’ is a multiple of (—b, ). In particular there exists ze A’ such that

4) x= —bz, y=az

Put f:=aX + bY, B':= Al[z]. By 4) we have DB and trdeg, B’ =1
(see 1)). Thus B’ is a polynomial A-algebra in z (in particular standard
smooth) containing B. Note that

5) Hy,Dd,(x,y) = (a,b)B =mB
by Lemma (2.5).

More general examples are given by the following Lemma which is
not far from some facts contained in [AD] p. 8-9.

(4.2) LeEMMA. Let A be a noetherian domain, E = (e;)ici<n @ matrix

1<j<n
of rank r over A, f=(fy, - fu) f1:= ey, Y=(Y, ---,Y,), B:=
AlYY(f), A’ a flat A-dlgebra, u: B— A’ an A-morphisn and ICA the
ideal generated by all r X r-minors of E. Then
i) Hy,DIB,
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i) there exist a positive integer t and two A-morphisms v: B— B': =
AX], X=X, ---,X), w: B — A’ such that
i,,) wv = u,

i) H,,,DIB.

Proof. Let d be a nonzero rx r-minor of E. Suppose d is given on first
r-rows. Thendf;e(fy, -+, f,) forallj >randsod*ed, . ((f, -, f): (),
i.e. i) holds.

Let a, = (@y)icjcns B =1, -+, ¢ be a complete system of solutions of
fin A. By flatness {a,}, induces a complete system of solutions of [ in
A’ and so there exist some elements x = (x,, - -+, x,) from A’ such that

¢
u(yj) = }; Ay, %X,

where y, ¢ B is induced by Y,. The system of polynomials & = (h,, - - -, h,),
hy:=>%_1a,X, form in B':= A[X], X = (X|, ---, X,) a solution of f and
so we get an A-morphism v: B— B’ by Y—~—h. Thus the A-morphism
w: B — A’ given by X——>x satisfies ii,).

Denote g = (g, ---,8.), &:=y, — h;e B[X]. We have the following
A-isomorphisms:

BlX][(g) = ALX, YI[(f, Y — ) = A[X]

Let s be the rank of the ¢ X n-matrix (a;;) and JC A the ideal generated
by all sxs-minors of them. By i) we have

Hy,DdJB
and so it is enough to show the following elementary Lemma:

(4.2.1) Lemma IC V.

Proof. Let a: A* — A", p: A — A™ be the linear maps given by (a,,)
resp. E. Clearly the sequence A‘LA”LA’” is exact, {a,}, being a sys-
tem of generators for Ker g and so we have s + r = n.

Let M be a rxr-minor of E. We claim that 1eJA,. Indeed other-
wise there exists a maximal ideal qC A, containing J. By Cramer’s
rule note that the image of A, ®,f8 is a free module of rank r. Then
the following sequence

k(q(Ra
k(q) 2955 k) — k(g) —> 0
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is exact, k(q):= A,/qA,. It follows

rk(k(@) ®a) =n—r=s

which contradicts the choice of q!. Then Me,/ J Q.E.D.
(4.3) CororLLARY. Let A, E, Y, f, I be like in Proposition (4.2), b =
(by, - -+, b,) a system of elements from A, B:=A[Y]/(f — b), A’ a faithfully
flat A-algebra and u: B— A’ an A-morphism. Then
i) H,,DIB

i) there exist a positive integer t and two A-morphisms v: B— B':=
AlX], X=(X,, ---, X)), w: B — A’ such that

i) wv = u,

ii,) Hy,z DIB.

Proof. By faithfully flatness the system of linear equations

f(Y)=1b

has a solution y in A because it has one in A’. Then there exists an
A-isomorphism B = A[Y]/(f) given by Y~»Y + j. Now it is enough to
apply Proposition (4.2). Q.E.D.

§ 5. Main results

An important part of our paper Sections 7-9 is devoted to the proof
of the following:

(5.1) DESINGULARIZATION LEMMA. Let u: A— A’ be a morphism of
noetherian rings, B a finite type A-algebra, f: B— A’ a morphism of A-
algebras and q a minimal prime over-ideal of a:= «/ f(Hy )A’. Suppose
that:

i) the field extension k(u~'q) C k(q) is separable (as usual k(g) denotes
the fracticn field of A’lq),

ii) for every minimal prime over-ideal p of a the map A — A/, induced
by u is flat and the ring A)/u"'p)A) is regular,

iii) A’/q is not finite.

Then there exist a finite type A-algebra B’ and two A-morphisms v: B— B/,
w: B'— A’ such that
(x) wo=f
(x%) aC N/w(HB'/A)A,¢q
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(5.2) TuHEOREM. Let u: A— A’ be a morphism of noetherian rings
and F C Spec A’ a closed set such that for every prime ideal q e F

i) the field extension k(u='q) C k(q) is separable

i) the map A — A} induced by u is formally smooth.
Then for every finite type A-algebra B and every morphism of A-algebras
f: B— A’ such that

V(a,)CF, a,:=f(Hg )A’ there exist a standard smooth A-algebra B’
and two A-morphisms v: B— B, w: B'— A’ such that wv = f.

Proof. If F = (J then the result is a consequence of Corollary (3.6).
Apply noetherian induction on F. Let (B,f) be such that V(a,)CF.
Choose a minimal prime ideal associated to a,. First suppose infinite
the residue fields of all prime ideals from F. Applying Desingularization
Lemma for (B, f, q) we find a finite type A-algebra B, and two A-morphisms
h: B— B, f,: B,— A’ such that

) fih=1,

2) a, & q and so V(a,) < V(a,)

By the induction hypothesis there exist a standard smooth A-algebra
B’ and two A-morphisms v,: B, —» B’, w: B’ — A’ such that wv, = f,. Take
v:= v,h and we are ready.

If F contains prime ideals whose residue fields are finite then consider

the composite map ©': A-2L—>A’~'—7—>A’[X]X. Like above we find a standard
smooth A-algebra B’ and two A-morphisms v: B— B, w': B — A'[X];

such that w'v = jf. Then let w be the composite map B-YsA [X]y = A,
the last map being given by X — 1. Q.E.D.

(5.2.1) We say that the couple (B,f) has a desingularization (with
respect to u) if there exists a standard smooth A-algebra B’ and two A-
morphisms v: B— B/, w: B'— A’ such that wv =f. This is a particular
case of the ““desingularization” introduced in Section 1.

(5.3) COROLLARY. Let A be a noetherian ring, a C A an ideal, A the
completion of A in the a-adic topology. B a finite type A-algebra and f: B
— A a morphism of A-algebras. Suppose that V(aA) = V(f(H,, )A). Then
(B, f) has a desingularization.

Proof. Since Aja =~ A/aA the extension k(gNA) C k(q) is trivial for
every qe V(ad). Clearly A— A is subject to i) and ii) from Theorem
(5.2) which we can apply now. Q.E.D.
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(5.4) COROLLARY. Let A — A’ be a regular morphism of noetherian
rings, B a finite type A-algebra and f: B— A’ a morphism of A-algebras.
Suppose that A contains a field of characteristic zero. Then (B,f) has a
desingularization.

§6. An idea of the proof of Desingularization Lemma in Néron’s
case

The aim of this section is not to give a new proof to Néron’s p-
desingularization. Actually we prove here considerably less in a more
difficult way. But the ideas of our Desingularization Lemma came from
Néron’s case and it is easier to understand them, “historically” speaking,
on this case.

Let AC A’ be an unramified extension of discrete valuation rings,
v: A'\[0} — Z the valuation of A’ and pe A a local parameter in A (and
A’). Suppose that trdeg, A’ = oo and the inclusion A=—>A’ induces a
separable extension on fraction and residue fields. Let B: =A[y], y =
(3, -+, ¥x), y& A’Y be a finite type sub-A-algebra of A’. Since Q(B) DQ(A)
is a separable field extension (Q(R) denotes in our paper the fraction field
of a domain R), we get H,,, = (0). If H; A" = A’ then H;,, & pA’ and by
Jacobian criterion of smoothness [M] (29.E) there exists a system f of r-
polynomials, r: = N-trdeg, B such that f(y) =0 and 4,(y) ¢ pA’. Take
an element be 4,(y)\pA’. Then B':= B, is a standard smooth embedding
of B in A’ (in general in this place we shall apply Corollary (3.6)). If
H,, A" + A’ we shall reduce our problem to the previous case using the
following

(6.1) Lemma. If vH, A" = pA’ then there exists a finite type sub-
A-algebra B’ of A’ containing B such that Hy, A = A’.

Proof. Let f be a system of r-polynomials in Y=(Y, ---, Yy) such

that f(») =0 and 4,(y) #0. Put ¢t =v(d,(y) = inf {v(d)|d e 4,(y)} > 0.
Clearly there exists a rxr-minor M of the Jacobian matrix J:= (3f/or)
such that v(M(y)) = t.

Step 1. Case B/p**'A’NB = Ap**'A
Thus there exist ¥ ¢ AY, ¥" epA’Y such that

(6.1.1) y=y +p"y
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By Taylor’s formula we get M(y") = M(y) mod p*A’ and so v(M(y)) =t,
i.e. M(y) = p‘u for an unit element uec A. Suppose that the minor M is
given on first r-columns. We complete J to a square matrix H by adding
the last (N—r)-rows of the unit NXN-matrix I, (if r = N put H:=J).
Then det H = M and so there exists a NXN-matrix G’ over A[Y] such
that HG’ = G’'H = MI,. Let G be the matrix obtained from G’ multiplying
its rows by u~'. We have HG = GH = (u'M)I, and so

(6.1.2) H(y)G(y) = G(y)H(y') = p'Iy.
Take z:= H(y)y”. We have p'y” = G(¥)-z and thus
(6.1.3) y=y +p'G»)z.
By Taylor’s formula we obtain
(6.1.4) 0 =7 =f(y) + pJ(¥)G(¥)z + p*Q(2),

where Q = (Q,), ¢ AlZ]", Z=(Z, ---,Z,) 1s a system of r-polynomials
containing just monomials of degree > 2. Note taht JG = p'E, where
E = (I,]| 0): this follows from (6.1.2). Thus we get

(6.1.5) f(y) + 0+ Q=) =0, i=1,---,1

and so f,(y) e p*A’NA = p*A, i.e. there exist ¢, € A such that f.(y) = p“c,
i=1,..-.,r. Then z is a solution of the following system of polynomials
over A:

gi=c+2Z, +Q(2), i=1---,r.
Take B’:= A[z]. From (6.1.3) it follows
Bc B cCB,

and so @(B) = Q(B’). Thus r = N-trdeg, B and by Lemma (2.5) we get
4,2 Cc Hy,, for g =(g, ---,8,). Let P be the rXxr-minor of (9g/0Z) given
on first r-columns. Then P(2)el + zA’ 1+ y”A'C1 + pA’ because @
contains only monomials of degree > 2. As P(2) ¢ Hy,, we get Hy, ,A' = A'.

Step 2. Case when there exist two finite type sub-A-algebras Dc CC A’
such that

1) Bc D 4 p*+A’,

2) p*A’'N Dcp*C,

3) C is smooth over A,

4) the fields Q(B) and Q(C) are algebraically disjoint over Q(A).
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This step is an extension of Step 1. Here we find the kernel of so
called Desingularization Principle (Section 7). By 1) we can find y’ ¢ D”,
¥y’ e pA’Y such that

(6.1.6) y=y +p"".

By Taylor’s formula we get M(y) = M(y) mod p*A’ and so M(y) = p'u
for an unit ue A’. Fix an i, 1<i< 2t and an element wep’A’ND.
Then p*-‘wep*A’NDCp*C and so there exists an element « e C such
that p*~iw = p*a Since A’ is a domain one has o = p‘a ¢ p’C. Thus

(6.1.7) p'A’NDcpC, i=1,---,2t.

In particular we get ue C. Like in Step 1 construct H, G/, G, z. Now
G is a matrix over C,[Y] because u e C. Changing C by C, we can suppose
that G is a matrix over C[Y]. We have

(6.1.8) y=y +p'G()z.
By Taylor’s formula we obtain

0 = f(y) = (&) + pJ(Y)G(Y)z + p*Q(2),

where Q@ =(Q,),€ClZ), Z=(Z, ---,Z,) is a system of r-polynomials
containing just monomials of degree > 2. Like in Step 1 we get

(6.1.9) f(y) + 0+ Q) =0, ifi=1---,r

and so fi(y) ep®A’'NDC p*C, i.e. there exist ¢, € C such that f,(y) = p“c,,
i=1-.--,r. Then z is a solution of the following system of polynomials
over C:

gz::cl"l‘Zl—i‘Ql(Z)’ i:l,-..’r.

Take B':= C[z]. We have B'> B and Q(B’) = Q(C[B]) = Q(C)Q(B)).
By 4) we get

(6.1.10) trdegqc, @(B’) = trdegy,, Q(B) =N —r

and so 4,(z)CH,,; by Lemma (2.5), C being a regular ring because of 3).
But 4,(2) Z pA’ and so Hy,;A’ = A’. As C is smooth over A we are ready
by Note (2.2).

Step 3. Reduction to Step 2

Here we construct D, C from Step 2. This procedure suggested to
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us the so called Lifting Lemma (see Section 8). Using Corollary (3.3)
we can embed B:= Bfp**'A’NB in a standard smooth sub-A:= A4/**'A-
algebra D of A’:= A®, A’. Then there exist a system of generators
i = ();_s,..., from D and a system of polynomials & = (&, - -, h,) from
the kernel & of the map A[U]— D, U= U, ---, U)-~—u such that
(d;((R): @)@) = D. Let u, h be some liftings of & resp. A to A’ resp.
A[U]. Adding to u, if it is necessary, some elements from A’ of the form

p*8, 8= (B - -+, B,) with trdeg, B[] = n (trdeg,A’ = co) we can suppose
that trdeg, B[u] = n. Put D = A[u]. Since B< D we have BC D + p*+' A,
ie. 1). As h(u)e p**'A’, there exist some elements w = (w,, ---, w,) such

that A(w) = p**'w. Take C’:= D[w], W':=h —p**'W, W=W, --., W,).
Since A/(u, w) = 0 and trdeg,.,, @(C’) = n we get 4,(u, w)TH,,, by Lemma
(2.5). Thus pe H,,,, H,,,-A’ = A’ and it follows

(6.1.11) H, A = A.

Let xep”*?A’ND. Then there exists a polynomial Pe¢ A[U] such
that x = P(u). Since P(u) = 0 mod p**'4’ the residue P modulo p**! of
P belongs to @ Then ((A): P)@) = D and so there exists a polynomial
F e A[U] such that p:= F(u) ¢ pA’ and FPe(p**', h) A[U]. In particular
one has

(6.1.12) wx = (FP)(w) e (p* ", h(u)Dc p*+1C’ .

Choose one element 2 ¢ H;,, which is not pA’ and put C = C/,,,. From

(6.1.11) and (6.1.12) we get 3) and 2) (see (6.1.7)). Finally note that

Q(B) ®o1,®(C) is in fact a fraction ring of B[U] and so 4) holds too.
Q.ED.

§7. Desingularization Principle

(7.1) ProrosiTiON. Let A — A’ be a ring morphism, B a finite pres-
entation A-algebra, y = (y, - --,¥y) a system of generators of B over A, v
the kernel of the map A[Y]—- B, Y=(Y, -+, Yoy, a: B> A" an A-
morphism, d an element from A, e > 2 a positive integer and A: = A/d*"'A,
B:=AR®,B, A: =A®,A’. Suppose that

i) Ann,d* = Ann,d**', Ann, d*A’ = Ann,d*'A’
ii) there exists a system of polynomials f= (f, ---,f,) from p such

that d e (4,((f): X))
iii) there exist a finite type A-algebra D, an ideal bC D, D:= D/b and
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two A-morphisms f: D— A’, 7: B— D such that d**'cb and pi = &, where
@a:B—A’, B: D— A’ are given canonically by «, respectively ,

iv) there exist a finite presentation A-algebra C containing D and
an A-morphism p: C— A’ such that

iv) e =5

iv,) bcd**'C.

Then there exist a finite presentation C-algbera B’ and two A-morphisms
0: B— B, n: B— A’ such that

() 70 =«
(%) HyzyuDHepu- B

Proof. Choose some elements y" = (y;, ---, ¥3) from D lifting 7(y +
d**'B). By iii) we get a(y) — p(y) e d***'A’ and so there exists y/ e d°A’"
such that

(711) oz(y) _ ﬁ(y/) — de+1y// .

Since de 4,()N((f): p)(y) by ii), there exist some rXr-minors {M}, ...,
of the Jacobian matrix J:= (9f/dy), some polynomials {L;},_, ..., from A[Y]
and a polynomial P e ((f): p) such that

d= ]Zi:l (LjM])(y) = P(y).

By 1iii) it follows
k k
d 45 = 3 LMy + d*"B) = 3 LM)NY) + 6,

d+b=P@(y+d*'B)=Py)+0

and so

d— ]ﬁ LM)Y)ebcd='C,  d — P(¥)ed=C
(see 1v,). Then there exist two elements s, s’ €1 + d**C such that
(7.1.2) sd = Z LM)Y), sd=P)

Like in (6.1) Step 1, we complete J to a square matrix H, by adding
some (IN—r)-rows of the unit N X N-matrix I, in order to get det H, = M,
(if r =N then k=1 and H:=J). Then there exists a NXN-matrix G
over A[Y] such that H,G, = G.H, = M, I,. Put G;:= L,G.. We have
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(7.1.3) HiGi = GiHi = (MiLi)IN .

By (7.1.2) it results

(7.1.4) SHG)Y) = 35 (GHXY) = sd .

1=

Denote z9:= H,(8(y")y”’ ed“A’Y, We have z{? =2 for all i=1,.---,%
if j < r, because the first r-rows of H, form exactly the matrix </, From
(7.1.4) it results

3 GUsN = plsd)y”

and so by (7.1.1)
(7.15) sa(y) = s3(y) + d° 2 G2

Let Z=(Z®, -, ZP, {ZPheier ), 2" = (Z3, - - -, ZYy) be some variables and
rj<N
(1.1.6) hyi=sY, — sy, — d**'Z) — d* 31 G(y)Z
i=1

j =1,---, N some polynomials from CI[Y, Z, Z’], where Z{":= Z{" when
j<r. By (7.1.5) p extends to an A-morphism #': C[Y, Z, Z’]/(p, h) — A’,
h = (h, ---, hy) given by Yo—a(y), Z—~—>z, Z'~~—0.

Let m = max {deg P, max,_, ... ,degf;}. Then s™f,, s™P can be expressed
as some polynomials fi, Pin sY. Using (7.1.6) we get by Taylor’s formula

§"P = P(sY) = P(sy’) mod (d¢, ) and
o n N ) &
sfo= F6V) = Fuloy) + 3 | denzy + 4o 3 G0z |
Jj=1 a(st) v=1
+d*Qmodh,i=1,.---,r,
where

_QL ! — m—lJ 7 d / — / .

5% (sy) = s"'J(y) and Q@ = {Qi}i,....,
is a system of polynomials from C[Z, Z’] containing only monomials of
degree > 2. Thus

s"P = s"P(y)mod (d%, h) and
(7.1.7) i
s™f(y) + s™de 3 (JGYYNVZ® + deH'Q = s™fmod A,

V=1
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where @ = s™ " 'J(y)Z’ 4 d*'Q’. Note that JG, = (M,L,)E, where E:=
(I, 10); this follows from (7.1.3). It results

ST [GYY)ZY = 3 (ML)(y)EZ®
(7.1.8) vet . =1
= 2} (ML)YY)EZ = sdBZ®

because EZ® = {Z{} .., = {ZP} ey = EZO.
Substituting (7.1.8) in (7.1.7) we get
(7.1.9) s"f(y) + det[s™ZD + Q) =s"fmodh,i=1 - --,r.
Since
O/ +9) = f(i(y + d*"'B) = 1(f(3) + d**'B) = 0

it follows f(»)eb. By iv) there exist some elements ¢ = (¢,); € C" such
that

fl(yl) - d2e+lcl.
Denote g,:=s"d‘c, + s"Z’ + Q, € C[Z,Z']. By (7.1.9) we get
(7.1.10) d'tg, =s"f,modh,i=1,---,r.

Take B':= C[Y, Z, Z'l/(p, h, 8), € = (€:):-1,..... and let § be the composite
map B—C®,B = C[Y]/(p) — B". Using (7.1.10) we get

detiy(g + (b, W) = 7/(d**'g + (», h)) = 7' (0) = 0
and so
7(g + (b, ) € Ann, de'A".
On the other hand it holds
p(s"d<c) = g(0,0) = g(z,0) = 7/(g + (v, h)) mod zA’
Thus 7(g + (b, b)) e d°A’. By 1) we deduce that
d¢A’NAnn, d°A’ = (0)

and so 7(g + (», h)) = 0. Thus 7’ induces an A-morphism 5: B’ — A’.
Note that we have

(58’2%7)1<~ . =s"Lmodd (Z, 2, (aﬁi) —0, <§’£> — s,
i <L, j<r
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where I,, I, are the unit matrices of order r, respectively N. Consequently
4, nB' contains an element from 14 dB’. By (7.1.10) we get s™e
((d°'g, h): (f)) and so

s"Pe((@*'g, B): (MW(): pp(d g h): p).
We have
s"P = s"P(y’) = s™s’d = d mod (d¢, h)

by (7.1.2) and (7.1.7). Thus there exists a polynomial Fe C[Y, Z, Z’] such
that

s"P=d(1 + d*'F)mod h
and so

d(l + d*'F)pc(det'g, h).
Denote B:= C,[Y, Z, Z']/(h). We have
(7.1.11) (1 4 d*"'F)pBc (d°g)B + Annzd
On the other hand like in (7.1.7) it holds

p = p(y) mod (d°, K)C[Y, Z, Z']
and
p(y +0) =7(p(y) + d**'B) =7(0) =0
By iv,) it follows
pC(h, d, p(YNCIY, Z, 2] < (h, d°)CY, Z, Z']

and so we get
(7.1.12) (1 + d*~'F)p € (d°¢)B + AnnzdNd‘B.

If xeH;, then C, is a smooth A-algebra. Since B is a smooth
C-algebra we deduce that B, is a smooth A-algebra. By flatness we get
from 1)

Ann 5 d*B, = (Ann,d*)B, = (Ann,d**)B, = Ann,, d**'B,
and so
d*B.NAnn; d‘B, = (0).
From (7.1.12) we obtain
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(1.1.13) (1 4 d*'F)pB, C (d°g)B..
Then there exists a positive integer n such that
(sx)"(1 + d*~'F)p C (d°g, h) C (g, h)CIY, Z, Z']

i.e. v/((g, h): p)B’ contains an element from x + dB’. Thus H,,, contains
an element from x 4 dB’ and so

(7.1.14) H,.B C Hy,, + dB'.

Note that det (0h/0Z') = (—d**)¥ and so we have d¥“*Yed,, 7.2, By
(7.1.10) we get d°**'g¢ =0mod h C[Y, Z, Z’']/(p) and so

d*'e (MC®.BIZ Z2']: (8) .

Thus deHpcg,5» By base change (Note (2.3)) one has Hgg, 0 =
H, , - C®,B. Since de Hy,, it follows

(7.1.15) deHye
(see Note (2.2)). From (7.1.14) we get
(7.1.16) Hy B C Hyye

and so (xx) is now a consequence of Note (2.2). Q.E.D.

§8. The Lifting Lemma

(8.1) LirTiNG LEMMA. Let A — A’ be a ring morphism, D:= A[Y] the
polynomial A-algebra in Y= (Y, ---,Yy), d an element of A, b CacC D
two finitely generated ideals of D, e a positive integer, D:= D[b, A:= A[d*A,
A’:= A’ld*A’ and v: D— A’ a morphism of A-algebras. Suppose that

i) v(b) C d*A and d*eb,

i) af6 = Hyz,

iii) Ann,d*’ = Ann,d**!, Ann,d°A’ = Ann, d°"'A’.

Then there exist a finite presentation A-algebra C and an A-morphism
w: C— A’ such that

1) CoDand w|, =v,

2) bCcdeC,

3) aC Hgy

Proof. Let y = (y,, ---,yy) be the residue class modulo 6 of Y in D
and P = (13,, ---,ﬁt) a system of elements from a such that v (13) = q.
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By ii) we can choose P such that for each j=1,..-,% there exists a

system of polynomials f; = (fy, ---,f;;,) from b, whose residue class f,
modulo d*D satisfies
(8.1.1) B,D  4; ((F): BAIYD)Y) .

Complete (f;); with some polynomials f, = (f,;, - - -, f,,,) from b in order
to get a system of generators f of . Using 1) there exist some elements
z={2,;]0<j<t 1<i<r} from d°A’ such that

(8-1-2) U(fji) = dezjh 0 SJ <t 1<i< Tj.

Denote 8iii= f]z - deri eD[Z], Z = (Zji): 85 = (gji)i’ 8= (gj)ogjgt' .
For every j =1, ---,t there exist by (8.1.1) a polynomial P;e P; + b
such that

(8.1.3) P,e4,,0((f, d*)D: b).

Let H={H,.,|0<j, u<t,j+0,j+u 1<i<r,1<k<r,},
G={G,|0<j,u<t,j+0,j+u,1<k<r,}

be some polynomials from D such that
(8.1.4) Pfus + 2 Husilye + dGu = 0,
0<j,u<t, j#0,j+u 1<k<r,

(this follows from (8.1.3)). Denote:

F,=PZ, + Z HywiZy + dGrey j#0,j#1u.
By (8.1.4) we get
(8.1.5) dFpus+ Pigus + 3 oy = 0

and so F,,,(u(Y), 2) € Ann . d*A’. Since F,,, € (Z, d°)D[Z] we get F,,(«(Y), 2)
e d°A’ and by iii)

F ((Y), 2)ed°A’NAnn,d°A’ = (0) .

Take C:= D[Zl/(g, F), F = (F,,;) and let w: C— A’ be the A-morphism
given by Y-~—u(Y), Z-~—>z. Clearly de+/4, and by (8.1.5) we get de
((8): (F)) and so de Hy,,. Since P;ed;, 1<j<t P;e «/A—Fj,
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0
Fj = (Fjuk)lgugt, uEf and 872 = 0 mod d N

1<k<ry

we get
(8.1.6) P,ev4,,r,C+dC.
By (8.1.5) we have

_derFaz‘l = Pv(Pjgrl) + Z"l Harly(Pjgay)
n=

_deFjrl = I";8.; + Z_:{ Hjm‘gji = Pjgrl mod (gj)
—d‘F,,,=Pg,,modg,;; 1<o, t<t,o+r, 1<2<r, 1<pu<r,

and so by substitution we get that

Rjarl - PjFa'tl - PaFjrl - Zozl Horl,uF
2=

jop +
satisfies
(8.1.7) d°’R,,., = 0 mod (g,)
Clearly E;:= (D[Z]/(g))s, is a smooth A-algebra and by flatness we get
Anng d°E; = (Ann,d*)-E, = (Ann,d**)E; = Ann, d*"'E,.
Suppose for the moment that the following Lemma holds:

(8.2) Lemma. P,R,,., = 0mod (d°, g;,)D[Z].
Then by (8.1.7) we have:

PR, ,E, C d°E;NAnn; ,d°E, = (0)
and so there exists a positive integer s > 1 such that
P:R,,, = 0mod (g, .
Then one has
P:'F,,= P5R,,,=0mod (g, F)).

for all o, z, 2 and we obtain

(8.1.8) P,Cc (g, F): (F)C.
As P,e (g, F): (g) by (8.15), it holds
(8.1.9) P,Cc (g, F): (g, F)C
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and so (P) C Hy,, (see (8.1.6)). Since f d*Z mod g it follows bC = fCC daC

Proof of Lemma (8.2). It is easy to note that

Sjorli:: Pqurlz Z gz 11 Joprt

is a polynomial from D satisfying
(8.2.1) Ry + 318,02, = 0 mod de .
i=1

Now by (8.1.4) we obtain

Ta

iZJ: Z grig ]a;uf]z = —z:jl Harl,u(ijzrp) = PjPafr/I — Z ]mf;i mOd dﬁe

Then Z Sisafi = 0 mod d* and taking the derivations we get
i=1

T

3 Siou af; = 0 mod (@, ) D.

It results
4,8, < (d*,f)D c(d°, g)DI[Z].
In particular we obtain
PSS, ..e(d*, g)D[Z],
which is enough by (8.2.1). Q.E.D.

§9. Proof of Desingularization Lemma

First we present the following

(9.1) Levma. Let A— A’ be a ring morphism, B a finite presentation
A-algebra, v = (y,, - - -, yx) @ system of generators of B over A, p the kernel
of the map A[Y]—B, Y=(Y, -, Yy)—~—>y, a: B> A" an A-morphism,
d an element from A, q C A’ a prime ideal containing dA’, e > 2 a positive
integer and A:= A/d“**A, B:=A®,B, A:= AR®,A". Suppose that:

i) Ann,d°’ = Ann,d**!, Ann, d°A’ = Ann, d**'A’,

ii) there exists a system of polynomials f = (f,, ---,f,) from p such
that d e 4,(£): p)),

iil) there exist a finite presentation A-algebra D and two A-morphisms
B: D—A’, 7: B— D such that
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ili,) « lifts p7,
iti}) w(Hp.)A' C VEHy2A & qA.
Then there exists a finite presentation A-algebra B’ and two A-morphisms
vi: B> B, w: B — A’ such that
(x) wv=a,
(xx)  (Hp) C \/E(HB'/A)A’ Z q.

Proof. Let D be a polynomial A-algebra such that there exists a
surjective A-morphism : D-—>D and take an A-morphism §: D — A’

lifting the composite map )N, RNy ) Apply the Lifting Lemma to the
case A, A", D,d, Ker w Ca:=w '(Hyz), €:=2e + 1, 8. Then there exist
a finite presentation A-algebra C and an A-morphism p: C-> A’ such that

1) C>O D and p|, = B,

2) Kerow C d**'C,

3) aC Hg,

Now, apply the Desingularization Principle to the case A, A/, B, «, e,
D, Kerw, d, 8,7, C, p. Then there exist a finite type C-algebra B’ and
two A-morphisms v: B— B/, w: B'— A’ such that

4) wv = q,

5) Hy, D H, B

Thus we have w(Hj,,) D pa) bu 3) and p(a) Z g by iii,): i.e., one
holds (xx). Q.E.D.

(9.2) CororrLARY. Let u: A— A’ be a morphism of noetherian rings,
B a finite type A-algebra, «: B— A’ and A-morphism, q C A’ a prime
ideal and deu'q an element which is standard for B over A. Then there
exist a positive integer n with the following property:

“Suppose that there exist a finite type A:= A/d" A-algebra D and two
A-morphisms 5: D—A':= A®,A’, 7: B> D, B:=A®, B such that:

1) « lifts fr

ii) a(HB/A);{I - \/B(HI‘J/Z)ZI sl qzl'

Then there exist a finite type A-algebra B’ and two A-morphisms
v: B— B, w: B'— A’ which are subject to (x), (xx) from Lemma (9.1)".

Proof. Since d is a standard element for B over A, there exists a
system of generators y = (y,, ---,¥y) of B over A and a system of poly-
nomials f = (f, ---,f,) from the kernel I of the A-morphism A[Y]— B,
Y= (Y, - -, Yy)——>y such that
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de yd,((1): 1) .

Thus we have

a: e (d,((F): DXy)
for a certain positive integer s. By noetherianity the ascending chains

Ann,dc --- CcAnn,d' C ---
Ann u(d)c - CAnn u(d) .-

stop and so there exists a positive integer e such that
Ann,d® = Ann,d**', Ann,u(d®) = Ann, u(d**").

Take n:= 4es 4+ 2s. By the above Lemma applied for d°, the integer n
has the wanted property.

(9.3) LEmMA. Let u: A— A’ be a morphism of noetherian rings, B a
finite type A-algebra, a: B— A’ an A-morphism, a C A’ an ideal contained
in Va(Hy )A and q a minimal prime ideal of A’. Suppose that

1) all minimal prime over-ideals of a are minimal in A’,

i) g Da,

iii) there exist a finite type A-algebra B, and two A-morphisms v,: B
— B, w,: B,— A’ such that

i) w, = «,

iil) wi(Hpya) Z Q.

Then there exist a finite type A-algebra B’ and two A-morphisms v,: B— B,
w: B'— A’ such that

(+) wv=a and aCvw(H)A ¢q.

Proof. Let B, = B[X/(f), X=(X,,---, X)), f=(f, -+, f.) be a pres-
entation of B, over B, the isomorphism being given by X—xe By Let
pPi=4q, - ,p, be the minimal prime ideals from A’ and S:= A\’ p..
Suppose that {p.},<;<., 7 < e are exactly the minimal prime ideals associated
toa. As ST'A’ = []i., A, there exists an element o = y'/t' e ST'A’, y' e A/,
¢ €S corresponding to (1,---,1,0--.0) by previous isomorphism. Then

N

o* = 0 and one has ¢"*(y”* — ;’y’) = 0 for a certain t" ¢ S. Clearly y:= "y,
t:=t't” hold in A’

D ¥=ty,

2) yegp,fori, 1<i<r,
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3) the morphisms A’ > A/, r<i<e map y in 0.
Take D:= A[Y, T}/(Y* - TY), C:=D®,B and B':= C[X]/(Yf). Let r: D
— A’ be the A-morphism given by Y-y, T—t; 3: C—> A", 0: CR B, — A’
the maps given by 7, « resp. 3, w, and v, w the composite maps B— C
~ B’ resp. B'— CIX1/(f) = C®,B>A’". Clearly wv=a and B,.,, =
(C®5B))y-1, because y ¢ q by 2). As CRzB,=Z=D®,B, we get B,
smooth over D (see iii,)). But D, is smooth over A and so B,.,, is smooth
over A too.

If r = e we are ready. Otherwise we must show that B;,_.,, r<i<e
are smooth A-algebras. Fixani, r<<i<e As Y/T induces an idempotent

in B, we get

B} = BT — Y)B; x B;/YB;.

Since t,t —yep, we get B),_,,, = (B'|YB),—,,. But B|YB = B[X, T] is
a smooth B-algebra and so B,..,, is a smooth B-algebra too. Now, by
our assumptions B,_,, is smooth over A. Thus B]_,,, is smooth over A

too, i.e. a C yw(Hy, )A’. Q.E.D.

(9.4) CoroLLARY. Let u: A— A’ be a morphism of noetherian rings,
B a finite type A-algebra, a: B— A’ an A-morphism a C A’ an ideal con-
tained in va(Hy )A' and q O a a minimal prime ideal of A’. Suppose that

1) all minimal prime over-ideals of a are minimal in A’,

ii) the field extension k(u~'q) C k(q) is separable and (u~'q)A, = qA,.

11i) the map A — Al given by u is flat.
Then there exist a finite type A-algebra B’ and two A-morphisms v: B— B’
w: B’ — A’ which are subject to (+) from Lemma (9.3).

For proof apply the above Lemma; its condition iii) holds by Corollary
(3.3) (see our conditions ii), iii)).

(9.5) LEmmMA. Let u: A— A’ be a morphism of noetherian rings, B
a finite type A-algebra, a: B— A’ a morphism of A-algebras, a C A’ an
ideal contained in va(H, )A' and q a minimal prime over-ideal of a. Sup-
pose that:

1) all minimal prime over-ideals of a are still minimal prime over-
ideals of (u'a)A’,

i) for every minimal prime over-ideal p of a the map A — A} is flat,

iii) it holds either
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iii;) the field extension k(u~'q) C k(q) is separable and (u~'q)A, = qA),
or

iii,) for every positive integer r there exist a finite type A,:= A/(u"'q)’-
algebra D, and two A,-morphisms v,: B,—D,, B,:=A,®,B, w,: D, —>
A=A, ®,A such that w,(Hp,1) ¢ qA, and ©,0, = B, ®;a.

Then there exist a finite type A-algebra B’ and two A-morphisms
v: B— B, w: B — A’ which are subject to (+) from Lemma (9.3).

Proof. Let t;=max{htp|peMin(A/u'a)}. Apply induction on ¢,
If ¢, = 0 then we claim that all minimal prime over-ideals of a are minimal
in A’. Indeed, a minimal prime over-ideal p of a is still a minimal prime
over-ideal of (u~'a)A’ (see i)). By [M] (13. B) (see ii)) we get

ht(p) = ht(u"'p),

b being also a minimal prime over-ideal of (u'p)A’. If p’  Du'a is a
prime ideal contained in u 'p then p is a minimal prime over-ideal of
p’A’ by i) and applying Bourbaki Theorem [M] (9.B) for the flat map
A— A, we get u'p=p’. Thus u™'p is a minimal prime over-ideal of
u~'a and so

ht(up) =0

(¢, = 0) which proves our claim. Then this case is a consequence of
Corollary (9.4) when iii,) holds, or Lemma (9.3) when iii,) holds for a
suitable r such that (v '9)"A,-., = (0).

Now suppose ¢, > 0. Since u~'a is not contained in the union of
{peMin A|p’ X u"'(a)} we can choose an element d e u~'(a) which is not
contained in any minimal prime ideals of A except in those containing
u~'a (if there exist any). Clearly ¢,,., <{, for every positive integer s.

Applying Lemma (2.4) there exist an A-algebra B, and two A-morphisms
v,: B— B,, a,: B,— A’ such that

1) au =aq,

2) Hy,ys D vi(Hp, ).

3) deHy,..

Changing (B, «) by (B,, ;) we reduce our problem to the case when d € Hy,,.
Moreover using Lemma (3.4) we can reduce similarly to the case when d
is a standard element for B over A. Let n be the positive integer asso-
ciated to B, a, d by Corollary (9.2). By induction hypothesis there exist
an A:= A/d"A-algebra D and two A-morphisms 5: D — A:=AR, A,
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7: B> D, B:= A ®, B satisfying i), ii) from Corollary (9.2) [the induction
hypothesis work on a:=a/d"A’ C va(H,,)A' (see Note (2.3)) because
t; < t, @ being given by «]. This finishes our proof. Q.E.D.

(9.5.1) Note. Actually in this paper we use Lemma (9.5) only when
iii,) holds, but when we work without conditions of separability we can
have only iii,) fulfilled.

The possibility to apply Lemma (9.5) in the proof of Desingularization
Lemma is given by the following

(9.6) LEMMA. Let A be a noetherian semilocal ring, (q;)i<i<. itS
maximal ideals, u: R— A a flat ring morphism, s;:= ht(q) — ht(u'q,),
S = D iciceS; @NA (sz);gfée some elements from A. Suppose that for every
ibl<i<e o

i) the local rings of (q,); on the fiber, i.e. (A/(u'q)A),, are regular,

1) 2, = (2))i1<j<s-s; induces in Alq, a system Z, of elements algebraically
independent over Rlu'q,.

Then there exist a polynomial R-algebra D and a flat R-morphism v:
D — A such that

1) the ideal a:=Rad A satisfies (v'a)A,, = q.A,, for all i,1<i<e,

2) k(v'g,) = k(u'q.)(Z;) for every i,1 <i<e.

Proof. Apply induction on s. If s =0 then D:=R, vi=u work.
Suppose that s >0 and let i, 1 <i < e be such that s, > 0. Then

qi ¢ (u-lqi)Aqi + q?Aqi
by Nakayama’s Lemma and we can choose an element y; € ¢; which is not
contained in (u7'q)Aq, + q}A,,. For j+i, 1<j<e take y;:= 2.
By Chinese Remainder Theorem the canonical map

f: A—> 3 Alg + (u”'q)A

is surjective and so there exists an element x ¢ A such that f(x) is induced
by y = (¥, ++ -, Yo)-

Take S:= R[X] and let g: S— A be the R-morphism given by X-—~—x.
By construction (A/xA + u~'g,),, is a regular ring of dimension s, — 1.
As g7'(q,) = u(q,)S for j +1i, i <j<e, the Dimension Formula holds for
S—2, A and by [M] (21.D) we get flat the maps (S/u"'q)S),-.,, > 4,, for
all 2, 1<21<e. Using [M] (20. G) we obtain the flatness of the maps
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Sg-1,, > A,, induced by g, 1<1<e. Thus g is flat. By induction
hypothesis the result is stated for S, g, A and so there exist (D, v).
Q.E.D.

(9.7 Proof of Desingularization Lemma (5.1). Let {p}icic., b C A/,
g = p, be the minimal prime over-ideals of a. Denote s,:= ht(p,) —
ht(w'p), 1<i<e, s =2%,1s, A':=AX], X=(X,, ---, X)), p/':=p A"
and let A: A’ — A” be the inclusion. By Lemma (9.6) applied to A, T'A",
T:= A"\t p!', 20=(X,, ---, X,_,,) there exist a polynomial A-algebra
R and an A-morphism g: R— A” such that for every i, 1<i<e
A-algebra R and an A-morphism g: R — A” such that for every i, 1 <i<e

) @AY = Pl

2) the map R— AJ. given by g is flat,

3) k(g'(p)) = k@ (p))X, ---, X,.,,) and using our hypotheses the
extension k(g~'(p.)) C k(pl) is separable.
Using 1) note that {p/} are minimal prime over-ideals of (g 'a)A”.

Denote B”: = R®Q B and let f: B” — A” be the R-morphism given
by g and Af. Apply Lemma (9.5) to the case (R, g, A”, B”,f”, qA”). Thus
there exist a finite type A-algebra B’ and two A-morphisms v: B” — B/,
w': B'— A” such that

4) w'v = hf",

5 aC Vw(Hy A" & qA”,

because Hy.,, D H;,,B”’. Since A’[q is not finite there exists some elements
x = (x,, -+, x,) € A’® such that the A’-morphism ¢,: A” — A’, X — x satisfies

o, W (Hy ) & q
and we can take w:= o,w’. This follows from the following elementary

9.7.1) LemMma. Let A[X] be the polynomial ring in some variables
X =(X. ---,X,) over a noetherian ring A, ¢ C A a prime ideal such that
Alq is not finite and h e A[X] a polynomial which is not in gA[X]. Then
there exists a system of elements x = (x,, - -+, x,) from A such that the A-
morphism o,: A[X]— A satisfies

g (h)eq.

For the proof of Lemma (9.7.1) apply induction on n; when n =1
note only that the residue % of A~ modulo ¢ A[X] has just a finite number
of solutions in A/q. Q.E.D.
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Added in proof. The separable condition i) is not necessarily in

Theorem (5.2) as shows our paper “General Néron desingularization and
approximation” (to appear in Nagoya Math. J. Vol. 104 (1986)) which
contains also some applications. Based on this result the Conjecture
(1.5) was settled by M. Cipu and the author in Ann. Univ. Ferrara, ser.
VII. Vol XXX (1984), 63-76.
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