
J. Functional Programming 5 (4): 461-500, October 1995 © 1995 Cambridge University Press 461

On-line and off-line partial evaluation:
semantic specifications and correctness proofs^

CHARLES CONSEL AND SIAU CHENG KHOO

Department of Computer Science, Yale University
New Haven, CT 06520, USA

Abstract

This paper presents semantic specifications and correctness proofs for both on-line and off-
line partial evaluation of strict first-order functional programs. To do so, our strategy consists
of defining a core semantics as a basis for the specification of three non-standard evaluations:
instrumented evaluation, on-line and off-line partial evaluation. We then use the technique
of logical relations to prove the correctness of both on-line and off-line partial evaluation
semantics.

The contributions of this work are as follows:

1. We provide a uniform framework to defining and proving correct both on-line and off-line
partial evaluation.

2. This work required a formal specification of on-line partial evaluation with polyvariant
specialization. We define criteria for its correctness with respect to an instrumented
standard semantics. As a by-product, on-line partial evaluation appears to be based on a
fixpoint iteration process, just like binding-time analysis.

3. We show that binding-time analysis, the preprocessing phase of off-line partial evaluation,
is an abstraction of on-line partial evaluation. Therefore, its correctness can be proved with
respect to on-line partial evaluation, instead of with respect to the standard semantics, as
is customarily done.

4. Based on the binding-time analysis, we formally derive the specialization semantics
for off-line partial evaluation. This strategy ensures the correctness of the resulting
semantics.

Capsule Review

Partial evaluation is the process of generating a residual program, given a program and parts
of its input. When the residual program is applied to the rest of the input, the same result as
by partial evaluation of the original program is obtained. Partial evaluation has a variety of
application areas such as program optimization, and even automatic compiler generation.

This research was supported in part by NSF and DARPA grants CCR-8809919 and
N00014-91-J-4043, respectively. The second author was also supported by a National
University of Singapore Overseas Graduate Scholarship.
Authors' current address: C. Consel, University of Rennes/Irisa Campus Universitaire de
Beaulieu 35042 Rennes, France (e-mail: consel@irisa.fr); S.C. Khoo, Department of
Information Systems and Computer Science, National University of Singapore, 10 Kent
Ridge Crescent, Singapore 0511, Republic of Singapore (e-mail: khoosc@iscs.nus.sg).

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

462 C. Consel and S. C. Khoo

This paper formally defines a core semantics of a first-order strict functional language
which is subsequently instantiated to a standard semantics, an on-line poly-variant partial
evaluation semantics, and finally, a mono-variant binding time analysis. The partial evaluation
semantics is proven correct by means of the logical relations to an instrumented version of the
standard semantics, and the binding time analysis with respect to the on-line partial evaluator.
From the formal specifications of the on-line partial evaluator and the binding time analysis,
an off-line partial evaluator is derived. The paper is reasonably self-contained, but for full
benefit previous knowledge of on-line and off-line partial evaluation is an advantage.

1 Introduction

Partial evaluation is the process of constructing a new program given some original
program and a part of its input (Futamura, 1971). It is considered a realization of
the S™ theorem in recursive function theory (Kleene, 1952). Therefore, a faithful
partial evaluator must satisfy the following criterion:

Suppose P(x,y) is a program with two arguments, whose first argument has a known value
c, but whose second argument is unknown. Partial evaluation of P(c,y) with an unknown
value for y should result in a specialized residual program Pc(y) such that:

Vy e Y, P(c,y) = Pc{y) (1)

In essence, a partial evaluator is a program specializer and is expected to produce
more efficient programs (Jones, 1990). In practice, there are two different strategies
of partial evaluation: on-line and off-line. An on-line partial evaluator processes a
program in one single phase. This process can be viewed as a derivation from the
standard evaluation (Hannan and Miller, 1989). An off-line partial evaluator per-
forms some analyses before specializing the program; the main analysis performed is
binding-time analysis (Jones, 1988b). Prior to specialization, this analysis determines
the static and dynamic expressions of a program given a known/unknown division
of its input. The static expressions are evaluated at partial-evaluation time, and the
dynamic expressions are evaluated at run-time. As such, binding-time analysis can
naturally be viewed as an abstraction of the on-line partial-evaluation process, but
this has not been proved until this paper, not even stated formally.

Splitting the partial evaluation process into two phases (binding-time analysis and
specialization) makes it possible to shift computations away from the program trans-
formation phase. The specialization becomes simpler and its efficiency is improved
(Jones, 1988b; Consel and Danvy, 1993).

In off-line partial evaluation, the specialization phase is primarily driven by the
binding-time information, not by concrete values as in on-line partial evaluation. Be-
cause binding-time analysis operates on abstract values, it sometimes approximates
the binding-time properties of a program. Consequently, off-line partial evaluation
may not specialize programs as much as on-line partial evaluation.

An on-line partial evaluator determines the treatment of a program as it gets
processed, depending on the available concrete values. Thus, program transforma-
tions have to be performed at each specialization of a program. This process can be

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 463

expensive because it may involve numerous symbolic values and program transfor-
mations. In contrast, in off-line partial evaluation, static and dynamic expressions
are determined prior to the specialization phase. This information is valid as long as
the program is specialized with respect to values that correspond to the description
of the input of the program provided to the binding-time analysis. A more detailed
comparison between off-line and on-line partial evaluation can be found elsewhere
(Consel and Khoo, 1993; Khoo, 1992; Consel and Danvy, 1993).

1.1 Related work

Several works on proving the correctness of partial evaluation have appeared in the
literature recently, mostly dedicated to off-line partial evaluation. Nielson and Niel-
son (1988a, 1988b, 1992) present an algorithm for performing binding-time analysis
for a monotyped A-calculus. This work is based on a non-standard type inference.
The correctness of the analysis is proved independently of a given optimization
which would use the resulting binding-time information.

Gomard (1992) describes a self-applicable partial evaluator for the untyped X-
calculus. The binding-time analysis is based on non-standard type inference. A
monovariant specialized is defined in a denotational setting. A proof of correctness
for the partial evaluator is given; it is based on the standard semantics of the
language.

Wand (1993) presents a binding-time analysis based on Mogensen's specification
of a monovariant specializer for the pure 1-calculus (Mogensen, 1992). The binding-
time analysis is proved correct with respect to this specializer. On-line partial
evaluation is not addressed.

Launchbury (1990) defines in a denotational style a binding-time analysis and
proves its correctness with respect to the standard semantics. He also shows that his
result corresponds to the notion of uniform congruence, a restrictive version of the
congruence criterion for binding-time analysis defined by Jones (1988a). However,
since the correctness proof is done with respect to the standard semantics, it provides
little insight as to how binding-time properties are related to the partial-evaluation
process, and more specifically to that of on-line partial evaluation.

Hoist (1989) describes an on-line partial evaluation semantics for a first-order
functional language*. This work is based on factorized semantics and abstract
interpretation. Hoist shows that a partial evaluation semantics is an interpretation
of this factorized semantics. Like Hoist, we use a factorized semantics to introduce
various non-standard semantics. However our work addresses both on-line and off-
line partial evaluation. Also, the non-standard semantic specifications we introduce
are proved correct.

t A specializer is monovariant when each function in a program can have at most one
specialized version.

* Thanks to the referee for pointing out Hoist's Masters Thesis.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

464 C. Consel and S. C. Khoo

1.2 Correctness of partial evaluation — an overview

Regardless of the strategy used, partial evaluation is a non-trivial process; it involves
numerous program transformations. Therefore, proving the correctness of this pro-
cess must go beyond the extensional criterion given by Equation 1 (Section 1); it
must be based on the semantics of partial evaluation. This approach should provide
the user with a better understanding of the process.

In this paper, we provide the semantic specifications and the correctness proofs
for partial evaluation of first-order strict functional programs. This work is distinct
from the existing ones in two aspects: First, it provides a correctness proof for
polyvariant specialization (that is, a function in a program can have more than
one specialized version created during specialization); second, it adopts a uniform
approach for defining and proving the correctness of both on-line and off-line partial
evaluation.

1.2.1 The structure of the semantics

In polyvariant specialization, when a function call is suspended, the function must
be specialized. The function call signature characterizes the specialized version of
the function. Given all the call signatures, the residual program can be constructed.

This observation prompted us to specify the partial evaluation in terms of collect-
ing interpretation, as described by Hudak and Young (1988) (the resulting semantics
is also similar to the minimal function graph (MFG) semantics (Jones and Mycroft,
1986)). As a consequence, just like a collecting interpretation, the semantics con-
sists of two functions. The local semantic function (or standard semantic function,
using the terminology of Hudak and Young (1988)) describes the partial evalu-
ation of expressions. The global semantic function (correspondingly, the collecting
interpretation) describes the collection of call signatures.

1.2.2 Uniform approach for defining and proving the correctness of partial evaluation

A uniform approach to defining and proving the correctness of both on-line and
off-line partial evaluation enables us to define the relationship between the two levels
of partial evaluation. Furthermore, it provides a basis for applying techniques of
one level to the other. The uniformity of our approach is based on the following
techniques:

1. Factorized semantics: We define a core semantic (Jones and Muchnick, 1976;
Jones and Nielson, 1990) which consists of semantic rules, and uses some
uninterpreted domain names and combinator names (Section 2). This seman-
tics forms the basis for all the semantic specifications defined in the paper.
In particular, we define an instrumented semantics that extends the standard
semantics to capture all function applications performed during program exe-
cution (Section 3). Using other interpretations for domains and combinators,
we define the on-line partial evaluation semantics (Section 4), the binding-
time analysis and the specialization semantics (Section 5). The advantage of

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 465

Off-line Partial Evaluation Semantics

Core Semantics v *• On-line Partial Evaluation Semantics

Instrumented Standard Semantics

Fig. 1. Factorized semantics and logical relations. Factorized semantics enables the
instantiation of various semantics of interest from the core semantics. Logical relations

relate two adjacent levels of semantics.

a factorized semantics is that different instances can be related at the level of
domain definitions and combinator definitions.

2. Logical relations: We use the technique of logical relations (Abramsky, 1990;
Jones and Nielson, 1990; Mizuno and Schmidt, 1990) to prove the correctness
of partial evaluation semantics. Logical relations are defined (1) to relate
the on-line partial evaluation semantics to the instrumented semantics, and
(2) to relate the binding-time analysis to the on-line semantics. Since all
these semantic specifications are just different interpretations of the core
semantics, their relations can be defined locally by relating their domains and
combinators. The resulting proofs thus closely conform to our intuition about
the relations between these semantics.

Our approach is summarized in Figure 1. Note that, the specializer for off-
line partial evaluation can be systematically and correctly derived from its on-line
counterpart, using the information collected by the binding-time analysis.

1.3 Notation

Most of our notation is that of standard denotational semantics. A domain D
is a pointed cpo - a chain-complete partial order with a least element ±£> (called
'bottom'). As is customary, during a computation ±D means 'not yet calculated'
(Jones and Nielson, 1990). A domain has a binary ordering relation denoted by C.D.
The infix least upper bound (l.u.b.) operator for the domain D is written LJD; its
prefix form, which computes the l.u.b. of a set of elements, is denoted \JD. Thus
we have that for all d e D, LD CD d and ±p Up d = d. A domain is flat if all its
elements apart from JL are incomparable with each other. Domain subscripts are
often omitted, as in J_ u d, when they are clear from context.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

466 C. Consel and S. C. Khoo

The notation 'd G D = • • •' defines the domain (or set) D with 'typical element'
d, where • • • provides the domain specification usually via some combination of
the following domain constructions: Dx denotes the domain D lifted with a new
least element J_. ^(D) denotes the powerset domain whose least element is the
empty set, and whose partial-order relation is the subset inclusion. Di —> D2 denotes
the domain of all continuous functions from Di to D2. Di + D2 and D] x D2
denote the separated sum and product, respectively, of the domains Di and D2. All
domain/subdomain coercions are omitted when clear from context.

We use the notion Dom(f) to denote the domain of a function / . The ordering
on functions / , / ' G Di —> D2 is defined in the standard way: f C. f o {id G Di)
f(d) Q f'(d). A function / G Di -»• D2 is monotonic iff it satisfies (Vd,d' G Di dQa"
=> f(d) C f{d')); it is continuous if in addition it satisfies /flJW}) = LK/W)} for
any chain {di} £ Di. A function / G Di —> D2 is said to be strict if/(_LDl) = -Lp2.
An element d G D is afixpoint of / G D —• D iff f(d) = d; it is the least fixpoint
if for every other fixpoint d', we have that d C a". The composition of function
/ G Di -» D2 with / ' e D2 -> D3 is denoted by / ' o / .

A conditional expression is noted le\ —* ei D e{, where e\ is the test, ei the
consequent and ey the alternative.

Angle brackets are used for tupling. If d = (di,...,dn) G Dt x • • • x Dn, then for
all i G {l,...,n}, d[i denotes the i-th element (that is, d,-) of d. For convenience, in
the context of a smashed product, that is, d G D| ® • • • ® Dn, d' denotes the i-th
element of d. Syntactic objects are consistently enclosed in double brackets, as in
|e]]. Square brackets are used for environment updates, as in env[d/fixj], which is
equivalent to the function kv . v = flx] -> d Q env(v). The notation env[di/^x^]
is shorthand for env[di/^x\J,...,dn/^xnJ\, where the subscript bounds are inferred
from the context. 'New' environments are created by _L[d,7|[x,]]]. Similar notations
are also used to denote caches, cache updates and new caches, respectively.

The paper describes three levels of evaluations: standard evaluation, on-line
partial evaluation and off-line partial evaluation. A symbol s is noted s if it is used
in on-line partial evaluation and s if it is used in the binding-time analysis of off-line
partial evaluation. Symbols that refer to standard semantics are unannotated. For
generality, any symbol used in either on-line or off-line partial evaluation is noted s.
Finally, an algebra is noted [A;O] where A is the carrier of the algebra and O a set
of functions operating on this domain. All operations of an algebra are assumed to
be continuous.

2 Core semantics

We begin the discussion of semantic specifications of partial evaluation by presenting
a core semantics. The subject language is a first-order functional language. Figure 2
defines its syntactic domains. The meaning of a program is the meaning of function
f\. For simplicity, we assume all functions (and primitive functions) have the same
arity.

The core semantics is defined in Figure 3. It is used as the basis for all the other
semantic specifications defined later, and it factors out the common components

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 467

c 6 Const Constants
x e Var Variables
p e Po Primitive Functions
/ G Fn Function Names
e e Exp Expressions

e : := c | x | p (d , - • • ,en) \ f (e , , - • • ,en) \ if ex e2 e3
Prog ::= {/i(x1;- • • ,xn) = e, ... fm(xu • • • ,xn) = em } (/i is the main function)

Fig. 2. Syntactic domains of the subject language.ce

of those semantic specifications. This semantics is composed of two valuation
functions: S and stf. Briefly, S defines the standard/abstract semantics (called
the local semantics) for the language constructs, while s/ defines a process that
globally collects information (called the global semantics). The structure of the core
semantics is similar to that used in Hudak and Young (1988) for defining collecting
interpretation. A similar structure is also used by Sestoft (1985) for defining binding-
time analysis.

1. S : Exp -> ECont where ECont = Env -» Result j
£[c] = Constj [c]
£|[xj = VarLookup7 [x] _

ci,...,eH)I = PrimOpj ^
ex e2 e}j = Condj (S[ej

) l A |[fl|(#|[j [f l ()
where Const j : Const —» ECont

VarLookupj : Var —» ECont
PrimOpj : Po -> ECont" -> ECont
Condj : ECont1 -> ECont
Appj : Fn -> ECont" -* ECont

2. jrf : Exp —> ACont where ACont = Env —> Result^
^ [c] = Const-^ Icj
stlxj = Var Lookup^ |[x] _ _

. • •, en)\ = PrimOp^_ [p] (^jfej, . . ^ ^[eB]_)
e2 e3] = Conrf̂ r (^[ei | , j / I e 2] , ff leal) (fie,])

U (p p ^ I /] ([
w/iere Const-^ : Const —> ACont

VarLookup^ : Var —* ACont
^ : Po -> /ICo/it" -> ACont

-^ : ACont1 -> ECont -> ACont
^ : Fn -> XCont" -» ECont" ->

Fig. 3. Core semantics.

The core semantics is defined by semantic rules. It uses some uninterpreted do-
main names and combinator names. A semantic specification is defined by providing
an interpretation to these domains and combinators. The interpreted domains and
combinators for a local semantics $ are noted [Result j ; Combj]; those for a global
semantics si are noted [Result^ ; Comb^]. Figure 4 provides an overview of three
levels of semantic specifications, namely, a standard semantics with instrumentation

), an on-line partial-evaluation semantics {($, si)), and a binding-time analy-

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

468 C. Consel and S. C. Khoo

[Result- ; Combj] {£,•&) [Result- ; Comb-]

[Result--- ; Comb-] [Result- ; Comb-]

[Result^ J Combs] (8,tf) [Result^ ; Comb^]

Fig. 4. Relations between three levels of evaluation.

Resultj and Result^ are the result domains used by semantic functions $ and
respectively. Combj and Comb-^ are their respective set of combinators.

sis ((&,s4)). These semantic specifications are obtained via instantiation of the core
semantics described in Figure 3. We can relate two adjacent semantic specifications
simply by relating their domains and combinators. These relations represent the
key component for proving the correctness of these specifications. In the following
sections, we examine how each semantic specification can be instantiated from the
core semantics. We then define the relation between two adjacent specifications, and
use it to prove their correctness.

3 Standard and instrumented semantics

3.1 Semantic specifications

In Figure 5 the core semantics is instantiated to define the standard semantics of
the language. As is customary, we will omit summand projections and injections.
Only interpretation of the valuation function S is provided since the definition of
standard semantics does not require collecting information globally. For a function
/ , 'strict f is a function just like / except that it is strict in all its arguments.
Function Jf converts a syntactic constant into its corresponding denotable value
(i.e. a basic value in domain Values). Function Jf P defines the semantics of primitive
operations. We require these primitive operations to be continuous, while leaving
the detailed definitions to the actual implementation.

In order to investigate the relationship between the standard semantics and the
partial evaluation semantics, the standard semantics is enriched to capture infor-
mation about function applications. The enhanced semantics, called instrumented
semantics, collects all function calls performed during the standard execution of a
program. Function calls are recorded in a cache that maps a function name to a set

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 469

of standard signatures^. A standard signature consists of the value of the arguments
to a function application. This is depicted in Figure 6.

• Semantic Domains
v e Result^ = Values = Int + Bool
p 6 VarEnv = Var —• Values
<j) e FunEnv = Fn -> Values" -• Values

Env = VarEnv x FunEnv
• Valuation Functions

SPro% : Prog -* Values" -• Values
£ { }<}

!,. . . ,«„) whererec <f> = ±[strict

• Combinator Definitions
Const* [c] =A(p,^>). J f [c]|
Var Lookup s ([x] = A(p,(/)) . p[x]l

O I] (f c f c) A (^)^ Ip] () (p̂) [p] ((p 0)
(A:,, fc2, /c3) = A(p,<p) . /c,(p,0) -* fc2(p,</>) 0

I f l (*i,...,k») = - l (P , *) * [O (k (*) f c

Fig. 5. Standard semantics.

To illustrate the functionality of the instrumented semantics, we apply si to the
following exponentiation function:

f (b , e) = if (e > 0) then (b * f (b , e - 1)) e lse 1

Function f raises the value b to the power of e. For a function call f (2, 3), the
function si computes the following caches until a fixpoint is reached.

Iteration #

1

2

3

4

5

Cache

[{(2,3)}//]

[{(2,3), (2,2)}//]

[{(2,3), (2,2), (2,1)}//]

[{(2,3), (2,2), (2,1), (2,0)}//]

[{(2,3), (2,2), (2,1), (2,0)}//]

Notice that powerset, instead of powerdomain, is used to model the content of the cache.
This avoids some technical complication incurred in the correctness proof, as discussed in
Hudak and Young (1988).

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

470 C. Consel and S. C. Khoo

• Semantic Domains
v e Result g = Values = as in Figure 5
p € VarEnv = as in Figure 5
4> € FunEnv = as in Figure 5
a e Result^ = Cache^ = Fn -> ^(Values")

• Valuation Functions
&Pro% '• Prog -» Values" -+ Cache

{ } (g { }) ([{ () } /)
whererec h(a) = a U h(\J{sf | [e j (±.[vk/xk])<j> | (vi,...,vn) € aUii,

VD/i] e Dom(ff)})
0 ± [strict (A(vu ...,vn).S [e,J (± N / x ,]) 0) / /]

Combinator Definitions
Conste \c\ = as in Figure 5
VarLookupg [x] = as in Figure 5
PrimOpg Up] (k\,...,kn) = as in Figure 5
Condg (k\, k.2, k\) = as in Figure 5
Appg fl/I (ku...,kn) = as in Figure 5

Const,, M=X(p,cj>).(Af.{})
VarLookuPs/ [x] = X(p,^>) . (/!/.{})

PrimOpj M (al,-..,an) = A(p,<t>).

Condj (au a2, a3) kt = k(p,4>) . a\(p,<p) U (ki(p,(j>) -* a2(p,<t>) D
n

I / I (a , , . . . , a n) (/ c b . . . , kn) = k(p,4>). _\al{p,4>)u (3i 6 {l,...,n} s.t. v, =

D [{ (, , , .) } / /])
where vl=kl(p,(j>) V i G { 1 , • • - , « }

Fig. 6. Instrumented semantics capturing function calls.

3.2 Correctness of instrumentation

Because the local semantics is exactly identical to the standard semantics, we only
need to show that the instrumentation part of the instrumented semantics is correct.
That is, the instrumented semantics captures (in the cache) all the calls performed
during standard evaluation. Since the language we consider is strict, only those
standard signatures that represent function calls with non-bottom argument values
are collected in the cache. We shall refer to these function calls as non-trivial.

Lemma 1
Given a program P, let <p be the function environment for P denned by the
instrumented semantics. If the standard evaluation of P with input (v\,...,vn)
terminates, and a is the cache computed for P by s/, then

1. For any expression e in P, if a non-trivial function call occurring in e is
performed when e is evaluated, then si records the call in the cache.

2. For any function definition in P of the form

f i (x i , . . . , x n) = -- f j (e \ , . . . , e ' n) •••

Let (v[,...,v'n) e (xd/i]). If evaluating / , with argument (v[,...,v'n) results in a
call to fj with « , . . . X ' > , where «," = Sle%±.[v'k/xk],4>) Vi € { l , . . . ,n} , then
(v'(,... X) € o-Ujl, provided v'/ =/= _L, Vi 6 {1 , . . . , n}.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 471

Proof (Sketch):

1. We want to show that the predicate 'if a non-trivial function call occurring
in e is performed when evaluating e, then the call is recorded in the cache
produced by si'1 is true. The proof is done by structural induction over e.

2. The second part of the lemma is shown by examining local function h in
function Spr0$. If {v[,...,v'n) € ffD/,], then si will be called to collect the
non-trivial calls in the body of /,. Using the first result of this lemma we know
that (i//, . . . , < > € oM}I, provided v"t ± ±, Vi G {1,... ,«}. D

Using this lemma, the following theorem formalizes the correctness of instrumen-
tation.

Theorem 1 (Correctness of Instrumentation)
Let P be a program evaluated with input (vi,...,vn). For any user-defined function
/ in P, i f / is called with non-bottom argument (v\,...,v'n) during the standard
evaluation, then (v'l,...,v'n) € <r [[/]].

Proof : From Lemma 1, and by noticing that since none of the initial input is
bottom, the initial call to / i is captured in the cache (by the definition of SPros) . D

4 On-line partial evaluation semantics

In this section, we instantiate the core semantics to obtain on-line partial evaluation.
A key component for this instantiation is the partial-evaluation algebra defined
in Section 4.1. On-line partial evaluation semantics is presented in Section 4.2.
Finally, Section 4.3 defines a relation between this semantics and the instrumented
semantics. This makes it possible to state and prove the correctness of the on-line
partial evaluation semantics.

4.1 Partial-evaluation algebra

At the standard evaluation level, primitive operations can be captured by the
algebra [Values; O] where Values is the domain of basic values and O is the
set of primitive functions. At the on-line partial evaluation level, because it is a
program transformation process, primitives operate on syntactic constants instead
of values. We denote the set of syntactic constants by Const. Furthermore, because
a program is processed with a partial input, a primitive might be invoked with
some non-constant arguments (i.e. an expression which is not a constant), and thus
yield a non-constant result. These observations are captured by the partial-evaluation
algebra: an abstraction of the standard algebra [Values; O].

Definition 1 (Partial-evaluation algebra)
Let [Values; O] be an algebra consisting of the domain of basic values and a set
of primitive functions, the partial-evaluation algebra [Values ; O] consists of the
following components:

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

472 C. Consel and S. C. Khoo

1. The domain of basic values Values and the domain of constants Values are
related by the abstraction function ?

? : Values —> Values
?(X) = (X = lvalues) -» l ^ j - D - ^ " ' W

2. V p G O of arity n, there exists a corresponding abstract version p G O such
that ________

p : Values —> Values

' V ' > n / • i > • • • > / • • i Values Values
n

| (/\(d, G Const) -> TpfpGpKrf,, • • • ,4)) D T - -)
1=1

where rf, = 1 W V i € {1,...,«}

where JT"1 is the monotonic semantics function that converts a basic value to its
textual representation (i.e. a syntactic constant). Because Values is the sum of basic
domains, ? is actually a family of abstraction functions indexed by the summands.
Domain Values - refered to as the partial-evaluation domain - is constructed by
adding elements -L,-rr~ and T-—- to the set of syntactic constants Const such

Values Values J

that -L.rr- and T,-r~~ are respectively weaker and stronger than all the elements
Values Values r J D

of Const. Value -L^rp- corresponds to -Lvalues, while the value T -rr- represents a
non-constant value.

Operators in the partial-evaluation algebra define the partial-evaluation semantics
of primitive operations. This semantics is an abstraction of the standard semantics.
Indeed, when called with constant values, the partial-evaluation semantics of a prim-
itive operation corresponds to the standard semantics of this primitive operation.
However, if some of the arguments in the primitive call are non-constant at partial-
evaluation time, the value T r r - is produced. This represents a value unknown at

Values r r

partial-evaluation time. The abstract primitive operations satisfy the following safety
criterion:

Vu € Values, Vp e O and its corresponding abstract version peO,

The relation between [Values; O] and the partial-evaluation algebra can be
succinctly described by a logical relation (Nielson, 1989; Jones and Nielson, 1990)
C~ defined as follows:

1. V d e Values, V d e Values: d O d o x{d) C i r r - d.
' —r v ' —Values

2. V p G O and p € 6, p C- p o V d e Values, V d e Values : J C ? 2 = > p(d)
E ? P(d)

This logical relation forms the basis of the correctness proof of the on-line partial
evaluation semantics.

Using the partial-evaluation algebra, we can go one step further and investigate
the relation between on-line and off-line partial evaluation. Recall that off-line
partial evaluation consists of a binding-time analysis and a specializer. For now, let

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 473

us examine how the binding-time domain can be captured from the on-line partial
evaluation domain.

Usually the binding-time domain, noted Values, is composed of the binding-time
values Static and Dynamic, lifted with a least element^ -L.77- • This domain forms a

J Values

. chain, with ordering J. —-- c Static c Dynamic. Values and Values can be related
° Values }

by the abstraction function ? denned by
7 : Values —> Values
7(x) = x = -Ly^s -»-Lj^s

| (x € Const -> Static D Dynamic).

Notice that, not only is the domain Values used in the binding-time analysis
(Section 5), but binding-time values are also used to drive the transformation of
function calls (Page 473).

4.2 Semantic specification

The on-line partial evaluation semantics is displayed in Figures 7 and 8. This
semantics aims at partially evaluating a program with respect to a partially-known
input. It returns a residual program consisting of the specialized functions.

Domain Exp is a flat domain of expressions. Besides using [[1 to denote a
syntactic fragment, we also use it to construct expressions. This operation is strict
in all its arguments (i.e. the subexpressions).

The semantics consists of three valuation functions: S, stf and $prog. Function
§ defines the partial evaluation of an expression. It produces a pair of values
r e Res = Exp x Values, where the first component is a residual expression and the
second component is a value in the partial-evaluation domain. The result domain
Res is ordered component-wise.

This structure is similar to the notion of symbolic values used in the on-line
partial evaluator FUSE (Weise and Ruf, 1990). In Consel and Khoo (1991), this
representation is generalized to a tuple of values that captures user-defined static
properties, in addition to a residual expression and a value in the partial-evaluation
domain.

One of the central issues in partial evaluation of functional programs is the treat-
ment of function calls. Basically, there are two kinds of transformation performed
in partially evaluating a function call: unfold and specialization. The latter includes
suspending the call, and specializing the function with respect to the value of the
known (static) arguments values. Exactly how a function call is to be treated can be
determined by the user, or automatically by some unfolding analysis (e.g. Sestoft,
1988). To capture this piece of decision making, we introduce the notion of filters.

1 Note that this three-point domain refines the usual two-point domain {Static, Dynamic} in
that it allows to detect functions in a program that are never invoked, and simple cases of
non-terminating computations. Without the value -i-fT-, these cases would be considered
as Static.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

474 C. Consel and S. C. Khoo

• Semantic Domains

v e Values $ e FunEnv = Fn —• Res" —> Res
„ „ ,rr~ & G Result^- = Cache-; = Fn ->

r 6 W t 7 = Res = Exp x Values ^ ^ (T r a H s n < Res")
p e Far£/it) = Var — Res £ n y = K a r £ n y x FunEnv

• Valuation Functions
2prOg : Prog -+ Res" -> Progx

u-..,xr,) = e,}l (fu...,fn)=MkProg £ $
5

J
- £ If]J?.,.;.,M 0 (I t f^.

where r, = k,(p,4>) V i e { l , . . . , n }
/ . P = SpAfoMUfl, F, ,...,?£
« , . . . , < > = ResidArgs

(bl,...,bn)=(Ft
• Primitive Functions

JT : Const -* Res
* \c\ = <M, M)

JT : Po -> Res" -» Res

= ±[strict {X(fU-..,K) . * le,\

MkProg Definition

MkProg &4>= {ffixl,...,xk) = ni I V<S,r,,...,rn> 6 ffl/J, Vf/J 6
w êre f? =^SpName(U.l,h,...,rn)

r = # left (±.[h/xk],4>)
{xl,...,xk)=ResidPars (Uii,fdU- --Ml)

Local Combinator Definitions

Const- [c] = A(p,̂ >) . X W
fc^ [x] = k(p, $) . p |[x]

M(ku.--X) = *•{?>, 4>)-Xp M fa(P,fa..., UPM
uk2M) = KP,4>). (PiJ2 € Const) -• (3f (n|2) - h,h)

D ([« / n i l ?2|1 r3ll],r2|2 Ur312)
r,=k,(p,4>) Vi € {1, 2, 3}

e;,D1>!...,(e'n,en»= e = ± ^ ? s - a E w , ± ^ J)
D (D e Const -» (D,6> D (l[p(ci,-".O]l.»»

where v = p(«i,- • ',0n)

Fig. 7. On-line partial evaluation semantics - Part 1.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 475

Global Combinator Definitions

Const~ flc] = k(p,4>) • (Xf . {})
VarLookupg [x] = A(p,4>) . (Xf . {})

n

PrimOp'- [p] (oi, . . . ,&„) = X(p,cj>) . a,(p,^>)

C o « i - (01,02,03) fci = A(p,0) . oi(p,0)uDi e Const — (Jf(Di) ^ a2(p,4>),a3(.P,4>))
D 22(,

w/iere (ei,0i) =fci(p,<£)

Mi (fll,---. O B) (f c l , , fen) A(p,0)
A J = l

where rl=kl(p,4>) V i e { l , - - - , n }

(ft,,...,bn) = (Ft

Fig. 8. On-line partial evaluation semantics - Part 2

A filter specification is associated to each user-defined function in a subject
program. A filter consists of a pair of strict and continuous functions. Both functions
are passed the binding-time value of the arguments in a function call. The first
function determines how to transform a function call (unfold or specialize). The
second function specifies how a called function is to be specialized (it is not used
when the call is unfolded): it determines which argument values are to be propagated.
Only constant arguments are considered for propagation. The functionality of a filter
is (Values -> T) x (Values —> Values) where Values is the binding-time domain
and the domain T contains two values: u and s, which stand for unfolding and
specializing respectively. This strategy has been developed for the partial evaluator
Schism (Consel, 1988, 1993b).

Domain T is ordered as follows: u c s. This ordering reflects our intuition about
the termination behaviour of these transformations: unfolding a function call will
terminate less often than its specialization. This means that replacing the unfolding
of a call by its suspension cannot cause non-termination; however, the converse is
not true. A detailed discussion on the treatment of calls can be found in Sestoft
(1988), for example.

For a function / , the two components of its filter are denoted by Ft [[/J j 1
and Ftfl/]] J2, respectively. As an example of a filter, consider the exponentiation
function given in Section 3.1. Assume that we want to unconditionally suspend calls
to this function, and that it should only be specialized with respect to the second
argument (when it is a constant). Such conditions can be expressed by the following
filter.

Ft|[fI = (l(bub2).s, X{bub2).{Dynamic,b2))•

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

476 C. Consel and S. C. Khoo

When a function call is suspended, a specialized function will be created. The spe-
cialized function name is denoted by /?p. It is uniquely identified by two components:
the name of the original function / , and the specialization pattern."

Function stf collects partial-evaluation signatures associated with the user-defined
functions. A partial-evaluation signature is created when a non-trivial function
call is performed at partial-evaluation time. It consists of two components: A
transformation tag indicating the transformation performed on the function, and
the argument values of the application. For function specialization, the partial-
evaluation signature is a specialization pattern.

All signatures are recorded in a cache. Formally, it is defined as

Cache^ = Fn -> ^(Transf x Res").

The cache is updated using a Lu.b. operation equivalent to set union: Vcri,<X2 €
Caches < T , U a 2 = 2 / . (ffID/] U<r2[[/"])).

Lastly, it is worth noticing that, just like a binding-time analysis, SProg performs
a fixpoint iteration to obtain a cache. Such fixpoint iteration can be viewed as a
semantic specification of the pending list technique used in existing partial evaluators
(e.g. Sestoft, 1985). The cache produced will be used by MkProg to generate the
residual code for all the specialized functions. The co-domain of this function (and
Function SprOg) is lifted to account for the fact that partial evaluation may not
terminate and thus not produce a residual program.

The auxiliary functions used in the semantics are listed below. Note that all these
functions are continuous by construction:

1. SpName produces a specialized function name from the original function name
and the argument signature. It has the functionality:

SpName : (Fn x Res") -> Fn

2. bt : Res —> Values returns the binding time of a residual pair. It is defined as
bt(e,v) = t(v).

3. If a function call is to be specialized, then

(a) For those arguments that are not propagated at function specialization,

• ResidArgs : Fn x Values x Exp" —> Expm (for m <ri) returns a tuple
of residual arguments;

• ResidPars : Fn x Exp" —» Var"1 (for m < ri) returns a tuple of
parameters replacing these residual arguments in the partial-evaluation
signature.

The specialization pattern describes information about the arguments used in specializing
the function. Each argument value belongs to Res. The expression component is either
a constant (which is to be propagated at function specialization) or a parameter name
(representing an unknown argument). Thus, the specialized pattern is defined as Res".

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 477

(b) SpPat : Fn x Res" x Values —• Res" returns the specialization pattern.

SpPat = A(f,{?i,...,tn),(bu-,b,)) . (r\,...,r'n)
where V i € {l,...,n},

r\ = b, = Static —> r,

where xi,..., xn are the parameters of function / .

We state here without proof the following two lemmas:

Lemma 2
$ is continuous in all its arguments.

Lemma 3
si is continuous in all its arguments.

As an example of a cache produced by J / , consider the exponentiation function
given in Section 3.1. Assume that f includes the following filter (previously discussed),

Ft\l\ = (Hbi,b2).s, l(b1,b2).(Dynamic,b2) >.

Specializing function f with respect to ((x, T j ^ -), (|[3]], 3)) produces the following
caches until a fixpoint is reached.

Iteration #

1

2

«

5

[{ME:

[{MID4T^>,([3],3;

[{(s, (IxiI.T^gj^;

(s, (H^I'T^^j

[{(s, (flxiI.T-jj-^]

(3,(1X31,/^'

•)}//]

>>,<8 ,<1

i / n"o*n '

Mill,

),m,

[X2l

2))

1))

Cache

,(S,(EX4]],

\ S , ^ U.X2JJ)

5 \ S , ^ U.X4J] y

1121,2))}//]

1))}//]

0))}//]

0))}//]

where the variables xi,...,x4 are new variables generated by the function SpPat
during the four call suspensions. Using the final cache, the function MkProg will
generate the following four specialized functions:

= xi * f 2 (x i - l)
f 2(x2) = x2 * f 3(x2 - 1)

f 3(X3) = X3 * f 4(X3 - 1)

i 4(X4) = 1

where fi,...,f4 are the specialized-function names generated by function SpName.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

478 C. Cornel and S. C. Khoo

4.3 Correctness of partial evaluation semantics

Let us first observe that any constant produced by partially evaluating a primitive call
is always correct with respect to the standard semantics, modulo termination. This
is formalized below, and can be proved from the definition of the partial-evaluation
algebra.

Observation 1
For any primitive function p, let c = {£§p(x\,- • • ,xn)%L[{\xH,v,)/xi\,L))\\, and
v = *Mxu---,xnM±.[d,/xt],±) where d, Q?vufor i e {1,...,»}. Then,

(c e Const) and v =£ JL => c = ?(«)

Before proving the correctness of the semantics, we can already show that the
partial evaluation semantics subsumes standard evaluation in the following sense:

Theorem 2
Given a program P, suppose that (1) the input to P is completely known at partial-
evaluation time, and (2) all function calls in P are unfolded during partial evaluation,
then for any expression e in P,

where </> e FunEnv and $ € FunEnv are two function environments for P defined
by the standard semantics and the partial evaluation semantics, respectively. Also,
p G VarEnv, and p G VarEnv is defined as:

Proof: The proof is by induction on the structure of expression, proving <?[[e]] 01 S\e\
for the logical relation SI between domains of & and & defined by:

v &Results r ^ T(t>) = rj.1 = r |2 where v e D

P ^VarEnv P <* Dom(p) = Dom{p) A V[x] e Dom(p), p W ^Result^. p W

</> ^FunEnv 4> *> Dom(<j>) = Dom(<j>) A Vfl/J 6 Dom(<f>), Vi e { 1 , . . . , n}, V«, £ Values, Vr, e Res,

, • . . , r n)

(di,d2) ^D,XD2 <5i,22> <=> di ®bl d{ A d2 mDl h

f mD^Dl f-^vdz DitvS e D,, d®Dld=> f(d) aDl f(d)

It suffices to show that 01 holds for all the corresponding pair of combinators
used by S and 'S.

• The proofs for Const g and VarLookupg are easy, and thus omitted.
• PrimOpg: This is done by structural induction and a case analysis over all the

possible argument values of the primitive.
• Condg: This is done by structural induction and a case analysis over the

possible values produced by ki(p,<j>).

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 479

• Appg: For any user-defined function / , suppose that all corresponding argu-

ments of Apps and App~ are related by 3ft. Let vt = fc,(p, <f>) and r,- = k,(p, (j))

Vi e {l,...,n}. We have Vi e {l,...,n}, vt ^Resuit^ ?t. Since both $ and </>

only contain strict functions, 8ft also holds when some of the arguments are
bottom. On the other hand, under the condition that all function applications
are unfolded, App~§f~§(k\,...,kn) is reduced to </> [[/"]] (n,...,?„)• From the
supposition that <j> @FunEnv 4>, we have

1,...,»») ^Result- 4>W(ri,..;tn).
I

Hence, Apps 8ft App~.

This concludes the proof. D

Intuitively, we view the top element in Values, T y-r-, as a representation for all
the possible constant values. Thus, a partially known input (r\,...,rn) to a program
during partial evaluation represents a set of concrete inputs to that program. That
is,

(fi,...,fn) represents the set {(vu...,vn) | T(I>,-) E ~ r , | 2 , i € { l , . . . , n } }

The safety criterion described in the beginning of Section 1 (Equation 1) can be
expressed for our semantic specification as follows: Partial evaluation of a program
with input (?i,..., fn) is correct if it produces a cache that captures all possible non-
trivial calls performed during the execution of a program (under the instrumented
semantics) with input taken from the set represented by {f\,...,fn). This assumes
that the function that generates the residual program from the cache is correct.

Hence, the correctness of the partial-evaluation semantics can be shown by relating

the local and global semantics to their respective counterpart in the instrumented

semantics. That is, we define a relation 3ft? relating <S and S, and a logical relation

9t** relating jaf and J / . Notice that 0l8 relates the results v and r computed by <g and

S respectively. Since f = (e, v) e (Exp x Values), ffls is composed of two relations,

0t8x and 8$gl, that relate a concrete value v to e and v respectively. It turns out that

the correctness of Si81 depends on that of Sfr^. At the same time, the correctness of

St* depends on the correctness of ^.8l. Therefore, we shall prove the correctness of

0p\ then that of 3p, and finally that of SPK Lastly, we combine the result of 0p*

and M8x to express the correctness of 8ft.8.

4.3.1 Correctness of 3ftSl

In this section, we define and prove the correctness of the relation SftSl between the
result of $ and the second component (i.e. the partial-evaluation domain) of the
result of S.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

480 C. Consel and S. C. Khoo

Definition 2 (Relation M*2)

t%*2 is a logical relation between domains of $ and $ defined by:

r£«< = Dom(p) A V|[x] € Dom(p),

&%nEnv 4> o Dom(4>) = Dom(4>) A VQ/D € Dom(4>), Vi e { 1 , . . . , n}, Vt>, e Values, Vr,- e Res,

/\(»- ^isuiu.>.) => *in(»i,• ••,».) < L u (^ w i t h , - , K)

dk) ®7
D]xD2 (IM <* di < 5, A d2 « £ 52

Lemma 4

Given a program P, let <j> and)̂ be the two function environments for P denned by

the standard and the partial evaluation semantics, respectively. Then <j> MSl (p.

Proof: We need to show that V[[/l e Fn, Vi e {1 , . . . , n}, Vv^e Values, Vr, e Res,
n

/\(v, sP> h) => <pui(vu...,vn) &* 4>lfl(?1,...,h)-

Since this involves the recursive function environments 4> and </>, we prove the
relation using fixpoint induction on Kleene's chain over (j> and </>, with the least
element (in this proof, i ranges over all user-defined functions):

(</>0,</>0> = (-L[(strict {l(Vi,...,Vn) . -Lvalues)/'/(],

±[{strict (Mri,...,fn)

It is true trivially that (j}0 ^
2 ^o-

Suppose that Si?1 is true for some element (</>„, 4>n) in the ascending chain, we

would like to prove that 0tSl is true for (<j)n+i,4>n+i) where

(<£„+,,4>n+1) = (±[(strict iHvl3...,vH) . *le,l(U»k/xk],fn))/f,],

±.[(strict Wri,-,?*) • ne,l(±\?k/xk],&n))/f.]).

That is, we want to show that VJ/I e Fn,vy e {l,...,n},Vy; e Values,Vr; e Res,

The proof is by structural induction on e. It suffices to show that Si?1 holds for all
the corresponding pairs of combinators used by $ and S, respectively.

• Const g '• &Sl is true trivially by comparing Jf and JT.
• VarLookups: MSl is true since p Sft*1 p.

• PrimOpg: PrimOpg 3&Sl PrimOp* holds by structural induction and a case
analysis over the values produced by PrimOpg. Proof is omitted.

• Condg: Conig (%Sl Cond~ holds by structural induction and a case analysis

over the values produced by ki(p,^)n).

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 481

Appg: For any user-defined function / , all the corresponding arguments of

Appg and App~ are related by 3&?1 (by structural induction hypothesis). It

is easy to show that MSl holds when the function is specialized, since the
top element T —r— is returned. For the case when the function is unfolded,

r ^ Values
App-^Ul (£i>• • •, fen) is reduced to 0nfl/]] {fu•••,h), while AppslfJ (ku..., kn)

is reduced to <f>nUl (vi,--,vn). Since <pn 3%Sl 4>n by fixpoint induction hypoth-

esis, we have

Hence, Apps MSl App~.

Hence, <j> 0tSl 4>. This concludes the proof. D

Theorem 3 (Correctness of local semantics — 2nd component)

S &Sl S.

Proof: From Lemma 4. •
Before we close this section, let us make an observation about the relationship

between the first and second components of a value produced by S.

Observation 2

During partial evaluation, all values f e Res produced by S satisfy the following
conditions:

• rj.1 € Const A f\2 e Const o rj.1 = P|2

The above observation comes directly from the definition of J f > in Figure 7.

We say that a value f € Res is ^-consistent if it satisfies one of the above

conditions. This fact is used in the next section.

4.3.2 Correctness of the global semantics

In this section, we prove the correctness of the global partial evaluation semantics
(1) by relating the semantics of si with si using logical relation 01s1', and (2) by
showing that all the non-trivial calls performed at standard evaluation are captured
by si.

Since the result of both si and si is a cache, @F* should relate caches. That is,
whenever a standard signature for a function is recorded in the cache produced by
si, there exists a logically related partial-evaluation signature for that function in
the cache produced by si. Formally,

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

482 C. Consel and S. C. Khoo

Definition 3 (Relation &P)

£%•** is a logical relation between domains of si and si denned by:

v Mfesult^ fo(f is @—consistent) A (v C~rJ.2)
n

<»,,..., Vn) ®fTmnsf x Ren (t,fU..., Tn) o frvi^Ji)
~ i=l '

Dom{a) = Dom(a) A Vfl/fl e £>om(<r),Vs € a0/1,3s 6

l\jransf X Res")

P ̂ varEnv P ** Dom(p) = Dom(p) A V|x] G Dom(p),

^ « E ™ ^ **• Dom(<f>) = DornQ)) A Vfl/]] € Dom(<t>), V; e { 1 , . . . , n}, Vu, G Values,
•j e Res,

(3i,d2) o ^1 ̂ 5, A d2 @%2 d2

Note that the ^-consistency (Observation 2) ensures that the first component
of r, the residual expression, is consistent with the result of the partial-evaluation
algebra. Observe that there is no value in the standard signature corresponding to the
transformation tag of the partial evaluation signature. In fact, a transformation tag
for a standard signature could have been obtained by performing filter computations
at the standard semantics level. However, the transformation has no effect on
standard evaluation. Furthermore, since filters are continuous, the transformation
computed is guaranteed to be more precise or equal to that computed at the on-line
level. Thus, we can ignore this information without compromising the correctness
proof. Lastly, we note that the l.u.b. operation (which is the set-union operation) on
caches is closed under 0t^.

The next lemma shows that all the standard signatures recorded in the final cache
produced by si are 'captured' in the corresponding cache produced by si in the
sense that they are related by 0F*.

Notice that whenever si uses a value r in decision making (combinators Cond^
and Appg), only the value of the partial-evaluation domain is used, as is manifested
by the definition of functions SpPat, bt and Ft. Therefore, only the second component
of r is needed to show the correctness of si. Although the first component of f
(the expression) is modified by si when dealing with combinator App~, it should
be noted that the modification is exactly identical to the one done in <?, and by
Observation 2, the modified value is still ^-consistent.

Lemma 5
Given a program P, for any S such that S 8%^ S, let </> and <f> be two function
environments for P defined by the standard and the partial evaluation semantics,

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 483

respectively. For any expression e in P, for any variable environments p and p such

that p &* p,

Proof: The proof is by structural induction on e. Firstly, notice that

8

It suffices to show that ^ holds for all the corresponding pairs of combinators
used by si and si, respectively. By structural induction, it is easy to see that <%**
holds for constants, variables and primitive calls.

1. Cond^: By structural induction hypothesis, 01s1 holds for the test expression.

(a) Iff)] € Const, since k\{p, cj>) 01s* k\(p, </>), the branch chosen will be the same

for both si and si, and by structural induction hypothesis, 01st holds.
(b) If v\ = T^rp-, then all non-trivial calls in both branches are recorded by

si'. Again, by structural induction hypothesis, &** holds.

2. Apprf: By structural induction hypothesis, 0F* holds for all the arguments to
the application. As for the application itself, if it is recorded by si, then it is
non-trivial. By structural induction on the arguments, the application is also
recorded by si. Its transformation tag is either u or s. It is easy to see that 0t**
holds when the transformation tag is u. If it is s, 01s1 holds if Vi G {l , . . . ,n} ,
r,J,2 Qj~^s r,'|2, where {r\,-•-,?'„) is the result of applying SpPat in si. This
is true by the definition of bi, SpPat and Ft(T/]||2.

Therefore, s/fej(p,4>) 0p sJM(p,4>)- _ •
Notice that, for a value f, there may be more than one value v such that v ^ f.

Therefore, the above lemma shows that given an expression e, si captures all calls
within e that may be invoked under different initial value v with v 8%** r. The
following theorem uses Lemma 5 to prove that the final cache produced by the
global semantics is 'complete' in the sense that it captures all the non-trivial calls
performed during standard evaluation.

Theorem 4 (Correctness of global partial evaluation semantics)

Given a program P, let $ be a valuation function of the partial evaluation semantics
such that S 0F* <$. Let (i;i,...,t;n) and (f\,...,fn) be initial inputs to P for standard
and partial evaluation semantics, respectively, such that u, SF* f,, V7 e {1,... ,«}. If
a and a are the final caches produced by si and si respectively, then a 01s1 a.

Proof: First, we notice from the definition of &pros that (s ,r i , . . . , r n) e ffD/il,
just like (v\,...,vn) G CTU/IJ. Next, h in Sprog applies si to each partial-evaluation
signature in the cache, and combines the result using the l.u.b. operation. This is
similar to function h in <§prog. By Lemma 5, the computation of both si and si are
related by &*. Since l.u.b. operation is closed under 0p, a 0ld a. •

By Theorem 1, we know that a contains all the non-trivial calls performed at the

standard evaluation. Since a 3%^ a, all these calls must be captured by a.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

484 C. Consel and S. C. Khoo

4.3.3 Correctness of @g>

We now prove the correctness of the residual expression produced by S using the
relation MSx which relates a residual expression to a concrete value produced by
S. Intuitively, a residual expression and a concrete value are related if the former
evaluates (under standard evaluation) to the latter. This requires 'post-evaluation'
of the residual expression. Therefore, 01?* is not simply a relation between a value
and a residual expression; it is a relation between the value, the residual expression
and its 'post-evaluated' value. In the following definition, we introduce the notion
of satisfiability to aid in formulating this relation. This notion is similar, though
simpler, to the definition of agreeability used by Gomard (1992). For clarity, a =x b
denotes the equality between a and b, provided both of them terminate. Of course,
a = b => a =x b.

Definition 4 (Satisfiability)
Let P be a program. Let pd € VarEnv be a variable environment for a residual
expression such that Dom(pd) — FV(r{\). We say pd satisfies the pair (v, f) if

v =± $mn{pd,<t>') A vQ7H2,

where v e Values, f e Res, and $' is the function environment, defined by the
standard semantics, for the specialized version of program P.

Without loss of generality, we assume that every user-defined function takes
two parameters (xi and xi). To show the relationship between $ and S, we must
first show that the function environments they take as arguments are related. The
following lemma clarifies this relation.

Lemma 6
Given a program P, let 4> and <}> be the two function environments for P defined by
the standard semantics and the partial evaluation semantics, respectively. For any
user-defined function / , let pd be a variable environment that satisfies both the pairs
(vi,fi) and (1̂ 2,̂ 2) with yi,t>2 e Values and fuh € Res. Then,

=1 (Pd,4>')

where 4>' is the function environment, defined by the standard semantics, for the
specialized version of P.

Proof: The proof is similar to that described in Gomard (1992). The major difference
lies in the the fact that the property of a cache a is used to show the correctness
of partial evaluation of function application. This enables the correctness proof of
polyvariant specialization.

Since the lemma involves three functions in FunEnv: 4>, <j> for program P, and <p'
for the residual program, we define the functional O as

, fa)}/fi I V
?2) - SM(-L[h/xk],4>a)}/f, I v B/,-1 e Fn],
. <?lesq{±[v/x],(l>'a)}/fs'' I V specialized function f5?])

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 485

In this proof, i ranges over all user-defined functions.

Let 3&Sl be the predicate over O such that:

= V B/iJ 6 Fn, Vi>i,t;2 e Values, Vri,r2 G Res, Vpd G VarEnv,
2

f\(pd satisfies (vj,fj)) => tU.Mvwi) =± n&UiWuh
j=i

The predicate can be proved using Kleene's approximation over <I>, with the least
element

(<t>o,4>o,<t>'o) = i ±.[strict (Mvi,V2) . ±valueS)/fi I V D/,] G Fn],
±[strict (A(r,,r2) . Ues)/fi I V Mil e Fn],
J.[strict (A(ui,U2) • -Lvalues)/fsp I V specialized function fsp])

and the predicate ^ ' over the n + I'*1 approximation being

V H/J G Fn, Vwi,u2 G Values, Vri,r2 G Res, Vpd G
2

[\pd satisfies (vj,fj)=> (j)n

7 = 1

= x n +i
V [/,]] G Fn, Vt>i,u2 G Values, Vri,r2 G Res, Vpd G Kar£nt;,

2

p,i satisfies (vj,fj)

Notice that at any i + Ith approximation, <j>'i+1 is obtained from the residual
program produced by si and S, both having <j>i+l as their function environment.
Formally,

+ , = ±[(strict{/l w. (f I^K-LIu/x], <j>'i)})/fsp | Vspecialized function fsp with body esp]

(/>' is derived from cache CT produced by si and </>j is derived from cache CT, at the
ith approximation. Below are properties about a, and §\.

Property 1
V i e {0 ,1 , . . . } , fff CC a c f t e ff,+1. ^

Proof: From the result that <r,'s are the cache produced by s/ with function environment 4>,
and si is continuous in all its arguments. •

Property 2
V i e {0,1,...}, ft QFmEnv #m.
Proof: Since Vi e {0,1,...}, <t>[is obtained from the residual program, which is the result
of <?Prog- Inspecting the function definition of Sprog shows that it is continuous in all its
arguments. In particular, since V i e {0,1,...}, a-t Qcache /̂+i> therefore <p[^FunEnv 4>',+\- n

We prove the validity of ^?<?1 by fixpoint induction:

For the least element, ((/>0, <£o, </>d), we have ^O/,-I(«i,t>2) = Lvalues and 0B/,-]](ri,r2)

= A-Res- Thus, 0lSx(<f>o, <j>o, 4>'o) holds vacuously.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

486 C. Cornel and S. C. Khoo

Suppose that 0tSx is true for some element ((/>„, <f>n, 4>'n) in the ascending chain, we

want to prove that 9lSx is true for (<t>n+u^n+i,(p'n+i) = $(</>/» <£„,<#,).
For clarity, we introduce the following abbreviations:

1. ±[vk/xk] is abbreviated by p and ±[?i/x/t] by p.
2. Given an expression e, we abbreviate &§e^(p,<f>n) by fle]),?, and <?|[e]](p, $>„) by

The proof of ^jf|i requires structural induction on e.

• If e is a constant or a variable, the proof is trivial, and thus omitted.
• e is a primitive call, H>(ei,...,en)\. Let u = [[p(ei,...,e,,)!!,? and r = Hp(ei,..., en)J~.

— ^fji holds trivially if f = lRes.

— If rjl is a constant, then rj.1 = T(U) from Observation 1. Therefore, ^ f | j
holds in this case.

— If r 11 is not a constant, then the residual expression is of the form
[p(e",..., ê ')I> where e" = [[ejj: Vi e {1,...,«}. By the structural induction

hypothesis, &*+i holds for all the arguments of the primitive call. Fur-
thermore, since p and p contain all the bindings for free variables in e,
they also contain the bindings for free variables of the arguments. We thus
have:

j>'n+l))) [from standard semantics]
_ _ [structural induction hypothesis]

= |[p(ei,...,en)Js [from standard semantics]

Therefore, &tfl
+l holds.

e is a conditional expression, |[i/ ei e2 ^ 1 - ^ f | i holds trivially if ei partially
evaluates to -LRCS- If e\ is partially evaluated to a constant, then the result of
partially evaluating e is obtained from partially evaluating either ei or e3. By
the structural induction hypothesis, 3$%'+l holds.
If e\ partially evaluates to a residual expression, then the result of partially
evaluating e has the form [i/ e'[e£ e% where ej' = He,]- Vi e {1,...,3}.
Therefore,

W 4 4 Jip^)
(*l<®(Pd,0L..)) - • (*I^]|(W,^i)]K*[ea(PA0'n+i)) [from standard semantics]

±Ie1]]# -* §e2\Jl$[ei1g [structural induction hypothesis]
[i/ e\ ei e{^i [from standard semantics]

Thus, ^f|, holds.
• e is a function application, D/,(ei,e2)]]. Partially evaluating e may result in the

application being either unfolded or specialized. Suppose that the application
is specialized; without loss of generality, we assume that the first argument
of the application is static and propagated, whereas the second argument is

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 487

dynamic. Then [[/",(ei,e2)]]~ becomes IE/fP(C 2̂lÎ)II where f-p is the specialized
function. The partial-evaluation signature obtained from this application is
(by the definition of J^)

(s, leij7, (Ex2I,0')) where (?[, (|[x2],ii')) = SpPat{lfih (Eeilj, faty,
(Static, Dynamic))(-,v') = [e2]]y

Notice from the definition of SpPat that r\ = [ei]|~ and v' = T (^ j . The
specialized function fs

t
p is included in the residual program produced; its

definition is as follows.

The last equality holds by structural induction hypothesis and by the fact that
only constants are allowed to be propagated for a function specialization. The
corresponding entry of /fp in <p'n+l is

strict(lv . nWnUiWdeilt),(lx2l,v')Wl(Uv/x2],<l>'n)) (2)

Thus, we have

=x <^,+il[/,sp](|[e2]<f) [structural induction hypothesis]

*KlUUnUh) (I l S ' » H l] | (i [[l /] ^ 1)
[fixpoint induction hypothesis]

In the derivation above, the fourth equality is valid based on an instance of
our fixpoint induction hypothesis. This is because (J-[|[e2]]//x2]) is the only en-
vironment that satisfies both the pairs (Hei]]<?,£([[ei]]<?)) and (He2I,?, (Ex2J,i5')).
Therefore,!%%+! holds for the application.
On the other hand, consider the case where the application is unfolded. The

equality in ^ | j becomes

fa pd, 4>'n+x)- (3)
For Equation 3 to hold, pd must satisfy both pairs (EeiJ^, [ei]]j) and
M y) . That is, Vie {1,2},

This is true by the structural induction hypothesis, Property 2 about 4>'n+l, and
Theorem 3.
Using pd, the fixpoint induction hypothesis is

=x
Notice that the only difference between the hypothesis and Equation 3 is the
usage of 4>'n and 4>'n+v Let e' = (hUMlei^l^e^Ml. Since the domain
Exp is flat, the only case where Equation 3 may have failed to hold would
be when standard evaluation of e1 made references to specialized functions

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

488 C. Consel and S. C. Khoo

defined in $'n+1. Suppose that fsp were such a function, and its call in e'
were ifsp(r'2)J. This residual call would be the result of partially evaluating a
function call. Let the function call be [/ (H , ^)]] . Then, it would be the case
that at the n'h approximation, we had

be true vacuously (by the hypothesis), but at the n + Ith approximation, the
equation

U(ri,r2)fc =± WVkMlto.tf.+i) (4)
became false. However, Equation 4 is the result of function specialization, and
we have already proved its validity. Thus, we arrive at a contradiction, and
Equation 3 must therefore hold. Hence, ^ | j holds.

Hence, &tgl {<f>, <j>, <j>') holds. This concludes the proof. •

4.3.4 Correctness of '01s

Now, we are ready to define the relation between S and S. This is defined in terms
of the result of Theorem 3 and Lemma 6. Firstly, since both S and S take variable
environments as their arguments, we need to relate these environments. To do so,
we extend the notion of satisfiability to define the relationship between variable
environments, instead of pairs of related values. This is a variant of the notion of
agreeability as defined by Gomard in Gomard (1992).

Definition 5 (Agreeability)
Let P be a program. Suppose <p' is the function environment, defined by the standard
semantics, for a specialized version of P. Also, let p,Pd € VarEnv be two variable
environments defined by the standard semantics, and p € VarEnv be a variable
environment defined by the partial evaluation semantics. For any expression, e in P,
p, p and pd agree on e at <p' if

f) A PMQ~CP

The notion of satisfiability can then be expressed in terms of agreeability as
follows.

Observation 3
G i v e n t h a t p j sa t i s f ies a l l t h e p a i r s in the se t { (v i , f \) , . . . , (vn,fn)}. L e t p = L \ v \ / x \ , . . . ,
vn/xn], and p = J.[ri/xi,...,fn/xn]. Then, for any expression e in P with FV{e) =
{xi, . . . ,xn}, we must have p, p and pd agree on e.

Notice that p and p as defined in Observation 3 represent how all the variable
environments used in standard and partial evaluation semantics are constructed.
Therefore, the result of Lemma 6 can be expressed in terms of an arbitrary expression
in program P as follows.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 489

Corollary 1

Given a program P, let <j> and 4> be the two function environments for P defined
by the standard and the partial evaluation semantics respectively. Let <f>' be the
function environment, defined by the standard semantics, for a specialized version
of program P. Then, for any expression e in P, Vp,p e VarEnv and pd € VarEnv
that agree on e at </>', we have

SM{P,<t>) =±

Correctness of the local partial evaluation semantics can be stated as follows:

Theorem 5 (Correctness of local partial evaluation semantics)
Given a program P, let <f> and 4> be the two function environments for P defined
by the standard and the partial evaluation semantics respectively. Let </>' be the
function environment, defined by the standard semantics, for a specialized version
of program P. Then, for any expression e in P, V p, p G VarEnv and pd € VarEnv
that agree on e at <f>', we have

and

Proof: From Theorem 3 and Corollary 1.

5 Off-line partial evaluation semantics

Off-line partial evaluation consists of two phases: binding-time analysis and special-
ization. In this section, we provide an interpretation of the core semantics (Section
2) that defines binding-time analysis. We then use the technique of logical relation
to define and prove the correctness of binding-time analysis. This formally demon-
strates the intuition that binding-time analysis is an abstraction of on-line partial
evaluation. Finally, we describe a systematic way of deriving a specializer from
on-line partial evaluation using the result of binding-time analysis, and we list some
optimizations that can be performed to improve the efficiency of the specializer.

5.1 Binding-time algebra

Just as the partial-evaluation behavior of the primitives is captured by the partial-
evaluation algebra, the binding-time behavior of the primitives can similarly be
captured by the notion of binding-time algebra. The binding-time algebra defines
primitive operations over the binding-time domain Values (defined in Section 4.1).
Formally,

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

490 C. Consel and S. C. Khoo

Definition 6 (Binding-time algebra)
The binding-time algebra [Values; O] is an abstraction of a partial-evaluation algebra
[Values;O]; it consists of the following components:

1. The domain Values and the binding-time domain Values are related by the
abstraction function x defined in Section 4.1.

2. V p € O of arity n, there exists a corresponding abstract version p e O such
that ___

p : Values —> Values

p = X (du--,dn) . 3j e {l,...,n\ s.t.dj = ±,71- -> _ L , ~
^ v ; J l ' ' Values Values

n

[] (/\(d, = Static) -> Static fl Dynamic)
i=l

Like the partial-evaluation algebra, we notice that the abstract primitives denned
in O satisfy the following safety criterion:

Vr e Values, Vp e O and its corresponding abstract version p e O,

The relation between partial-evaluation algebra and binding-time algebra can also
be succinctly described by a logical relation C~. The definition is similar to that
defined in Section 4.1, and is omitted here.

5.2 Specification of binding-time analysis

Figure 9 displays the binding-time analysis for our language. The analysis aims at
collecting binding-time information for each function in a given program; this forms
the binding-time signature of the function. More precisely, a binding-time signature in
domain Sig is created when a function call is analyzed by the binding-time analysis.
It consists of two components: A transformation tag similar to that used in the
partial-evaluation signature, and the argument values of the application in Values .

The valuation function $ is used to define the abstract version of each user-defined
function. The resulting abstract functions are then used by the valuation function
stf to compute the binding-time signatures. These signatures are recorded in a cache
(from domain Cache-). As usual, computation is accomplished via fixpoint iteration.
Functions JT and Jfp perform the abstract computation on constants and primitive
operators respectively.

The analysis is monovariant: each user-defined function is associated with one
binding-time signature. Various binding-time signatures associated with a function
at different call sites are folded into one signature using the l.u.b. operation defined
as

V6fi,cr2 € Cache-, 5i UCT2 = ±.[{t,vl,...,vn)/f | VB/] 6 Dom(Si)UDom{d2)]
where {t,vlt...,vn) = (Ul e {Dom(ax) n Dom(d2))) -> (t U t", v\ U Dj',..., v'n U %)

0 (W D () B/I D ffl/l)

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 491

As an example of a cache produced by si, consider the exponentiation function
f denned in Section 3.1 (with the filter discussed in Section 4.2). When function
f is analyzed with respect to the binding-time description (Dynamic, Static), the
following caches are produced until a fixpoint is reached.

Iteration

1

2

Cache

[(s, Dynamic,

[(s, Dynamic,

Static)//]

Static)//]

The final cache indicates that when Function f is partially evaluated with respect
to an input of binding-time value {Dynamic, Static) , all calls to Function f are
suspended (thus the transformation value s), and the second argument is propagated.

5.3 Correctness of binding-time analysis

The initial input to the binding-time analysis is an abstraction of the initial input
of on-line partial evaluation. The analysis is correct if its final cache (Cache-)
contains the abstraction to all the partial-evaluation signatures of the on-line partial
evaluation. The correctness is shown by relating the local and global semantics to
their respective counterpart in the on-line partial evaluation semantics. That is, we
define a logical relation 3ft3 that relates 8 and S, and a logical relation 91s* that
relates si and si'. We first show the correctness of the local semantics defined by S,
and then that of the global semantics defined by si.

5.3.1 Correctness ofS

To relate & and S, it is sufficient to relate the binding-time values to the partial-
evaluation values. This relation forms the basis of the logical relation defined below.

Definition 7 (Relation
0ts is the logical relation between domains of 8 and $ defined by:

KarEnv A V W ^ /

<i>KunEnv4> ** Dom(4>) = Dom(4>) A V|[/l € Dom(4>),Vi e {1,. ..,n},Vr, £ Res,VD,- e V^hTes,
n

_
22> ~ 2 , ^ , a,
s,,va € D^a

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

492 C. Cornel and S. C. Khoo

• Semantic Domains

v e Resultg = Values
p G VarEnv = Var —> Values
4> e FunEnv = FEnv = Fn —> Values —> Values

Env = VarEnv x FunEnv

s 6 Sig = (Transf x Values")

5 e Result- = Cache- = Fn -> Sig

• Valuation Functions

6 Prog '• Program —> Values —» Cache—
'Sproi l{fi(xu • • • ,xn) = e .HKCr --,vn)= h(±[(sA, • • • ,vn)/fx\)

whererec h(a) = a U h(\\{^le,l(±[vk/xk],^) | (-,vh...,vn)
= 5IL/J, Vfl/J e Dom(ff)})

Combinator Definitions
Const-M =A(p,4>). St

VarLookup^lx] = X{~p,4>) .p^

X(P,4>) . J = 1 ~ - ± ~
Q(Di = Static —* vi Uvi

where v, = fe,(p,0)Vi e {1,2,3}

where v, = k,(p,^>)Vi e {l,...,n}
| [c] |=^(p ,^) . (A/.

VarLookup-lxl = ^(p,^) .

, . . . ,an) = k{p, ~4>) . _\2,(p,

Cond~{aua2,a3)k, = A(p,^) . 3 ,0 ,

whered =*~(Ft|/l)J.l(0,,..., 8B) = u
[(> / /] 0 ± [

Primitive Functions

^ : Const -> Values

: Po -> Values" -> Values

Fig. 9. Binding-time analysis.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 493

Lemma 7
Given a program P, let <j> and $ be the two function environments for P defined
by the partial evaluation semantics and the binding-time analysis respectively. Then

Proof: The proof is similar to the proof for Lemma 4, and is thus omitted. D

Theorem 6 (Correctness of local binding-Time analysis)

s m3 s.
Proof: From Lemma 7. •

Corollary 2
Given a program P, for any expression e in P, and Vp G VarEnv,

5, 0))jl = Static => {£ le^{p,</>))jl G Const U {±Exp}

where both <f> G FunEnv and </> G FunEnv are fixed for the program, and p € VarEnv

is defined such that p 8%& p.

5.3.2 Correctness of the global analysis

We prove the correctness of the global analysis (1) by relating the semantics of
si with that of si using the logical relation 0P*', and (2) by showing that all the
non-trivial calls that are recorded by si are captured in the cache produced by si.

Definition 8 (Relation

<%•** is the logical relation between the domains of si and si defined by extending

relation 01s to include the relation between a and a produced by si and si,
respectively:

t,ru..., rn) @fig <?, 0i , . . . , Vn) o (t Qrransf T) A
1=1

* ^Result- ° ** v D/l e Dom(a)Xs G ff|[/]],3s G aUJ such that s @fig s

We note that the l.u.b. operations defined on both caches are closed under
si

With this relation, the next lemma shows that all the partial-evaluation signatures
recorded in the final cache produced by si are captured in the corresponding cache
produced by si in the sense that they are related by ^ ' .

Lemma 8
Given a program P, let (j> and (f> be two function environments for P defined by the
partial evaluation and the binding-time analysis respectively. For any expression e
in P, for any p, p such that

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

494 C. Consel and S. C. Khoo

Proof: The proof is by structural induction over expressions. First, notice that
<j> W* (j>. It then suffices to show that W* holds for all the corresponding pairs of
combinators used by stf and stf respectively. It is easy to see that 3&1* holds for
constants, variables and primitive calls. We show below that 01s* holds for the case
of conditional expressions and function applications.

1. Cond-^: By the structural induction hypothesis, all the corresponding pairs of

arguments are related by 9tM'. Since the result of Cond- is the l.u.b. of the
caches produced at all the arguments, whereas the result of Cond ~ is the l.u.b.

of the caches produced at some of the arguments, &* must hold.
2. App-^: As seen from the two semantic specifications in figures 8 and 9, we

need to show that the results of function applications at the two specifications
are related by dfi. That is,

By the structural induction hypothesis and the fact that l.u.b. operations are
closed under 01s*, we have

It suffices to show that a M** a. We refer the reader to figures 8 and 9 for
the notations used in the following proof, in which we consider the cases with
different transformation values t produced at the binding-time analysis level.

• If t = u, then t = u by the monotonicity of filters. From figures 8 and 9,
we have a = -L[{(u,r1;...,?„)}//] and a = l[(u,t5i,...,Dn)//]. Notice that,
Vie{ l , . . . , n} ,

h = a,(p, </>„) [by definition]
SP* a,{p,<f>n) [structural induction hypothesis]
= D,-. [by definition]

Therefore, a 01s* a.
• If t = s, then t Qtransf t by monotonicity of filters. From Figure 9, we have

9 = ±[(s,v[,...,v'n)/f]- From Figure 8, & can either be ±[{u,fu...,fn}/f]
or ±[{s,f\,...,f'n}/f]. However, from the functionality of the filter and
the definition of SpPat at the on-line level, we have Vi e {l,...,n}, r,J,
2 Qp~^s r'tl2. Therefore, it suffices to show that ±[{(s,r'l,...,r'n)}/f] 0L1*
-L[(s,v\,...,v'n)/f\. The proof can be further reduced to showing that
Vi € {l,...,n}, r\ M^ v\, which can be derived from the following two
observations:

(a) Vi e {l,...,n}, if r, 0F* vu then from the monotonicity of the filter, we
must have V/ e {l,...,n},

((FtUU2(bt(fl),..;bt(fn)))j Q^

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 495

v\.
Values '

1s* v[

(b) Given h,..-,h, if {bu...,bn) = {FtW) I 2(bt(fl),...,bt(K)l and
(?;,...,?;) = SpPat($n,(h,••-,?„), (bu...,bn)). Then, from the defi-
nition of SpPat, we have V/ G {1 , . . . , n},

W E * S f'A2 and toty = bJ-
These two observations together ensure that Vz e {l,...,n}, if r\ is taken
from _L[{(s,r',,...,r^)}//], and 5j is taken from l[(s,v[,...,v'n)/f], then we
must have

v " —

That is, r\l2 E? 5,'. Hence, we have r\

Thus, we have a M^ a, and therefore, Appg 91s* App~.

Hence, ffl^ holds in general. This concludes the proof. •

Theorem 7 (Correctness of global binding-time analysis)
Given a program P, let (f\,...,rn) and (v\,...,vn) be initial inputs to P for on-

line partial evaluation and binding-time analysis, respectively, such that ?, 91s* vt,

Vi € { l , . . . ,n} . If <r and a are the final caches produced by si and srf, respectively,

then a 9ld a.

Proof: Firstly, we notice from the definition of $pr0% that {s,v\,...,vn) is the
corresponding binding-time signature for / i in a. Therefore, {s,v\,...,vn) Q ffB/iI.
This captures the initial call to the on-line partial evaluation: (s,fi,...,fn) G ffd/i]-
Next h in Spro% applies si to each binding-time signature in the cache, like function
h in <Sprog. Since l.u.b. operation is closed under 0F*, a 9t^ a. D

5.4 Deriving the specialization semantics

We now describe the derivation of the specialization semantics (for off-line partial
evaluation) from its on-line counterpart. This derivation is based on the observation
that, prior to on-line partial evaluation, the binding-time analysis has determined
the invariants of this process. Indeed, the result of the on-line partial-evaluation
computations has been approximated and is available statically. Thus, the aim of
this derivation is to transform the on-line partial evaluation semantics so that it
makes use of binding-time information as much as possible. The uses of binding-time
information are listed below.

1. Predicates testing whether an expression partially evaluates to a constant can
safely be replaced by a predicate testing whether this expression returns Static
during binding-time analysis.

2. Filter computation for a function call can safely be replaced by an access to
the function's binding-time signature; it contains the call transformation to be
performed.

The use of binding-time information collected for an expression requires that
this information be bound to the expression. That is, each expression in a program

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

496 C. Consel and S. C. Khoo

should be annotated with the information computed by the binding-time analysis.
We achieve this annotation by assigning a unique label to each expression in a
program and binding this label to the corresponding binding-time information. A
cache, noted xp, maps each label of an expression to its binding-time information.
For a label /, we write (xp l)v to denote the binding-time value corresponding to /. If
/ is the label of a function call, then (y> /), refers to its transformation (i.e. unfolding
or suspension).

5.4.1 Specification of the specializer

Note that this annotation strategy only requires a minor change to the core semantics.
Namely, the labels of an expression must be passed to the semantic combinator.**
For example, in specializing a labeled conditional expression H(i/ el{ e\ £3)'], the
combinator Cond~ takes as an additional argument (/, l\, h, h). Besides passing labels
to combinators, we extend the usual pair of environments to include the cache (i.e.
xp e AtCache).

Figures 10 and 11 depict the detailed specification of the specialization process.
Each interpreted combinator is similar to that of on-line partial evaluation, except
in the following cases:

1. For both Cond^ and Cond~, the predicate that determines whether the condi-
tional test evaluates to a constant has been replaced by a predicate that, tests
the staticity of its binding-time value.

2. For primitive calls, the predicate testing whether the result of the operation is
a constant has been replaced by a predicate testing the staticity of the resulting
binding-time value.

3. For both App~ and App~, filter computation has been replaced by an access
to the static information about the function call: binding-time value of the
arguments and function call transformation.

5.4.2 Optimization of specialization

At this point it is important to determine whether the specialization semantics
that we derived indeed describes a specialization process. In fact, as mentioned in
Bondorf et al. (1988) and Jones et al. (1989), binding-time analysis was introduced
for practical reasons. Namely, by taking advantage of binding-time information, the
partial-evaluation process can be simplified and its efficiency improved. This is a key
point for successful self-application (Jones et al, 1989).

Thus, the off-line strategy aims at lifting as many computations as possible from
specialization by exploiting static information. In other terms, there exists a wide
range of specializers for a given language; each possible specializer reflects how
much has been computed in the preprocessing phase. In fact, the specialization

** Note that for simplicity we did not introduce labels in the core semantics presented on
page 467. Indeed, labels are only used for the specialization semantics.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 497

• Semantic Domains
/ 6 Labels f e Result— = Res = as in On—Line Sem.

S € Values = as in On—Line Sem. v e Values = as in Off—Line Sem.
<?, D) e Att = (Transf x VahTes) h e Result- = as in On-Line Sem.

V> € AtCache = Labels -+ Att 0 e FunEnv =_as in On-Line Sem.
p G VarEnv = as in On-Line Sem. Env = VarEnv x FunEnv x AtCache

• Valuation Functions

dProg : Prog -» Res" -> AtCache -> Progx

#ProglUi(xu- • • ,xn) = ei}J{ru...,h)(p = MkProg(h(±[{(s,ri,...,rn)}/fl]))ij>4
whererec M<r) = i u X(|J{^s^[e.I(-LKM], «,*) I <-,?'„... ,F.>

6 *HfJ, Vfl/,1 e

• MkProg Definition

MkProgcxp4> = {.TOc,,...,**) = r'il | V(s,?„...,?„) g * ! / ,] ,
where /f" = SpJVame(I/,],r,,...,?.)

Local Combinator Definitions

Const ~^|[c](/) = Kf>,4>,V)

Cond~s{kuk2M)(hU,h,h) =
4Kp,4>,xp) .({ph), = Static -> (Jf(r,Il) -» r20r3)B<|[^jil?2il'3ilI,?2l2u r3j2)

whereff = k,(p, 4>, tp)Vi €{1,2,3}

w/iere r, = fc,(p,^,$)Vi € {1,...,«}
/ v = SpJVflme(|[/]|>1,...IPB)
<c?,. . . ,<)=H«KL4^s(in,<5i, . . . ,O.<Ml.-
{t[,...,K)=SpPat(Ul,(?i,...,*.),{%.• ••,%))
; (a V { l }

• Primitive Functions

X^: Const -» Res
• ^ W = (as in On—Line^Semantics)

JfSp : Po - • Res" -> Values -» Res

w/iere 0 = p(0|,- • -,0n)

Fig. 10. Specialization semantics - Part 1.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

498 C. Cornel and S. C. Khoo

• Global Combinator Definitions
Const~lcj{l) = ^(p,0,v) . X\ . ±Att

n

PrimOp~M(ai,...,an){l,li,...,!„) = HP, <!>,$) ._\a,(p,4>,ip)

~(cn,a2,h)h{lluh,h) =
,0,v>) • (ai(p,^,y)))U((<pl)v= Static -> (jf(O,)

where f, = fc,(p, <J>, t/>)Vi e {!,•••,«}

Fig. 11. Specialization semantics - Part 2.

semantics derived in the previous section may be used as a basis to introduce
many optimizations. In particular, it is possible to infer statically the actions to be
performed by the specializer. The basic actions of a specializer consists of reducing
or rebuilding an expression. Such actions can be determined using the binding-time
value of an expression. This technique has been used in off-line partial evaluation
(Consel, 1993b; Consel and Danvy, 1990).

6 Conclusion

Based on the technique of factorized semantics, we provide semantic specifications
and correctness proofs for both on-line and off-line partial evaluation of first-order
functional programs. Using the technique of collecting interpretation and the partial-
evaluation algebra, we are able to prove the correctness of polyvariant specialization.

This paper should improve the understanding of partial evaluation in that it
addresses such open issues as showing that binding-time analysis is an abstraction
of the on-line partial-evaluation process, and formally defining the specialization
semantics.

Also, this work should provide a basis for implementation. In fact, the specifica-
tions presented in this paper have been generalized by the authors to the specification
of parameterized partial evaluation - a generic form of partial evaluation aimed at
specializing programs not only with respect to concrete values, but also with respect
to static properties (Consel and Khoo, 1991, 1993). Parameterized partial evaluation
has already been successfully implemented at CMU (Colby and Lee, 1991) and at
Yale (Khoo, 1992).

We are exploring ways of extending the current work to higher-order programs. To
do so, we are formulating existing on-line and off-line higher-order partial evaluators
(e.g. Bondorf, 1991; Consel, 1993a; Weise and Ruf, 1990) in a higher-order abstract
interpretation setting like Jones's (1991).

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

On-line and Off-line partial evaluation 499

Acknowledgments

We wish to thank Olivier Danvy, Pierre Jouvelot and the referees for their helpful
remarks and their careful reading of earlier versions of this paper. Thanks are also
due to Paul Hudak and the Yale Haskell Group for their encouragement.

References

Abramsky, A. (1990) Abstract interpretation, logical relations and Kan extensions. Logic and
Computation, l(l):5-40.

Bondorf, A. (1991) Automatic autoprojection of higher-order recursive equations. Science of
Computer Programming, 17:3-34.

Bondorf, A., Jones, N. D., Mogensen, T. and Sestoft, P. (1988) Binding Time Analysis and the
Taming of Self-Application. DIKU Report, University of Copenhagen, Denmark.

Colby, C. and Lee, P. (1991) An implementation of parameterized partial evaluation. In:
Workshop on Static Analysis, pp. 82-89, Bigre Journal.

Consel, C. (1988) New insights into partial evaluation: the Schism experiment. In:
H. Ganzinger (ed.), ESOP'88: 2nd European Symposium on Programming, pp. 236-246.
Springer-Verlag.

Consel, C. (1993a) Polyvariant binding-time analysis for higher-order, applicative languages.
In: ACM Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
pap. 145-154.

Consel, C. (1993b) A tour of Schism: a partial evaluation system for higher-order applica-
tive languages. In: ACM Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pp. 66-77.

Consel, C. and Danvy, D. (1990) From interpreting to compiling binding times. In: N. D. Jones
(ed.), ESOP'90: 3rd European Symposium on Programming, pp. 88-105. Springer-Verlag.

Consel, C. and Danvy, D. (1993) Tutorial notes on partial evaluation. In: ACM Symposium
on Principles of Programming Languages, pp. 493-501.

Consel, C. and Khoo, S. C. (1991) Parameterized partial evaluation. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 92-106.

Consel, C. and Khoo, S. C. (1993) Parameterized partial evaluation. ACM Transactions
on Programming Languages and Systems, 15(3):463-493. (Extended version of Consel and
Khoo (1991).)

Futamura, Y. (1971) Partial evaluation of computation process - an approach to a compiler-
compiler. Systems, Computers, Controls, 2(5):45-50.

Ganzinger, H. and Jones, N. D. (eds.) (1985) Programs as Data Objects. Lecture Notes in
Computer Science 217. Springer-Verlag.

Gomard, C. K. (1992) A self-applicable partial evaluator for the lambda-calculus: correctness
and pragmatics. ACM Transactions on Programming Languages and Systems, 14(2): 147-172.

Hannan, J. and Miller, D. (1989) Deriving Mixed Evaluation From Standard Evaluation For a
Simple Functional Language. Technical Report MS-CIS-89-28, University of Pennsylvania,
Philadelphia, PA.

Hoist, C. K. (1989) Program Specialization for Compiler Generation. Master's thesis, University
of Copenhagen, DIKU, Denmark.

Hudak, P. and Young, J. (1988) A collecting interpretation of expressions (without Powerdo-
mains). In: ACM Symposium on Principles of Programming Languages, pp. 107-118.

Jones, N. D. (1988a) Automatic program specialization: a re-examination from basic prin-
ciples. In: D. Bjorner, A. P. Ershov and N. D. Jones (eds.), Partial Evaluation and Mixed
Computation, pp. 225-282. North-Holland.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

500 C. Consel and S. C. Khoo

Jones, N. D. (1988b) Binding Time Analysis and Static Semantics (extended abstract). DIKU
Report, University of Copenhagen, Denmark.

Jones, N. D. (1990) Partial evaluation, self-application and types. In: M.S. Paterson (ed.), 17th
International Colloquium on Automata, Languages and Programming, pp. 639-659. Springer-
Verlag.

Jones, N. D. (1991) A minimal function graph semantics as a basis for abstract interpretation
of higher order programs. Presented at the 1991 Workshop on Static Analysis of Equational,

Functional and Logic Programs.

Jones, N. D. and Muchnick, S. S. (1976) Some thoughts towards the design of an ideal

language. In: ACM Conference on Principles of Programming Languages, pp. 77-94.

Jones, N. D. and Mycroft, A. (1986) Data flow analysis of applicative programs using minimal

function graphs. In: ACM Symposium on Principles of Programming Languages.

Jones, N. D. and Nielson, F. (1990) Abstract Interpretation: a Semantics-Based Tool for
Program Analysis. Technical Report, University of Copenhagen and Aarhus University,
Denmark.

Jones, N. D., Sestoft, P. and Sondergaard, H. (1989) Mix: a self-applicable partial evaluator

for experiments in compiler generation. LISP and Symbolic Computation, 2(l):9-50.

S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.

Khoo, S. C. (1992) Parameterized Partial Evaluation: Theory and Practice. PhD thesis, Yale

University. (Research Report 926.)

Launchbury, J. (1990) Projection Factorisation in Partial Evaluation. PhD thesis, Department
of Computing Science, University of Glasgow, Scotland.

Mogensen, T. (1992) Self-applicable partial evaluation for pure Lambda Calculus. In: C. Con-
sel (ed.), ACM Workshop on Partial Evaluation and Semantics-Based Program Manipulation,

pp 116-121. Yale University. (Research Report 909.)

Mizuno, M. and Schmidt, D. (1990) A Security Flow Control Algorithm and Its Denota-
tional Semantics Correctness Proof. Technical Report CS-90-21, Kansas State University,
Manhattan, KS.

Nielson, F. (1989) Two-level semantics and abstract interpretation. Theoretical Computer
Science, 69:117-242, 1989.

Nielson, H. R. and Nielson, F. (1988a) Automatic binding time analysis for a typed A-calculus.

Science of Computer Programming, 10:139-176.

Nielson, H. R. and Nielson, F. (1988b) Automatic binding time analysis for a typed ^-calculus.

In: ACM Symposium on Principles of Programming Languages, pp. 98-106.

Nielson, F. and Nielson, H. R. (1992) Two-Level Functional Languages. Cambridge Tracts in

Theoretical Computer Science 34. Cambridge University Press.

Sestoft, P. (1985) The structure of a self-applicable partial evaluator. In: Ganzinger, H. and
Jones, N. D. (eds.) Programs as Data Objects. Lecture Notes in Computer Science 217, pp.
236-256. Springer-Verlag.

Sestoft, P. (1988) Automatic call unfolding in a partial evaluator. In: D. Bjorner, A. P. Ershov

and N. D. Jones (eds.), Partial Evaluation and Mixed Computation. North-Holland.

Wand, M. (1993) Specifying the correctness of binding-time analysis. In: ACM Symposium

on Principles of Programming Languages, pp. 137-143.

Weise, D. and Ruf, E. (1990) Computing Types During Program Specialization. Technical
Report 441, Stanford University, CA.

https://doi.org/10.1017/S0956796800001453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001453

