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Abstract 

Attent ion is focused on those aspects of the theory that may be 
relevant in understanding the nature of 11 Cet i - type var iable white 
dwarfs. Recent calculations show that the opacity mechanism can drive a 
large variety of osci l la t ion modes, including the ones that f i t observed 
periods. An estimate of nonlinear ef fects shows that resonant mode 
coupling plays a dominant ro le in determining the f i n i t e amplitude 
behaviour of osc i l l a t i ons and is also probably responsible for rapid 
amplitude changes observed in these variables. 

1. Introduction 

Pulsation properties of the white dwarfs w i l l be reviewed with the 
special emphasis on those which are or may be relevant in understanding 
11 Ceti variables. Consequently, I w i l l have in mind rather cool stars 
with effective temperatures ranging from 10,000 to 15,000 K. 

The nature of the va r iab i l i t y of these stars is s t i l l a matter of 
debate. In keeping w i th the t i t l e of t h i s rev iew, only those 
in te rpre ta t ions that postulate excitation of osci l lat ions of some sort 
w i l l be discussed. The possib i l i t ies for using the observed periods as 
a diagnostic tool for white dwarf structure w i l l also be explored. 

Pulsational properties of white dwarfs are qui te d i f f e ren t from 
those of the Cepheids. Thus, although the tendency exists to consider 
11 Ceti variables as an extension of the usual pulsat ion i n s t a b i l i t y 
s t r ip toward the low luminosity range, a simple extrapolation of results 
obtained for Cepheids may be qui te misleading. Numerical models of 
f i n i t e amplitude development of the osci l lat ions are probably needed to 
explain phenomena that are seen in 11 Ceti stars. These, however, are 
not and probably w i l l not be soon avai lable. Among the problems are 
lack of suf f ic ient ly detailed knowledge of the equilibrium structure of 
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white dwarf envelopes, appropriate opac i ty data and, p r i m a r i l y , 
d i f f i c u l t i e s in dealing with nonspherically symmetric motion of f i n i t e 
amplitude. 

In th i s s i t ua t i on i t appears safer to rely on those conclusions 
that may be reached without reference to very spec i f ic models. Thus, 
t h i s paper w i l l address types of white dwarf osci l lat ions and driving 
mechanisms mostly u t i l i z i n g asymptotic formulae and q u a l i t a t i v e 
arguments. These w i l l be fol lowed by presenting fo r the sake of 
i l l us t ra t ion results of a numerical analysis of the linear nonadiabatic 
p r o p e r t i e s of a white dwarf model. Nonlinear ef fects leading to 
pulsation amplitude l imi tat ion wi l l then be discussed. This again w i l l 
be largely on a quali tat ive basis. 

2. White dwarf modes of osci l la t ion 

By assuming that the star is suf f ic ient ly slowly rotating and that 
the osc i l l a t i ons are of low amplitude, the angular dependence of 
perturbations may be separated in terms of spherical harmonics, 

Y ^ j (e.*) = P^ j (cose) exp(±ij<())/I1)J. (1) 

where P"|,j is a Legendre function and I I J is the normalization fac to r . 
Pulsat ion amplitude fo r nonradial osc' i l lat ions (1 > 0) are therefore 
understood as r.m.s. values calculated over the surface of a sphere at a 
given distance, r, from the star center. I t is clear that only modes 
associated with low order 1 harmonics can give r ise to observable 
luminosity variations. With increasing 1 , cancellation causes a drastic 
reduction of the net luminosity amplitude. The factor is - 10 - 2 for 1 = 
5 and - 10 "3 for 1 = 10. 

The temporal dependence of perturbations is given by exp ( i u t ) , 
where, in the case of adiabatic osc i l la t ions, u> is r e a l . Nonadiabatic 
e f f e c t s give r ise to a complex part i n w ; the growth rate is given by 

-Im(w). The equations for the r-dependent amplitudes, supplemented by 
the appropriate boundary cond i t ions, const i tu te a fourth order real 
eigenfrequency problem in the adiabatic case and a s ix th order complex 
eigenfrequency problem in the nonadiabatic case. 

For rea l is t ic s te l lar models, one needs to employ numerical methods 
to obtain solut ions to these problems. However, considerable insight 
into the propert ies of various modes can be achieved by means of a 
qual i tat ive discussion of propagation properties of various waves in the 
s te l lar in ter io r . Examples of discussions of this type can be found in 
the fo l lowing papers: Scuflaire(1974), Unno (1975), Osaki (1975) and 
Dziembowski (1975). The waves that give r ise to s t e l l a r o s c i l l a t i o n s 
propagate in some port ion of the s t e l l a r i n t e r i o r which is called a 
propagation zone; these zones are surrounded by areas called evanescent 
zones where propagat ion is impossible. The propagation zone is 
recognized by osci l latory dependence of the pulsat ion amplitude on r 
while the evanescent zones may be ident i f ied by i t s monotonic decrease 
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or increase. The location of these zones depends on the values of u and 
1 . 

By arguing, for instance, that the eigenfunctions corresponding to 
various frequencies are mutually orthogonal, i t may be seen that almost 
al l of the energy of osci l la t ion is confined to the propagation zone. 
The s i t u a t i o n i s q u i t e analogous t o tha t considered in quantum 
mechanics, with propagation zones corresponding to allowed regions and 
evanescent zones corresponding to prohibited regions for a given energy 
level . 

2.1. Gravity modes 

I t was suggested by Warner and Robinson (1972) that gravity modes 
are responsible for the ZZ Ceti phenomenon and this s t i l l seems the most 
p laus ib le i n t e r p r e t a t i o n . These modes are trapped internal gravity 
waves and t h e i r pr inc ipa l r e s t o r i n g f o r ce comes from buoyancy. 
Consecutive modes are denoted as g j , g2> . . . g n , according to the number 
of nodes in the eigenfunction describing the radial displacement. 

Asymptot ical ly fo r short r ad ia l wave lengths, the f o l l o w i n g 
dispersion relation is val id local ly 

K2 = 1(1 + 1) (N2 / a 2 - 1) (2) 

where < is the radial component of the wave vector mult ipl ied by r and N 
is the Brunt-Vaisala frequency. We have 

N 2 = £ 1 dlnP dlnpj , , , 
r dlnr " dlnr {i) 

where g is the local gravitat ional acce lera t ion , P is pressure, p is 
density and r is the adiabatic exponent. Although approximation of the 
actual eigenfunctions by trigonometric functions is val id only fo r high 
order g r a v i t y modes, the dispersion re l a t i on is always useful in 
determining the approximate location of the propagation zones. I t i s 
seen from Eq. (2) that propagation is possible only i f the osci l la t ion 
frequency is less than the local Brunt-Vaisala frequency. But another 
condi t ion which must be satisf ied states that the estimated wavelength 
must be shorter than the distance at which the mean propert ies of the 
star change s igni f icant ly . That distance can be estimated as |dr/dlnP|, 
leading to the following two conditions which must be sa t i s f i ed in the 
propagation zone 

u < N u < lNP/gpr . (4) 
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The second condition is a rough approximation and for i t s derivation, 
N2/u » 1 was assumed. 

dlnP 
Due to electron degeneracy, dlnp = r throughout most of white 

dwarf in ter io r . Thus N is small and the low order gravity modes do not 
penetrate the i n t e r i o r . This is in sharp contrast to other types of 
stars where most of the gravity modes tend to be confined to the deep 
i n t e r i o r . This property makes grav i ty modes in the white dwarfs 
part icular ly easy to exci te by any mechanism operating in the outer 
layers. 

The fact that g-modes tend to be trapped in the outer layers means 
that their frequencies should be sensitive to the envelope structure and 
part icular ly to the distr ibut ion of major elements. The gradient of the 
mean molecular weight, y, directed inward increases N. Consequently cu 
for a given mode order w i l l increase. This effect is quite dramatic, 
as i l l u s t r a t e d in Table 1 where periods of gravity modes .are compared 
fo r models with a deep H + He-rich envelope (about 10' MQ) and a 
shallow envelope (about 10" MQ). In the former case, the y-gradient 
occurs in the propagating zone, while in the la t te r i t appears in the 
evanescent zone. 

Table 1. Periods of g-modes corresponding to 1 = 1 in three white dwarf 
models with H = 0 . 6 ^ . 

lode 

gi 

g2 

g3 

g4 

Deep H + 
with log T 

126.5 

242.4 

259.5 

325.8 

He 
= 4. ,04 

Deep H + 
with log T e 

124.0 

232.8 

245.6 

316.6 

He 
= 4. ,08 

Shallow H + He 
with logT = 4.08 e 

317.2 

354.6 

410.6 

472.9 
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I t is clear that at present the theory cannot provide the re la t i on 
between period and luminosi ty for white dwarfs. The behaviour of the 
pulsation amplitude for gravity modes inside white dwarfs is somewhat 
similar to that of radial pulsation in a giant. There is a large inward 
amplitude drop in the outer evanescent zone which increases with larger 
ra t ios of 1(1 + 1) / w2. The outer edge of the propagation zone i s 
determined by the second of the conditions given in Eq. (4). Final ly, 
the location of the inner evanescent zone, where the ultimate decline in 
amplitude takes place, may be determined by either of those conditions, 
depending on value of 1. Pulsation energy is almost en t i r e l y confined 
to the propagation zone; however, most driving or damping originates 
within the outer evanescent zone. 

This p i c t u r e may be compl icated by the existence of local 
y-gradient related maxima of N, which may give r ise to local trapping of 
the modes. I f occurring close to the surface, the decrease in pulsation 
energy may promote mode dr iv ing. The onset of c r y s t a l l i z a t i o n in the 
white dwarf core may introduce fu r ther complexities by producing new 
restoring force for gravity-modes related to shear (Hansen and Van Horn, 
1979). However, this phenomenon should not affect modes trapped in the 
outer layers but rather would give rise to a new set of modes trapped in 
the deep in ter ior . 

Because their frequencies are low, gravity modes are expected to be 
s t r o n g l y a f f ec ted by r o t a t i o n even i f i t produces a neg l ig ib le 
distort ion of the star from spherical shape. The lowest order e f fec t 
which is due to the Cor io l i s force removes frequency degeneracy with 
respect to j leading to s p l i t t i n g of each frequency i n t o 21 + 1 
component d i s t r i b u t e d at equal d i s tances . These distances are 
proportional to the angular velocity of rotation and depend somewhat on 
the s t e l l a r model. Equidistant patterns such as th is have been seen in 
the periodograms of several 11 Ceti s ta rs . Estimates of ro ta t iona l 
velocity of the stars were drawn from this which turned out to be in the 
range from a few to about 30 km s"J (McGraw and Robinson, 1975; McGraw, 
1977; Chlebowski, 1978). In Fig. 1, which is taken from Chlebowski's 
paper, the relationship between increasing rotational ve loc i t y and the 
behaviour of gravity mode frequencies is shown. Terms up to the second 
order in the square of rotational frequency have been included. From 
t h i s , i t may be seen that, start ing from a rotational velocity of 
about 30 km s , there is an appreciable deviat ion from equidistant 
d istr ibut ion of the frequencies. 

The figure shows also that interpretation of equid is tant patterns 
in the periodograms in terms of rotational sp l i t t i ng is self-consistent. 
The estimate of the equatorial velocity of rotation made in th i s way is 
so fa r the only attempt to diagnose white dwarf properties with the use 
of periodograms. 

2.2. Acoustic modes 

These modes have per iods sho r te r by at least two orders of 
magnitude than the ones that are observed in 11 Ceti s ta rs . However, 
they deserve special attention because the mechanism that can drive the 
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Figure 1. S p l i t t i n g of grav i ty mode frequencies by rotation for a M = 
0.6Mg white dwarf model. Dotted l i n e s represent the 
inc lus ion of only l i near effects in rotation frequency, n . 
Positions corresponding to some ZZ Ceti stars wi th observed 
frequency sp l i t t ing indicated. 
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gravity modes is likely to drive these modes too. Moreover, it has been 
suggested by Cox, Hodson and Starrfield (1979) that "long periods 
observed can be aliases due to undersampling short period variations." 

These modes are denoted Pi, p2, .... Pn according to the number of 
nodes in the radial displacement eigenfunction. The mode that has no 
nodes is called the fundamental (f-) mode. The principal restoring 
force in this case comes from pressure perturbations. 

The dispersion relation in the present case is 

K2 = U2r2/C2 . i ( i + i ) , (5) 

where c is the velocity of sound. Arguments similar to those presented 
in the previous subsect ion lead to the f o l l o w i n g c r i t e r i a f o r 
propagation 

u > (1 + 1) c/r a) > g/c (6) 

In the case of acoustic modes, as in those previously discussed, 
there are important di f ferences between white dwarfs and giants l ike 
Cepheids. In the la t te r case there is a pronounced maximum of g/c in 
the i n t e r i o r that prevents radial pulsations (1 = 0) from propagating 
into the s t e l l a r core. In the case of white dwarfs, g/c decreases 
monotonically inward and the only modes that can be trapped in the 
envelope are the ones with high 1 as then the f i r s t of the condit ions 
given in Eq. (6) is more res t r ic t ive . 

On the other hand, higher surface grav i ty causes a much larger 
number of modes in white dwarfs that are evanescent in the outer layers. 
This is so because the frequency of a given acous t ic mode is 
proportional to R-3>2 while g is proportional to R2. White dwarfs are 
indeed almost perfect acoustic systems. 

Low order p-modes corresponding to low values of 1 show a very 
small inward decline in pulsation amplitudes. This however is not true 
for high order modes, as demonstrated by A. Cox at a l . (1979) for radial 
p u l s a t i o n and as w i l l be shown fu r the r in the present paper fo r 
nonradial o s c i l l a t i o n s . Such modes are again good candidates f o r 
excitation by Cepheid-like mechanisms. 

2.3. Toroidal modes 

The restoring force for toroidal perturbations which are completely 
horizontal and divergence free may come from Corio l is , Lorentz, or shear 
forces. 

Modes resu l t ing from the Cor io l i s force are re lated to Rossby 
waves. Their frequencies are approximately given by j n. Papaloizou 
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and Pringle (1978) s u g g e s t tha t t h e i r e x c i t a t i o n through 
Kelvin-Helmholtz instability may be responsible for variability of the 
whitedwarfs in cataclysmic binaries. The instabi l i ty mechanism is 
s t r i c t ly connected with the accretion process; thus it is not likely to 
be of relevance for single white dwarfs. 

Hansen and Van Horn (1979) calculated toroidal mode frequencies 
related to the shear in crystal l ine cores. The frequencies, though 
lower than those of acoustic modes, are higher than those observed in ZZ 
Ceti s tars . No mechanism for the exc i ta t ion of these modes was 
suggested. 

3. Vibrational instabilities 

There is a well-known formula relating the growth rate of the mode 
to the rate of heat gain perturbation, AQ, 

WI 
/AQ 1 T 
2o)2

n/ii 

AT 

rafe (7) 

where AT/T is the relative temperature perturbation (Lagrangian), MR, OJJ 
are real and imaginary parts of eigjnfrequency, Q = ep - div? whjre t is 
rate of nuclear energy generation, F is the radiative flux, and £ is the 
displacement. 

This formula shows that a layer contributes to mode driving if i t 
receives heat in the phase of high temperature and loses in the phase of 
low temperature. It shows also that driving is more rapid i f , with a 
given amplitude in the driving zone, the pulsation energy is possibly 
low. 

3.1. The opacity mechanism 

This is the mechanism that causes Cepheid pulsation. Location of 
ZZ Ceti stars on H-R diagrams suggests that it may be operating in these 
s tars too . There are three conditions for local driving by this 
mechanism. 

1. Opacity perturbation should be dominant in Adivt. This may 
happen only in an evanescent zone. In a propagation zone the 
dominant term is always term proportional to the second derivative 
of the temperature perturbation. 

2. Opacity perturbation has to increase (algebraically) outward in 
the high temperature phase. 

3. The heat diffusion time from the zone should not be much 
shorter than the pulsation period, as in such a case AdivF tends to 
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zero and the layer exerts a neutral influence on stability. 

The role of this mechanism in causing vibrational instability in 
white dwarfs was first recognized by Vauclair (1971). However, because 
he considered only low order modes, the ins tabi l i t ies he found were 
extremely slow. Much faster instabilities were found in the survey by 
Dziembowski (1977) but the modes with observed long periods were all 
found to be stable. This was so because the deepest lying driving zone 
was. the He II ionization zone; temperatures here ranged from 4-5 x 101* 
and the heat diffusion time from this zone is of the order of 10 s. 
More recent opacity data reveal that there is a driving zone at the 
temperature range 1-2 x 105; as i t was noted by Stellingwerf (1978, 
1979), this zone plays an important role in destabilizing 6 Scuti and 
possibly $ Cep-type variables. The importance of this zone was also 
noted by A. Cox et al. (1979) in their survey of radial modes in white 
dwarfs. Recently, J. P. Cox and Hansen (1979) have pointed out that the 
opacity mechanism operating in this zone is likely to drive long period 
modes because its heat diffusion time is considerably longer than that 
for the He II ionization zone. The calculations to be discussed in the 
next section confirm this. 

3.2. Other driving mechanisms 

I t has been known for some time that driving due to the 
perturbation of nuclear energy generation rates may cause vibrational 
instability in white dwarfs. In the effective temperature range typical 
for 11 Ceti stars, however, nuclear burning most likely does not occur. 
Even if i t does occur it will result in thermal rather than vibrational 
instabilities (Sienkiewicz, 1979). 

A mechanism which specifically drives g-modes has been considered 
in application to white dwarfs by Baglin (1971). It has been found by 
Kato (1966) that gravity modes may be driven in a layer where the 
temperature gradient exceeds the adiabatic val ue but where convective 
instability is prevented by the existence of a u-gradient. Baglin found 
that such a situation may occur in the white dwarf envelope as a result 
of gravitational sett l ing of helium. This mechanism, however, is not 
directly relevant to 11 Ceti stars as it operates only if the layer is 
in the propagation'zone which implies that gravity modes have to be 
associated with extremely high order spherical harmonics. 

4. Gravity and pressure modes in a white dwarf 
model — numerical results of the linear 

nonadiabatic analysis 

The model is characterized by the following parameters: M = 0.6 
M0 1°9 Te = 4.08, surface composition: X = 0.7, Z = 0.03. Smooth 
transit ion to a pure carbon-oxygen interior was assumed to occur at the 
depth between 10_l° MQ and 2 x 10'9 Me. Stellingwerf's (1975) opacity 
formula was used up to T = 2 x 105K. The results are shown in Figure 2. 
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Figure 2. Linear oscillation modes in a white dwarf model. Frequency a 
= u(4irG<p>)"1/2, Heavy lines show the locus of the modes with 
zero growth rates. Thin lines labeled with 10, 8 and 6 show 
the locus of the modes with growth rates 10"10, 10~8 and IO-6 

respectively in the same units as the frequency. 
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There is a local maximum of growth rates at a = 24 which amounts to 
5 x 10"e for 1 = 1 and 7 x 10"6 for 1 = 100 but there is no s ign i f i can t 
decrease fo r higher frequencies. Qual i tat ively, driving of these high 
order p-modes is similar to that found for radial modes by A. Cox et a l . 
(1979), as the propert ies of high-order acoustic modes depend almost 
exclusively on u and not on 1. Similar results are expected to be valid 
unt i l the optimum frequency a = 24 approaches the value corresponding to 
the fundamental mode, i . e . , 1 = 2000. 

Growth rates for gravity modes depend primarily on mode order, but 
there is also dependence on frequency. The maximum of 1.2 x 10-6 fo rge-
modes in 1 range of 4 - 7 is due almost exclusively to the driving 
region at a temperature of 1-2 x 105 K. Decline of the growth rate at 
higher frequencies is due to the increased role of the damping layer 
located above. At s t i l l higher frequencies, driving is dominated by the 
He I I ionization zone. Maximum growth rates for these modes are * 1.7 x 
10" . Partial trapping of g6-modes in the y-gradient zone contr ibutes 
to their rather high growth rate values. 

There is considerable uncertainty involved in est imating growth 
rates, but several points are signi f icant. 

1. Modes with periods in the range observed in ZZ Ceti are among 
those with the highest growth rates. 

2. Gravitational set t l ing of helium wi l l preferent ial ly enhance 
the growth rates of these modes. 

3. Lowering e f fec t i ve temperatures w i l l s h i f t the maximum of 
ins tab i l i t y toward s t i l l longer periods and lower 1-values. 

4. The ins tab i l i t y clearly selects some intermediate order of the 
mode. 

5. Nonlinear effects 

Only non l inear theory can be used to determine which of the 
l inear ly driven modes wi l l reach observable amplitudes. There are two 
types of nonlinear effects which must be considered when there are many 
modes driven with similar rates: 

1. Col lect ive saturat ion of the d r i v ing mechanism such as that 
suggested by Hi l l (1978) for solar 5 min. modes. 

2. Direct interaction between modes. 

The amplitude level at which saturat ion may be important can be 
estimated by noting that in the zone where driving occurs, part of the 
radiative f lux is absorbed and carr ied by osc i l l a t i ons to the layers 
where damping takes place. The amount of f l ux carr ied in th is way 
cannnot be more than the total luminosity, L. Actually, in Cepheids, i t 
is about 0.1 L. I f we adopt t h i s estimate and make some assumptions 
about the number of modes involved, the conclusion is that saturation is 
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probably not important until AL/L (AL is r.m.s. luminosity fluctuation) 
is of the order of 10"2. 

Direct interaction between modes occurs through quadratic terms in 
the equations for oscillations; these are "collision terms" in our 
problem. If there are such modes involved which satisfy the resonance 
condition 

(O3 - U>1 ± 0)2 

then there is an energy exchange taking place on the time sca le , T ^ , 
related to the amplitudes of the modes involved. 

The estimate of TQWI '11 be provided for two l i m i t i n g cases: 
in te rac t ion of three high order p-modes and interaction of three high 
order g-modes. In each case e x p l i c i t formulae for coupling can be 
obta ined (Dziembowski, in preparat ion) . I t should be noted that 
interaction is possible only i f 1 and j numbers of the modes satisfy the 
following conditions: 

I3 = l i + I2 + 2n where n = 1 , 2, . . . 

J3 = Jl ± J2 

Moreover, s ince we are concerned w i th high order modes, t he 
eigenfunctions are local ly approximated by the trigonometric functions: 

£ p / r = f cos * 

where * = / <d In r. Thus, for strong interact ion, we must have «3 ~ Kz 
± <1 . 

In such a case, we have the following estimate: 

C •" /4TTG<P> c„<icf> 

for p-modes, and 

TC /4TTG<P> <Kf> 

fo r g-modes, where <f is averaged over the volume of the star weighted 
with pulsational energy. 
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Inspection of the eigenfunctions obtained for the model discussed 
in the previous section gives 

« f>a R ~ 10"3AL/L 

for p-modes and also 

<Kf> - 10 " 3 AL /L 

for g-modes. 

Mode coupling becomes important when /4TTG<P> TQ =a j ; therefore, in 
both p-modes and g-modes, AL/L ~ 10"3. I t appears therefore l i ke l y that 
t h i s is the dominant nonlinear effect determining the amplitude of the 
modes. 

This conclusion is supported by the fact that many of the 11 Ceti 
variables exhibit amplitude changes occurring on the time scale of days. 
With /4TTG<P> = 0.6 s'Vrc ~ 1 day, using AL/L - 1 0 " 2 , a t y p i c a l 
luminosity amplitude for these variables. 

More re l i ab le estimates of l i near growth rates and non l i nea r 
coupling are needed to f i nd condit ions under which gravity modes may 
reach higher amplitudes than the acoustic modes. 

6. Conclusions 

In spi te of many uncer ta int ies exposed in th is review, i t seems 
jus t i f i ed to say that recent theore t ica l studies give support to the 
following assessments made at the McDonald Observatory: 

1. V a r i a b i l i t y of 11 Ceti s t a r s i s caused by grav i ty -mode 
excitation (Warner and Robinson, 1972). 

2. Exci ta t ion is caused by the opacity mechanism (McGraw and 
Robinson, 1976). 

3. Equ id i s tan t pa t te rns seen in t he pe r i odog ram are a 
manifestat ion of mode sp l i t t ing by rotation (McGraw and Robinson, 
1975). 

I t is perhaps somewhat premature to attempt to f i t observed periods 
to theoretical models, but i f the presented picture is correct then the 
prospect for using observed periods as a diagnostic tool are good. This 
is so because the modes that are l i ke l y to be excited should be gn-modes 
of the same order, imposing a ^fery r es t r i c t i ve condition on possible 
choices. 
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