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Abstract

Attention is focused on those aspects of the theory that may be
relevant in understanding the nature of ZZ Ceti-type variable white
dwarfs. Recent calculations show that the opacity mechanism can drive a
large variety of oscillation modes, including the ones that fit observed
periods. An estimate of nonlinear effects shows that resonant mode
coupling plays a dominant role in determining the finite amplitude
behaviour of oscillations and is also probably responsible for rapid
amplitude changes observed in these variables.

1. Introduction

Pulsation properties of the white dwarfs will be reviewed with the
special emphasis on those which are or may be relevant in understanding
ZZ Ceti variables. Consequently, I will have in mind rather cool stars
with effective temperatures ranging from 10,000 to 15,000 K.

The nature of the variability of these stars is still a matter of
debate. In keeping with the title of this review, only those
interpretations that postulate excitation of oscillations of some sort
will be discussed. The possibilities for using the observed periods as
a diagnostic tool for white dwarf structure will also be explored.

Puisational properties of white dwarfs are quite different from
those of the Cepheids. Thus, although the tendency exists to consider
Z1 Ceti variables as an extension of the usual pulsation instability
strip toward the Tow Tuminosity range, a simple extrapolation of results
obtained for Cepheids may be quite misleading. Numerical models of
finite amplitude development of the oscillations are probably needed to
explain phenomena that are seen in ZZ Ceti stars. These, however, are
not and probably will not be soon available. Among the problems are
lack of sufficiently detailed knowledge of the equilibrium structure of
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white dwarf envelopes, appropriate opacity data and, primarily,
difficulties in dealing with nonspherically symmetric motion of finite
amplitude.

In this situation it appears safer to rely on those conclusions
that may be reached without reference to very specific models. Thus,
this paper will address types of white dwarf oscillations and driving
mechanisms mostly utilizing asymptotic formulae and qualitative
arguments. These will be followed by presenting for the sake of
illustration results of a numerical analysis of the linear nonadiabatic
properties of a white dwarf model. Nonlinear effects leading to
pulsation amplitude limitation will then be discussed. This again will
be largely on a qualitative basis.

2. White dwarf modes of oscillation

By assuming that the star is sufficiently slowly rotating and that
the oscillations are of low amplitude, the angular dependence of
perturbations may be separated in terms of spherical harmonics,

Y1,5 (8s0) = Py 5 (cose) exp(£1i$)/1y ; (1)

where P1,j is a Legendre function and 17 j is the normalization factor.
Pulsation amplitude for nonradial oscillations (1 > Q) are therefore
understood as r.m.s. values calculated over the surface of a sphere at a
given distance, r, from the star center. It is clear that only modes
associated with low order 1 harmonics can give rise to observable
luminosity variations. With increasing 1, cancellation causes a drastic
reduction of the net luminosity amplitude. The factor is -~ 10-2 for 1 =
5 and ~ 10~ for 1 = 10.

The temporal dependence of perturbations is given by exp (iut),
where, in the case of adiabatic oscillations, w is real. Nonadiabatic
effectsgive rise to a complex part inw; the growth rate is given by
-Im{w). The equations for the r-dependent amplitudes, supplemented by
the appropriate boundary conditions, constitute a fourth order real
eigenfrequency problem in the adiabatic case and a sixth order complex
eigenfrequency problem in the nonadiabatic case.

For realistic stellar models, one needs to employ numerical methods
to obtain solutions to these problems. However, considerable insight
into the properties of various modes can be achieved by means of a
qualitative discussion of propagation properties of various waves in the
stellar interior. Examples of discussions of this type can be found in
the following papers: Scuflaire (1974), Unno (1975), Osaki (1975) and
Dziembowski (1975). The waves that give rise to stellar oscillations
propagate in some portion of the stellar interior which is called a
propagation zone; these zones are surrounded by areas called evanescent
zones where propagation is impossible. The propagation zone is
recognized by oscillatory dependence of the pulsation amplitude on r
while the evanescent zones may be identified by its monotonic decrease
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or increase. The location of these zones depends on the values of w and
].

By arguing, for instance, that the eigenfunctions corresponding to
various frequencies are mutually orthogonal, it may be seen that almost
all of the energy of oscillation is confined to the propagation zone.
The situation is quite analogous to that considered in quantum
mechanics, with propagation zones corresponding to allowed regions and
evanescent zones corresponding to prohibited regions for a given energy

. level.

2.1. Gravity modes

It was suggested by Warner and Robinson (1972) that gravity modes
are responsible for the ZZ Ceti phenomenon and this still seems the most
plausible interpretation. These modes are trapped internal gravity
waves and their principal restoring force comes from buoyancy.
Consecutive modes are denoted as g1, 92, ... g, according to the number
of nodes in the eigenfunction describing the radial displacement.

Asymptotically for short radial wavelengths, the following
dispersion relation is valid locally

k2 =101+ 1) (N /w?-1) (2)

where k is the radial component of the. wave vector multiplied by r and N
is the Brunt-Vaisala frequency. We have

T dinr ~ dinr

N2 = g_[l dinP _ d1np] (3)

where g is the local gravitational acceleration, P is pressure,p is
density and T is the adiabatic exponent. Although approximation of the
actual eigenfunctions by trigonometric functions is valid only for high
order gravity modes, the dispersion relation is always useful in
determining the approximate location of the propagation zones. It is
seéen from Eq. (2) that propagation is possible only if the oscillation
frequency is less than the local Brunt-Vaisala frequency. But another
condition which must be satisfied states that the estimated wavelength
must be shorter than the distance at which the mean properties of the
star change significantly. That distance can be estimated as |dr/dInP],
leading to the following two conditions which must be satisfied in the
propagation zone

w< N w < INP/gpr . (4)
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The iecond condition is a rough approximation and for its derivation,
N?/w® >> 1 was assumed.
d1nP

Due to electron degeneracy, dinp = T throughout most of white
dwarf interior. Thus N is small and the low order gravity modes do not
penetrate the interior. This is in sharp contrast to other types of
stars where most of the gravity modes tend to be confined to the deep
interior. This property makes gravity modes in the white dwarfs
particularly easy to excite by any mechanism operating in the outer
layers.

The fact that g-modes tend to be trapped in the outer layers means
that their frequencies should be sensitive to the envelope structure and
particularly to the distribution of major elements. The gradient of the
mean molecular weight, u, directed inward increases N. Consequently w
for a given mode order will increase. This effect is quite dramatic,
as illustrated in Table 1 where periods of gravity modeseare compared
for models with a deap H foHe-rich envelope (about 10°" M,) and a
shallow envelope (about 10~ ). In the former case, the u-gradient
occurs in the propagating zone, while in the latter it appears in the
evanescent zone.

Table 1. Periods of g-modes corresponding to 1 = 1 in three white dwarf
models with M = 0.6 M.

Mode Deep H + He Deep H + He Shallow H + He
with log Te = 4.04 with log Te = 4.08 with Tog Te = 4.08
gl 126.5 124.0 317.2
g2 242.4 232.8 354.6
g3 259.5 245.6 410.6
g4 325.8 316.6 472.9
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It is clear that at present the theory cannot provide the relation
between period and luminosity for white dwarfs. The behaviour of the
pulsation amplitude for gravity modes inside white dwarfs is somewhat
similar to that of radial pulsation in a giant. There is a large inward
amplitude drop in the outer evanescent zone which increases with larger
ratios of 1(1 + 1)/ w?. The outer edge of the propagation zone is
determined by the second of the conditions given in Eq. (4). Finally,
the location of the inner evanescent zone, where the ultimate decline in
~amplitude takes place, may be determined by either of those conditions,
depending on value of 1. Pulsation energy is almost entirely confined
to the propagation zone; however, most driving or damping originates
within the outer evanescent zone.

This picture may be complicated by the existence of local
u-gradient related maxima of N, which may give rise to local trapping of
the modes. If occurring close to the surface, the decrease in pulsation
energy may promote mode driving. The onset of crystalliization in the
white dwarf core may introduce further complexities by producing new
restoring force for gravity-modes related to shear (Hansen and Van Horn,
1979). However, this phenomenon should not affect modes trapped in the
outer Tayers but rather would give rise to a new set of modes trapped in
the deep interior.

Because their frequencies are low, gravity modes are expected to be
strongly affected by rotation even if it produces a negligible
distortion of the star from spherical shape. The lowest order effect
which is due to the Coriolis force removes frequency degeneracy with
respect to j leading to splitting of each frequency into 21 + 1
component distributed at equal distances. These distances are
proportional to the angular velocity of rotation and depend somewhat on
the stellar model. Equidistant patterns such as this have been seen in
the periodograms of several ZZ Ceti stars. Estimates of rotational
velocity of the stars were drawn from this which turned out to be in the
range from a few to about 30 km s™d (McGraw and Robinson, 1975; McGraw,
1977; Chlebowski, 1978). In Fig. 1, which is taken from Chlebowski's
paper, the relationship between increasing rotational velocity and the
behaviour of gravity mode frequencies is shown. Terms up to the second
order in the square of rotational frequency have been included. From
this, it may be seen that, starting from a rotational velocity of
about 30 km s~!, there is an appreciable deviation from equidistant
distribution of the frequencies.

The figure shows also that interpretation of equidistant patterns
in the periodograms in terms of rotational splitting is self-consistent.
The estimate of the equatorial velocity of rotation made in this way is
so far the only attempt to diagnose white dwarf properties with the use
of periodograms.

2.2. Acoustic modes

These modes have periods shorter by at least two orders of
magnitude than the ones that are observed in ZZ Ceti stars. However,
they deserve special attention because the mechanism that can drive the
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Figure 1. Splitting of gravity mode frequencies by rotation for a M =
0.6Mg white dwarf model. Dotted lines represent the
inclusion of only linear effects in rotation frequency,q.
Positions corresponding to some ZZ Ceti stars with observed
frequency splitting indicated.
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gravity modes is likely to drive these modes too. Moreover, it has been
suggested by Cox, Hodson and Starrfield (1979) that "long periods
observed can be aliases due to undersampling short period variations."

These modes are denoted Py, Py, ..., Pp according to the number of
nodes in the radial displacement eigenfunction. The mode that has no
nodes is called the fundamental (f-) mode. The principal restoring
force in this case comes from pressure perturbations.

The dispersion relation in the present case is
k2 = w?r2/c2 - 1(1 + 1), (5)

where ¢ is the velocity of sound. Arguments similar to those presented
in the previous subsection lead to the following criteria for
propagation

w2 (1+1)c¢/r w2 g/c (6)

In the case of acoustic modes, as in those previously discussed,
there are important differences between white dwarfs and giants like
Cepheids. In the latter case there is a pronounced maximum of g/c in
the interior that prevents radial pulsations (1 = 0) from propagating
into the stellar core. In the case of white dwarfs, g/c decreases
monotonically inward and the only modes that can be trapped in the
envelope are the ones with high 1 as then the first of the conditions
given in Eq. (6) is more restrictive.

On the other hand, higher surface gravity causes a much larger
number of modes in white dwarfs that are evanescent in the outer layers.
This is so becau;e the frequency of a given acoustic mode is
proportional to R-3/2 while g is proportional to R2. White dwarfs are
indeed almost perfect acoustic systems.

Low order p-modes corresponding to low values of 1 show a very
small inward decline in pulsation amplitudes. This however is not true
for high order modes, as demonstrated by A. Cox at al. (1979) for radial
pulsation and as will be shown further in the present paper for
nonradial oscillations. Such modes are again good candidates for
excitation by Cepheid-1ike mechanisms.

2.3. Toroidal modes

The restoring force for toroidal perturbations which are completely
horizontal and divergence free may come from Coriolis, Lorentz, or shear

forces.

Modes resulting from the Coriolis force are related to Rossby
waves. Their frequencies are approximately given by j Q. Papaloizou
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and Pringle (1978) suggest that their excitation through
Kelvin-Helmholtz instability may be responsible for variability of the
white dwarfs in cataclysmic binaries. The instability mechanism is
strictly connected with the accretion process; thus it is not likely to
be of relevance for single white dwarfs.

Hansen and Van Horn (1979) calculated toroidal mode frequencies
related to the shear in crystalline cores. The frequencies, though
lower than those of acoustic modes, are higher than those observed in ZZ
Ceti stars. No mechanism for the excitation of these modes was
suggested.

3. Vibrational instabilities

There is a well-known formula relating the growth rate of the mode
to the rate of heat gain perturbation, AQ,

AT} >

_ol T 43X
17 2%y 20d%% (7)

where AT/T is the relative temperature perturbat1on LagrangFan), oR,
v

are real and imaginary parts of e1g$nfrequency, = ep - divF where ¢ 1s
rate of nuclear energy generation, F is the radiative flux, and E is the
displacement.

This formula shows that a layer contributes to mode driving if it
receives heat in the phase of high temperature and loses in the phase of
low temperature. It shows also that driving is more rapid if, with a
given amplitude in the driving zone, the pulsation energy is possibly
Tow.

3.1. The opacity mechanism

This is the mechanism that causes Cepheid pulsation. Location of
ZZ Ceti stars on H-R diagrams suggests that it may be operating in these
stars too. There are three conditions for local driving by this
mechanism.

1. Opacity perturbation should be dominant in adivF. This may
happen only in an evanescent zone. In a propagation zone the
dominant term is always term proportional to the second derivative
of the temperature perturbation.

2. Opacity perturbation has to increase (algebraically) outward in
the high temperature phase.

3. The heat diffusion time from the zone should not be much
shorter than the pulsation period, as in such a case AdivF tends to
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zero and the layer exerts a neutral influence on stability.

The role of this mechanism in causing vibrational instability in
white dwarfs was first recognized by Vauclair (1971). However, because
he considered only low order modes, the instabilities he found were
extremely slow. Much faster instabilities were found in the survey by
Dziembowski (1977) but the modes with observed long periods were all
found to be stable. This was so because the deepest 1lying driving zone
was. the He II ionization zone; temperatures here ranged from 4-5 x 10"
and the heat diffusion t1me from this zone is of the order of 10 s.
More recent opacity data revea1 that there is a driving zone at the
temperature range 1-2 x 105; as it was noted by Stellingwerf (1978,
1979), this zone plays an important role in destabilizing § Scuti and
possibly g Cep-type variables. The importance of this zone was also
noted by A. Cox et al. (1979) in their survey of radial modes in white
dwarfs. Recently, J. P. Cox and Hansen (1979) have pointed out that the
opacity mechanism operating in this zone is likely to drive long period
modes because its heat diffusion time is considerably longer than that
for the He II ionization zone. The calculations to be discussed in the
next section confirm this.

3.2. Other driving mechanisms

It has been known for some time that driving due to the
perturbation of nuclear energy generation rates may cause vibrational
instability in white dwarfs. In the effective temperature range typical
for ZZ Ceti stars, however, nuclear burning most likely does not occur.
Even if it does occur it will result in thermal rather than vibrational
instabilities (Sienkiewicz, 1979).

A mechanism which spec1f1ca11y drives g-modes has been considered
in application to white dwarfs by Baglin (1971). It has been found by
Kato (1966) that gravity modes may be driven in a layer where the
temperature gradient exceeds the adiabatic value but where convective
instability is prevented by the existence of a u-gradient. Baglin found
that such a situation may occur in the white dwarf envelope as a result
of gravitational settling of helium. This mechanism, however, is not
directly relevant to ZZ Ceti stars as it operates only if the layer is
in the propagation zone which implies that gravity modes have to be
associated with extremely high order spherical harmonics.

4. Gravity and pressure modes in a white dwarf
model -- numerical results of the linear
nonadiabatic analysis

The model is characterized by the following parameters: M = 0.6
Mg log T, = 4.08, surface composition: X = 0.7, Z = 0.03. Smooth
thansitidn to a pure carbon- oxygen interior was assumed to occur at the
depth between 10°! 10 M, and 2 x 1079 Me. Stellingwerf's (1975) opacity
formula was used up t T =2 x 10°K. The results are shown in Figure 2.
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Figure 2. Linear oscillation modes in a white dwarf model. Frequency o
= w(4nG<p>)~1/2, Heavy lines show the locus of the modes with
zero growth rates. Thin lines labeled with 10, 8 and 6 show
the locus of the modes with growth rates 10-10, 10-8 and 10-6
respectively in the same units as the frequency.
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Th%re is a local maximum of growth rates at o = 24 which amounts to
5x 10=° for 1 =1 and 7 x 10-® for 1 = 100 but there is no significant
decrease for higher frequencies. Qualitatively, driving of these high
order p-modes is similar to that found for radial modes by A. Cox et al.
(1979), as the properties of high-order acoustic modes depend almost
exclusively on w and not on 1. Similar results are expected to be valid
until the optimum frequency o = 24 approaches the value corresponding to
the fundamental mode, i.e., 1 = 2000.

Growth rates for gravity modes depend primarily on mode order, but
there is also dependence on frequency. The maximum of 1.2 x 10-6 for g5-
modes in 1 range of 4 - 7 is due almost exclusively to the driving
region at a temperature of 1-2 x 10° K. Decline of the growth rate at
higher frequencies is due to the increased role of the damping layer
located above. At still higher frequencies, driving is dominated by the
He_éI ionization zone. Maximum growth rates for these modes are ~ 1.7 x
10 Partial trapping of ge-modes in the u-gradient zone contributes
to their rather high growth rate values.

There is considerable uncertainty involved in estimating growth
rates, but several points are significant.

1. Modes with periods in the range observed in ZZ Ceti are among
those with the highest growth rates.

2. Gravitational settling of helium will preferentially enhance
the growth rates of these modes.

3. Lowering effective temperatures will shift the maximum of
instability toward still longer periods and lower 1-values.

4. The instability clearly selects some intermediate order of the
mode.

5. Nonlinear effects

Only nonlinear theory can be used to determine which of the
linearly driven modes will reach observable amplitudes. There are two
types of nonlinear effects which must be considered when there are many
modes driven with similar rates:

1. Collective saturation of the driving mechanism such as that
suggested by Hill (1978) for solar 5 min. modes.

2. Direct interaction between modes.

The amplitude level at which saturation may be important can be
estimated by noting that in the zone where driving occurs, part of the
radiative flux is absorbed and carried by oscillations to the layers
where damping takes place. The amount of flux carried in this way
cannnot be more than the total luminosity, L. Actually, in Cepheids, it
is about 0.1 L. If we adopt this estimate and make some assumptions
about the number of modes involved, the conclusion is that saturation is
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probably not important until AL/L (AL is r.m.s. luminosity fluctuation)
is of the order of 10~ 2.

Direct interaction between modes occurs through quadratic terms in
the equations for oscillations; these are "collision terms" in our
problem. If there are such modes involved which satisfy the resonance
condition

w3 * wy t w

then there is an energy exchange taking place on the time scale, Tes
related to the amplitudes of the modes involved.

The estimate of T will be provided for two limiting cases:
interaction of three high order p-modes and interaction of three high
order g-modes. In each case explicit formulae for coupling can be
obtained (Dziembowski, in preparation). It should be noted that
interaction is possible only if 1 and j numbers of the modes satisfy the
following conditions:

13

1, +1, +2n where n =1, 2, ...
J3 = J1 % j2

Moreovar, since we are concerned with high order modes, the
eigenfunctions are locally approximated by the trigonometric functions:

E./r = f cos ¢
where ¢ =/ kd In r. Thus, for strong interaction, we must have x3 ¥ k3

t Ki.

In such a case, we have the following estimate:

T 1 1
C ~ Y4nG<p> OR<Kf>

for p-modes, and

S W
TC  VanG<p> <P>

for g-modes, where kf is averaged over the volume of the star weighted
with pulsational energy.
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Inspection of the eigenfunctions obtained for the model discussed
in the previous section gives

<Kf>0R ~ 1073aL/L
for p-modes and also
<«f> ~ 1073aL/L

for g-modes.

Mode coupling becomes important when vZnG<{p> therefore, in
both p- -modes and g-modes, aL/L ~ 1073. It appears(%herefore likely that
this is the dominant nonlinear effect determining the amplitude of the
modes .

This conclusion is supported by the fact that many of the ZZ Ceti
variables exh1b1t amp11tude changes occurr1ng on the time scale of days.
With /EnG<p> = 0.6 S"t¢c ~ 1 day, using aAL/L - 1072, a typical
Tuminosity amp11tude for these variables.

More reliable estimates of linear growth rates and nonlinear

coupling are needed to find conditions under which gravity modes may
reach higher amplitudes than the acoustic modes.

6. Conclusions

In spite of many uncertainties exposed in this review, it seems
justified to say that recent theoretical studies give support to the
following assessments made at the McDonald Observatory:

1. Variability of ZZ Ceti stars is caused by gravity-mode
excitation (Warner and Robinson, 1972).

2. Excitation is caused by the opacity mechanism (McGraw and
Robinson, 1976).

3. Equidistant patterns seen in the periodogram are a
manifestation of mode splitting by rotation (McGraw and Robinson,
1975).

It is perhaps somewhat premature to attempt to fit observed periods
to theoretical models, but if the presented picture is correct then the
prospect for using observed periods as a diagnostic tool are good. This
is so because the modes that are likely to be excited should be g,-modes
o; the same order, imposing a very restrictive condition on possible
choices.
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