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TRUNCATED EULER SYSTEMS OVER IMAGINARY
QUADRATIC FIELDS
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Abstract. Let K be an imaginary quadratic field and let F' be an abelian
extension of K. It is known that the order of the class group Clg of F' is equal
to the order of the quotient Ur/Elr of the group of global units Ur by the
group of elliptic units FElr of F. We introduce a filtration on Ur/Elr made
from the so-called truncated Euler systems and conjecture that the associated
graded module is isomorphic, as a Galois module, to the class group. We
provide evidence for the conjecture using Iwasawa theory.

81. Introduction

Let F' be a number field and Op the ring of integers of F'. The ideal
class group Clp of F' is related with various subgroups of the global units
Up = O of F. Among the most fundamental subgroups are the circular
units, the elliptic units, and the modular units of F. When F' is an abelian
field, Sinnott formulated the class number formulas of F' after Kummer,
Hasse, and Iwasawa (cf. [20] and [21]). For the case of the elliptic units,
let F/Q be an abelian extension containing a quadratic imaginary field K.
The argument of the Euler system of Rubin provides us a way to reformu-
late these units as higher special units coming from the so-called truncated
Euler systems of F' (cf. [9], [13], [14], [15] and [22]). In this paper, p always
denotes an odd prime. In [19], we introduced a filtration to Ur made from
the truncated Euler systems having the circular units as the last term and
conjectured that the associated graded module is isomorphic, as a Galois
module, to the class group of F' when F' is a real abelian field. We will
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extend the conjecture above to an arbitrary abelian extension of an imag-
inary quadratic field with elliptic units. Namely, we introduce a filtration
to Ur made from the truncated Euler systems having the elliptic units as
the last term and conjecture that the associated graded module is isomor-
phic, as a Galois module, to the class group of F' when F' is an abelian
extension of an imaginary quadratic field. For any subgroup A of Up, the
profinite p-completion liLnA JAP" of A can be identified with A ® Zy. Since
the Leopoldt’s conjecture is true for our abelian fields, this will be also
identified with the topological closure of A inside the group of local units of
Fog Ky, = HSBh: Fi, which are congruent one modulo the primes above p
via the natural diagonal embedding F' — H%‘p Fy.

In Section 2, we will formulate a conjecture on the structure of the ideal
class group by using higher special units. This is an analogue of the real
abelian extension (cf. [19]). Let S} /K denote the higher special units of

depth » > 1 and S% K= Ur. For a finite abelian group A we denote by

A®) the p-Sylow subgroup of A. For each natural number n, let g, (Sr/K)

denote the quotient S} / [1< / Sk K of the two consecutive higher special units.

We define gr(S%/)K) to be the direct sum

S%/K @gr SF/K

n>1

For a Galois extension L/K, write G(L/K) for its Galois group. Now
we suppose that p does not divide the extension degree [F' : K]. On the
structure of the ideal class group of F', we give the following conjecture.

CONJECTURE. Ifp 1t [F : K|, then Clgf) ~ or(S)

F/K) as Zp|G(F/K)]-
modules.

Let Z be the set of all irreducible Z,-representations of G(F/K). For
each x € &, let eX denote the y-idempotent

X=1/[F:K] Y  Tr(x(o))o"
c€G(F/K)

where Tr is the trace map from Z,[image(x)] to Z,. For each Z[G(F/K)]-
module M of finite type and x € Z, we let MX denote the y-component
eX(M ® Zyp) of M ®Z,. Let grn(S;S/K) = SZ/;(X/SF/K and gr(Sf,/K) =
D51 80, Sk / ). The conjecture above can be formulated in terms of x.
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CONJECTUREX. Ifpt[F : K|, then for each x € 2, CI}, = gr(SI?/K)
as Zyp|G(F/K)|X-modules.

We denote by p* the exponent of gri(S;i/K). Let dim(x) =
(Qp(image(x)) : Qp) denote the dimension of x. Notice that gri(S;‘,/K)

is isomorphic to (Z/p*Z)4™(X)  As evidence for the conjecture, we give the
following theorem.

THEOREM 1.1. Let F be an abelian extension of an imaginary quad-
ratic field K and p be an odd prime such that p 1 [F : K|. Fiz x € E.
Let CIf. = @le(Z/p”Z)dim(X) with 0 # rp, < .-+ < ri. Then we have

Soiari <>t s forl<a<kand Ele r; = Ele S;.

We now compare two conjectures using the class field theory. Suppose
now that F' is an abelian extension of QQ containing an imaginary quadratic
field K. Let F* denote the maximal real subfield of F'. Then we have the

following conjecture as was introduced in [19].

CoNJECTURET. If p t [F : K], then Clﬁfi = gr(Sfﬁ/Q) as
Zy|G(F* /Q)]-modules.

Let Hr and Hp+ denote respectively the Hilbert class fields of F' and
F*. Let Ny = Np+p denote the norm map from F to F*. Since Hp+ and
F are linearly disjoint over F'", we have the following surjection

res

G(Hp/F) 5" G(Hps [F*) —0

where resy . denotes the restriction map from G(Hr/F) to G(Hp+/F¥).
Since the Artin symbol satisfies resy (p,Hp/F) = (Nyp,Hp+ /FT), we
have the following commutative diagram.

0 — Ker(Ny) — Clp — Clp+ — 0

1 Lo
0 — G(Hp/Hp+F) — G(Hp/F) —5% G(Hp+/FT) — 0

Since all the fields are abelian over Q, the norm Ny is a Galois equivariant
map. Note also that F' = FTK and F* and K are linearly disjoint over Q.
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Hence, by applying the norm N, to CONJECTURE, we have if p t [F : K],
then as Z,[G(F/K)] = Z,|G(F* /Q)]-modules

Clgfl = N+(gr(5§f/)K)) = gr(NJr(SEf/)K)).

Combining this with CONJECTURE™ above, presumably, we have the fol-
lowing isomorphism

(1) ar, SE) 1o = Ny gr, (Spy) @)
for all n > 0. Thus, CONJECTURE implies essentially CONJECTURE™,
(1) + CONJECTURE = CONJECTURE™,

Over the cyclotomic Z,-extension Fipo = ;2 o Fy, of F, we let El,, denote
the elliptic units of F),, and El,, denote the inverse limits of the profinite
p-completion of El, with respect to the norm maps. We will use similar
notations for various Galois modules. Let A denote the Iwasawa algebra as
defined in page 5 of the next section. Let char(M) denote the characteristic
ideal of the finitely generated torsion Iwasawa A-module M. For a finite
abelian group A, we define the p-rank rk,(A) to be,

rk,(A) = dimg 7z A @ Z/pZ.

Let Cl,, denote the ideal class group of F,, and let w = wp denote the
maximum of rky(Cl,) as n varies, which is a well-defined invariant of F//K
from a theorem of Ferrero-Washington.

THEOREM 1.2. Suppose p t [F : K]. Then for all i > w, the main

conjecture implies
char (S o/ Elos) = 1.

Moreover, if for all sufficiently large m > n > 0, N, /i, induces an epi-
morphism over {S%m/K ® Zp}mso then

(St i/ Eln) © Zp =1
foralln >0 and i > w.

In the following theorems, we allow F' to be any abelian field, real or
imaginary. Let C,, denote the group of cyclotomic units of F;, in the sense
of Sinnott (cf. [20], [21]). Finally, let Co, denote the inverse limit of C,, with
respect to the norm maps.
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THEOREM 1.3. Let F' be an abelian extension of Q such that p{ [F : Q]
and 1 > w. Then

char(S}/Q’oo/Coo) =1.

Let I (# p) be a fixed prime which is prime to [F' : Q] and let F, j =
Uy Fnis denote the cyclotomic Z;-extension of the field F,.

COROLLARY 1.4. If for all sufficiently large m > n > 0, N, /f, in-
duces an epimorphism over {Sjgm/Q ® Zptmso then (S}R/Q/Cn) ®Zy, =1
for alln > 0 and i > w. Moreover, if for all sufficiently large s > t > 0,
NFn,lS/Fn’[t induces an epimorphism over {S}"n,zs ® Zi}sso then Cp @ Zy is
equal to SJZ:%/Q ® 7.

Acknowledgement. We would like to thank the referee for his helpful
comments and suggestions.

§2. Truncated Euler systems over imaginary quadratic fields

We briefly introduce truncated Euler systems of fixed depth r. In this
and the next sections, let F' be an abelian extension of K containing the
Hilbert class field of K and M the maximum of the squares of the cardi-
nalities of the x-ideal class groups Cl}g over all x € 2. From now on, we fix
a prime p which is prime to [F' : K]. Let I}, KM be the set of square-free
integral fractional ideals a of K, such that each prime [ dividing a has an
absolute degree of one and splits completely in F', Ng/o(l) =1 (mod M),
and the number of primes dividing a is less than or equal to r. Moreover,
if F'is an abelian extension of the rational field @, then we delete the finite
set of primes dividing the conductor of F. For each prime ideal [ of K, let
K(I) denote the ray class field of K modulo [. Then we have the following
lemma.

LEMMA 2.1 (= Lemma 1.1 of [14]). Suppose [ € Ty ) /. There is a
unique extension F(l) of F of degree M in FK(I). Furthermore, F()/F is
cyclic, totally ramified at all primes above [, and unramified at all primes
not dividing [.

Let F(a) be the composite of F([) over all prime divisors [ of a. For an

integral ideal b of K, let I, /K, 17(b) be the set of all integral ideals a of I7, KM
such that ais prime to b. Let Sf,/KM(b) be the set of maps ¢ from It ,(b)
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to a fixed algebraic closure F2!8, such that for each m,n € I/, /1,0 (B) with
nfm, ¢p(m) € F(m),

Ni(my (o (m) = () Toimpta(Frobe =1

and v (nl) is congruent to ¢ (n) N/e(=HD/M yodulo primes over [, whenever
n is prime to [. These conditions will be called product and congruence
conditions, respectively. For the fixed power M of p, we define truncated
Euler systems €7,y of depth 7 to be the disjoint union R /K, 1 (0) of
5};/K(b) over all ideals b of Q. Often, we will denote 5};/K’M by 5};/1( by
omitting the subscript M. We define the higher special units 7 K of depth
r to be

wrie = (W(Ok) | ¥ € E e ar) N Uk
As in the introduction, let gr,(SF/k) denote the quotient SZ/Il(/S?,/K of

the consecutive higher special units and gr(S%/)K) the direct sum

SJ(LVZ‘)/K @gr (Sr/x)®

n>1

Notice that for all n, gr,(Sg, #)® is finite and its order is bounded by the
p-part of class number of F. Since p is prime to [F' : K| and elliptic units
are contained in the higher special units of all depths (cf. Proposition 3.1),
this follows from the class number formula of elliptic units (cf. Theorem 1.3
of [14]). We are ready to give our conjecture.

CONJECTURE. Ifpt[F : K|, then Clg’) ~ or(S%)

F/K) as ZP[G(F/K)]'

modules.

This conjecture is an analogue of the conjecture in [19] for an imaginary
quadratic field. If Up and gjp /K denote respectively the natural images of
Ur and S%/K in @FX/(FX)Z’”, then the free part (Ujp)p of Uy is a free
Zp|G(F/K)]X-module of rank one. Since Z,[G(F/K)]X is a free Z,-module
of rank dim(y), we have the following isomorphisms,

(Ur /S = U/ (STpyx0)ie = @/pD)GF/K)X = (Z/p 2) )

for some ¢e;. As defined in the introduction, p% denotes the exponent of the
quotient of the higher special units (S}/}(/SF/K) ,and f; = s; dim(y). We
need the following proposition.
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PROPOSITION 2.2. If A; is any subgroup of Clr(x) generated by i-
elements, then #(A;) | #(Ug/S?;K) = p2i=1Pi

Proof. It follows from the same argument of Proposition 2.2 of [19]. []

THEOREM 2.3. Let F be an abelian extension of an imaginary quad-
ratic field K and p be an odd prime such that p 1 [F : K|. Fiz x € Z.
Let C1% = @F (2/pr2)3™0) with 0 # 7, < --- < r1. Then we have

i <Yy sifor1<a<kand Y ri = Y0 s

Proof. Tt follows similarly from Proposition 2.2 above, Theorem 3.2 of
[14] and Theorem 2.5 of [19]. U

Let F, = UZO:O F, D --- D F1 D Fy be the cyclotomic Z,-extension of
Fy = F with [F, : F] = p™. Note that F, is an abelian extension of Q.
The group G(Fx/K) has a direct decomposition G(Foo/K) = G(Fx/F) X
G(F/K) into the p-part G(F/F) and the prime to p-part G(Fy/K). Let
I'=G(Fx/F). Let R = lim Z,|G(F,/K)] be the completed group ring of
Zp|G(Fs /K)]. We have R = A[G(F/K)], where

A = Z,[[T]] = lim Z,[0/T,]

and T',, = I'"" is the unique subgroup of T' of index p™. A pseudo-isomor-
phism of A-modules is a map with finite kernel and cokernel. It follows
from the structure theorem of finitely generated torsion A-modules that
every finitely generated torsion A-module Y is pseudo-isomorphic to

HA/fiA-

The characteristic ideal char(Y') of Y is the ideal (][] f;)A which is a well-
defined invariant of Y. In order to define the inverse limit S} /K 00 of the
higher special units S%n /K ® Zy, we need to define a certain map from the
Euler systems &} /K to the Euler systems &}, ., where L/F is a totally
ramified extension at a prime over p and L/Q is an abelian extension.

Remark. Notice that the primes of K which splits completely in F/K
need not splits completely in L/K. However, the Chebotarev density the-
orem guarantees an existence of infinitely many primes [ in each element
of the ideal class group of F' such that [ splits completely in L/K and the
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method of Theorem 3.1 of [13] or Theorem 3.1 of [14] works well. In the
argument to follow, in order to define Euler systems in the image of WL/X
we will use the new set i;ﬂ /k,m of integral ideals which are divisible by these
primes, i.e., the subset of I, KM integral ideals whose prime divisors are
splits completely in L/K. We will use the same notations for these Euler
systems defined over TTF /K,m as those defined over I KM

Based on the remark above, we define the map X/ : E/K — ;;/K to
be
ULE () (n) = Ny pme(n)
for each o € 52/1{‘ We write apor for \IIL/F(a). In this setting, we have the
following proposition.

PROPOSITION 2.4. Let L/F be a totally ramified extension at a prime
over p and L/Q is an abelian extension. Then the map QL/E defined above
s well defined.

Proof. For each pair of ideals n | m which are prime to p, we have the
following field diagram which is linearly disjoint.

L(m)
F(m) L(n)
F(n)
By applying the norm map Np,m)/L(n) 10 Qmor(M) = Np(m)/p@m)a(m), we

have

N (m)/F(n)0nor (M) = Nr(n)/(0) NL(m)/L(n) (M)

= NL(n)/F(n)a(n)nl‘m»[T“(FrOb[_l)

(n)l—lum,wn(FrObt—l)‘

= COpor
Hence, we have

N (m)/F(n)0nor (M) = Omor (n)H”m‘[T“(Fmb[_l) :

The congruence conditions can be obtained by a similar method.

anor(n[) == NL(n[)/F(n[)Oé(n[) = NL(n[)/F(n[)a(n)(NK/Q([)_l)/M

- NL(n)/F(n)a(n)(NK/@(I)—l)/M

= Qpor (n)(NK/Q([)—l)/M_
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modulo primes over [. This completes the proof. 0

Notice that aner(Ok) = Np/ga(Ok). Hence, Proposition 2.4 induces
a natural norm map between the higher special units 57 /K and ST, /K

COROLLARY 2.5. Let L/F be a totally ramified extension at a prime
over p and let L/Q be an abelian extension. Then the norm map Nk from
SZ/K to S};/K 1s well defined.

Applying Corollary 2.5 to various subfields F},, we denote by
S%‘/K,oo = lim S%H/K ® Ly

the inverse limits of the higher special units S%n /K ® 2y, of F, of depth ¢
with respect to the norm maps. In Section 3 we will consider the case when
the base field K is an imaginary quadratic field, and in Section 4 the case
when the base field K is the rational field.

83. The higher special units over an imaginary quadratic field

We briefly recall the definition of elliptic units after [3], [5], and [14].
Fix an embedding of the algebraic closure K8 of K into the complex field
C and let L C C be the period of some elliptic curve defined over the Hilbert
class field Hg of K with complex multiplication by Of. For an integral
ideal g of K prime to 6, a meromorphic function Oy is defined as follows.

N(g)\ 1/12
oz = (k) 0 - st

where A is the Ramanujan A-function, p(z; L) is the Weierstrass p-function
for the lattice L, and the product is taken over representatives of the nonzero
classes u in (g7'L/L)/ + 1. For this function ©¢(z;g), an Euler system
Qrg € EQ/K’M(fg) (cf. Section 1 of [14]) is defined as follows.

ar,g(a) = Npg(fa)/F(a)©0 (T + Z Ty 9)
lla
where z( is an element of C/L of order exactly [ for each [ € I} KM fis

an integral ideal of K such that the natural map O — Ok /f is injective,
7 € C/L is an element of order exactly f, and g is an integral ideal of K
prime to 6f. Let Er be the group generated over Z|G(F/K)] by ar g(O )7 !
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where 7,g is as above and 0 € G(F/K). We denote the group of all roots
of unity in F' by u(F'). The group of elliptic units Elr is defined as follows.

Elp = u(F)Ep.

In the following proposition, we need to find an element in the truncated
Euler systems &7 JEM whose value at O is a given elliptic unit and hence
the elliptic units are contained in the higher special units of an arbitrary
depth.

ProrosiTION 3.1. If u € Elp, then for every M there is an element
o € Epype y such that a(Ok) = u.

Proof. This follows immediately from Proposition 1.2 of [14] since the
Euler systems are contained in the truncated Euler systems. 0

We let Uy, El,, C, denote respectively the global units U, , the elliptic
units Ur, and the circular units Cr, of F,,. Let Cl, denote the ideal class
group Clg, of F,,. We denote by

U =limU, ®Z, and El =limEl, ® Z,

the inverse limits of U,, ® Z, and El,, ® Z, with respect to the norm maps
respectively. Finally, let Cl,, = liﬂlCln ® Zyp be the inverse limit of the
p-part of the ideal class groups of F},. The set {El,, ® Zy}nen is said to have
the Galois descent property if Elﬁ(Fm/F")/Eln ® Zyp =1 for all m > n. Let
rn, be the exact power of p dividing #(Cl,). In this case, there exist well
known invariants, Iwasawa invariants, A, i, and v such that

rn=An+up" +v

for all sufficiently large values of n. On the Iwasawa p-invariant, we need
the following theorem of Ferrero-Washington, whose proof is similar to that
of Theorem 4.4 (cf. [4]).

THEOREM 3.2. (Ferrero-Washington) Let L be an abelian extension of
Q, let p be any prime, and let Loo/L be the cyclotomic Zy-extension of L.
Then the Iwasawa p-invariant is zero.
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From Theorem 3.2 above, the p-rank rk, Cl,,, which is the number of di-
rect summands of p-power order when Cl,, is decomposed into cyclic groups
of prime power order, is bounded independently of n. As in the introduc-
tion, let w = wp be the maximum of rk, Cl, as n varies. Notice that
the main conjectures of Iwasawa theory for imaginary quadratic fields are
proved by Rubin using methods of Euler systems and Iwasawa theory when
p splits in K and under some conditions when p does not split. (cf. Theo-
rem 4.1 of [14]). For the second case, we refer the reader to a preprint of
Johnson-Leung and Kings (cf. [7]). We have the following theorem.

THEOREM 3.3. Suppose p t [F' : K]. Then for all i > w, the main
conjecture implies
char(S}/Kvoo/Eloo) = 1.

Moreover, if for all sufficiently large m > n > 0, Np, /r, induces an epi-
morphism over {S%W/K ® Zp }ms>0 then

(SE, i/ Eln) @ Zpy =1
for alln >0 and i > w.

Proof. Notice that since p divides [F,, : K], we can not apply the
argument of the Euler system to conclude El, ® Z, = S%n /K ® Zy. The
main conjecture of an imaginary quadratic field indicates

char(Cly) = char(Us /Elx)-
The argument of the Euler system of Rubin (cf. [14]) yields, for all i > w,
char(Cly) = char(Uoo/S%/Km).

From the two equations above and the multiplicative property of the char-
acteristic ideals in a short exact sequence, we derive

char(S}/Kvoo/Eloo) = 1.

If for all sufficiently large m > n > 0, N, /f, induces an epimorphism over
{S}M/K ® Zp ym>0, then S%n/K/Eln ®Zy =1, for all n > 0 and i > w since

% /K 00 /Els has no finite A-submodules. i

https://doi.org/10.1017/5S0027763000009727 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000009727

108 S. SEO

84. The higher special units over the rational field

In this section, we suppose that the ground field K is the rational field.
Using the same construction of Proposition 2.4, we can define the inverse
limit S%/Q,oo = @S%H/Q ® 2y of th(? higher special units S%n/Q®ZP coming
from the truncated Euler systems &, /0" The following theorem is a natural
generalization of Theorem 2.3 of [17] to arbitrary abelian extensions. In
1bid, we covered only for the case when F' is the cyclotomic field. The proof
follows in the same way as that for Theorem 3.3, and Theorem 2.3 of ibid.
We will leave the proof to the reader.

THEOREM 4.1. Let F' be an abelian extension of Q such that p{ [F : Q]
and i > w. Then

char(S}/Q’oo/Coo) =1.

In general, the Galois descent property for the circular units over the
cyclotomic Zjy,-extension fails. However, the following result due to Belliard
will be enough for our purpose.

LEMMA 4.2. (Belliard) Let F be a real abelian field and p 1 [F : Q).
Then {Cp }nen satisfies the Galois descent property over the cyclotomic Zy-
extension Foo = |J Fy,.

Proof. See [1] and [18]. 0

LEMMA 4.3. Under the same conditions of Theorem 4.1, {Cp, ® Zp }nen
satisfies the Galois descent property, i.e., (Cp, ® Zp)G(Fm/F”) =Cp ® Zy for
all m > n.

Proof. When F is real, the Galois descent property holds from Lemma
4.2. If F is imaginary, then Fj, is a quadratic extension of its maximal real
subfield F). Let Ny denote the norm map from F), to F,\. Fix m > n > 0.

N
From the exact sequence, 0 — u(Fp,) — Cpm —> N4 (Cm) — 0, we obtain
the following diagram of a long exact sequence,

0—pp(F) —  Ca®Z,  —5CreZy,— 0

l | |

0 — pp(Fp) — (Cp @ Zp)CFmIFn) — C @ 7y — HY(G(Fr/ Fr), pip(Fi))
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where yi,(Fy,) = p(F,) ® Zy. Since G(Fy,/Fy,) is cyclic, we have
#(H (G(Fn/Fn), pip(F)) = #(H(G(Fpn / Fo), pp(Fin)) = 1.
Hence we have, for all m > n,
(Crn ©Z,) /) = C, @ 2,
which is what we wanted to show. [

In the following corollary, we fix a prime [ (# p) which is prime to
[F: Q] and let F), joo = (J, Fy,s denote the cyclotomic Zj-extension of the
field F,,.

COROLLARY 4.4. If for all sufficiently large m > n > 0, Ng, /g, in-
duces an epimorphism over {S%m/(@ ® Zptmso then (5%, /0/Cn) © Zy = 1
for allm > 0 and i > w. Moreover, if for all sufficiently large s > t > 0,
NF, o/, , induces an epimorphism over {S}n s ® Zi}sso then Cp, ® Zy is
equal to S}R/Q ® 7.

Proof. From Theorem 4.1 and Lemma 4.3, the p-primary parts of the
indices (S};n o i Cn) are trivial since St 0.00/Coc has no nontrivial finite
A-submodules. We claim that the [-primary parts of the indices are also

trivial whenever [ { [F : Q]. This follows from the following observation of
the cyclotomic Zj-extension F,, jo = J, F), s of the field F,.

s By
Z} /Fn,ls
Fy

N
F

For the higher special units S% 15/Q and the circular units C, ;s of F, ;s, we
obtain the same result that 7

(SFy 10 j0/Cris) ® Zy = 1

for all such s > 0, as in Theorem 3.3, since [ does not divide the degree of
the extension of the ground field F), o = F,, over Q. From Lemma 4.3, we
have the following exact sequence,

0 — (Sk, j0/Cn) ® Zy — (Sjpn,ls 10/Cnis) © Zy = 1.

Hence, if I 1 [F : Q], C,, ® Z; is equal to Sﬁ%/@ ® 7. 0
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