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1. All operators considered in this paper are bounded operators on a Hilbert space. In
case 4 and B are self-adjoint, certain conditions on 4, B and their difference

H=A-B, «.cccooooniiiiiiiiiiiii e (1)
assuring the unitary equivalence of 4 and B,
B = U*AU, ....coocoiiiiiiiiiniiiiinn i, (2)

have recently been obtained by Rosenblum [6] and Kato [2]. The present paper will consider
the problem of investigating consequences of an assumed relation of type (2) for some unitary
U together with an additional hypothesis that the difference H of (1) be non-negative, so that

H=A-B20. oo, (3)

First, it is easy to see that if only (2) and (3) are assumed, thereby allowing H = 0,
relation (2) can hold for A arbitrary with U = I (identity) and B = A. If H = 0in (3) is
not allowed, however (an impossible assumption in the finite dimensional case, incidentally,
since then the trace of H is zero and hence H = 0), it will be shown, among other things, that
any unitary operator U for which (2) and (3) hold must have a spectrum with a positive mea-
sure (as a consequence of (i) of Theorem 2 below). Moreover 4 (hence B) cannot differ from a
completely continuous operator by a constant multiple of the identity (Theorem 1). In case
0 is not in the point spectrum of H, then U is even absolutely continuous (see (iv) of Theorem
2). In §4, applications to semi-normal operators will be given.

Let U be any unitary operator with the spectral resolution

U=fe""dE’(z\) (f - J'o"> ................................. 4)

Let {e*}, 0 << A,, < 27, denote the point spectrum (if any) of U and put
E) = BN - S {B(h+0)-E(},-0)).
<

"

Then the E,(A) are projections and one can write
U=ZeMm[EA,+0)-E(A,-0)]+ fe“ dE (A),
n

where the integral (if present) represents the continuous component of U. In case this com-
ponent is present and if (£, (A)z, y) is absolutely continuous for all z, y, that is, if JZdEc(A) =0
for every zero set Z, then this component will be called absolutely continuous. The operator
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U itself will be called absolutely continuous if it has no point spectrum and if its continuous
component is absolutely continuous.
Since 4 - U*AU can be expressed as U(U*A4) —(U*A)U, the commutator of U and U*4,
relations (2) and (3), that is,
O H=A-U*AU, ..cco.oeeiiiiiiiiiiiniiiiniin e, (5)

imply, as was shown in [3], that
H f () = 0, oo (6)
z
where Z denotes an arbitrary zero set.

2. Relation (6) will be used to prove

THEOREM 1. Suppose that the self-adjoint operators A and B satisfy (2) and (3) and let
8 = 8(4) denote the difference of the maximum and mintmum points of the essential spectrum of
A. Then

JH IS 85 cerenerenierieieeenee e (7)
in particular, if A differs from a completely continuous operator by a constant multiple of the iden-
tity, then H = 0.

Here, || C || isdefined by || C || = sup || Cz ||, where || z || = 1, and the essential spectrum
of C is the set of cluster points, including points of the point spectrum of infinite multiplicity,
of the spectrum of C. Incidentally, since, as was remarked above, H = 0 can hold for finite
matrices only if H = 0, it can always be supposed that the basic Hilbert space is infinite
dimensional, in which case any self-adjoint operator necessarily has a non-empty essential

spectrum.
Proof of Theorem 1. Let A, denote the maximum point in the essential spectrum of 4 and
denote the eigenvalues of A (if any) greater than A, by A, > A, > ... . If , is any eigenfunc-

tion of U*AU belonging to A, then, by (5),

0 < (Hzy, ) = (Azy, 7)) - A (7, 2,) <O
and so (Az, z;) = A, (2, 2;). Hence0 = (NI - A)tx, = (Al - 4)z, and so z, is an eigenfunc-
tion of 4 belonging to A;. Since A; belongs to the spectra of 4 and U*AU with the
same (finite) multiplicity, it follows that the eigenfunctions of 4 and U*AU belonging
to A, are identical, On treating successively A,, Ag, ... in a similar manner, it follows that the
eigenfunctions of 4 and U*4U for each of the numbers A, are identical.

Let p; < pg < ... denote the eigenvalues of A4 (if any) less than the least point g, of the
essential spectrum of 4. If , is an eigenfunction of 4 belonging to u,, then one has

0 < (Hyy, 1) = mlyy, 91) = (U*AUy,, 1) < 0
hence (U*AUy,, ;) = p1 (¥, ¥,), and so y, must be an eigenfunction of U*AU belonging to
pi- As before, it follows that the eigenfunctions of 4 and UA*U belonging to eigenvalues p,,
less than y, are identical.

It is now easy to complete the proof of the theorem. For if = is any element of Hilbert
space, it can be written as = z +w, where z is the projection of = on the space spanned by
the eigenfunctions of 4 belonging to eigenvalues outside the interval py << A < Ajand wis in
the orthogonal complement. Clearly Hz = 0 and hence

(Hz, ©) = (Hw, w) = (Aw, w) - (U*4Uw, w) < (Ao —pro) || w |2 < (g —pso) || z |-
Relation (7) follows and the proof of Theorem 1 is complete.
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3. THEOREM 2. Suppose that the self-adjoint operators A and B satisfy (2) and (3) and
let N denote the multiplicity of the eigenvalue 0 of H (0 < N << o0). Then : (i) If H # 0, and

if U has the spectral resolution (4), then f dE (A) < I for every zero set Z. (i) T'he point spectrum
z

of U has no more than N values (counting multiplicities). (iii) If N < oo, then the continuous
component of U is absolutely continuous. (iv) If N = 0, then U is absolutely continuous. (v) If
N =0, the maximum and minimum points of the spectrum of A cannot belong to the point
spectrum of A (and hence must belong to the essential spectrum of 4).

Proof of Theorem 2. Assertion (i) is an immediate consequence of (6); cf. [3]). Let 2
be an eigenfunction of U ; then, by (5), one has

0 < (Hz, x) = (4z, z) — (Az, z) = 0

hence 0 = Hix = Hx. This proves (ii). In order to prove (iii) note that, by (ii), U has at
most a finite number of points in its point spectrum and so its continuous component is present.
But if this component were not absolutely continuous, there would exist a zero set Z and an

element x such that f dE,(N)x # 0. Clearly Z can be written as Z = 2Z, where Z,, Z,, ...

denotes an infinite sequence of non-overlapping zero sets for which z, = f z dE (A)z # 0.
n

Thus the z, are orthogonal and, by (6), each is an eigenfunction of H belonging to 0. Thus
N = o0, a contradiction, and (iii) is proved. Assertion (iv) is a consequence of (ii) and (iii).
Assertion (v) follows from (5). For if the maximum point A, of the spectrum of 4 were in the
point spectrum of 4, hence of U*AU, then for a corresponding eigenfunction x of U*4U one
would have

0 < (Hz, z) = (A=, x) - Ap(2, 2) <0,

a contradiction. Similarly the minimum point A, cannot be in the point spectrum and the
proof of (v) is complete.
It can be remarked that if 0 is not in the point spectrum of A, then the proof of Theorem 1
is an immediate consequence of (v) of Theorem 2. For obviously
(Hz, z) = (Az, ) - (U*AUz, 2) < (Ayr - 2)|| = ||%

4. Applications to semi-normal operators. Let D be an arbitrary (bounded) operator

and consider
H=DD* —D*D. . iiiitiiiiiiiriiiiiiiiinreneeneenannens (8)

If H is semi-definite {in which case, only H > 0 will be supposed), D is called semi-normal.
In case D is non-singular, it has a polar decomposition D = PU where P is positive self-
adjoint and U is unitary. Then DD* = P%, D*D = U*P2U and (8) can be written as
H = P?2_U*P%U, so that P* can be identified with the 4 considered above. Of course, it is
quite possible that D*D = U*(DD*)U holds for some unitary U even if D is singular.

It was shown in [4] that the spectra of the real and imaginary parts of a semi-normal, but
not normal, operator D (in fact, the spectra of 4 (e=*D +¢#D*) for § arbitrary and real) are
of positive measure. In case D is non-singular with the polar decomposition D = PU then,
as a consequence of (i) of Theorem 2, it follows that U also has a spectrum of positive measure.
However, a similar claim cannot be made for the positive operator P. In fact, as is shown by
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Theorem 3 below and the example following, P must have at least two points in its essential
spectrum, and may possibly have only (these) two points in its spectrum.
As a corollary of Theorem 1, one has

TrEOREM 3. If H defined by (8) satisfies H = 0, and if DD* and D*D are unitarily equivalent,
then (7) holds, where 8 = &(DD*) is the difference of the maximum and minimum points of the
essential spectrum of DD*. Thus, if tn addition, H = 0, then 8(DD*) > 0 and DD* (hence
D*D) cannot differ from a completely continuous operator by a multiple of the identity.

It is easy to show that the inequality (7) occurring in Theorems 1 and 3 may become an
equality and that A may have only two points in its spectrum. One need only choose 4 = (a;))
and B = (by), where ¢,j = 0, 1, £2, ..., to be doubly infinite matrices for which a;; = 1 if
1 =0,1,2, ... and ¢;; = 0 otherwise, and b;; = 1if4 = 1,2, ... and b;; = 0 otherwise. Then
the spectra of both 4 and B consist of 0 and 1, each of infinite multiplicity. Consequently
B = U*4U for a unitary U and moreover A —B = H = (hy;), where hyy =1 and Ay =0
otherwise. Clearly || H|| =1 and 3(4) = 1-0 = 1, where 8(4) is defined in Theorem 1.
The particular matrices 4, B thus constructed are singular. However, it is clear that they
can be replaced by, say, the non-singular positive matrices A +I and B +1.

Furthermore, whenever (2) and (3) hold with an operator 4 > 0 (as, for example, in the
preceding paragraph) one can take the unique non-negative self-adjoint square root P of 4
and form the operator D = PU. Then

H=A-B =A4-U*4U = DD*-D*D,
so that D is semi-normal. It should be noted however that D need not be non-singular.

TureoreM 4. If H of (8) satisfies H = 0 and H + 0, if DD* differs from a completely con-
tinuous operator by a multiple of the identity and if z = | z | e satisfies |z | < || H || /8, where
8 = 3(D(8)) denotes the difference of the maximum and minimum points of the essential spectrum of
D(6) = e°D +e*°D*, then D, D,* and D,*D,, where D, = D —zI, cannot be unitarily equivalent.

Proof of Theorem 4. TFirst, note that (8) holds if D is replaced by D, so that

H = D,D*-D*D,.
Now if D,D,* and D,*D, are unitarily equivalent, then, by Theorem 3, || H || < 8(D.D,*).
Since
D,D.* = DD* +|z|*I -z2D -2D*

and since, by hypothesis, DD* = tI +C, where C is completely continuous, it follows from
Weyl’s theorem [7] that the essential spectrum of D,D,* is identical with that of

(| 21® +#)I —~zD - zD*.
But the essential spectrum of this operator is simply that of —ZD -2zD* = —|z | D(6) displaced

by the amount | z |* +¢ and the proof of Theorem 4 is now complete.
A corollary of Theorem 4 is

TreEorEM 5. If H of (8) satisfies H > 0 and H # 0, if DD* differs from a completely
continuous operator by a multiple of the identity and if |2 | < || H|| /|| D ||, then z is in the
spectrum of D.

Proof of Theorem 5. Since not only the essential spectrum but even the spectrum of any
self-adjoint operator @ is contained in an interval of length 2 || @ ||, it follows that
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SO <2/ D) || <4l D}l

Hence, if |[2| < || H || /|| D ||, then D,D.* and D,*D, are not unitarily equivalent and so z
must surely be in the spectrum of D. The sign < occurring in the theorem, rather than just
<, follows from the fact that the spectrum is a closed set.

If V is an isometric but not unitary operator, so that H = V*V -VV* > 0, H = 0,
where V*V = I, Theorem 5 implies (with D = V*) that the disk | z | < } is in the spectrum
of ¥* (hence of V). Actually it is easy to show that the entire disk | z | < 118 in the spectrum ;
cf. [4, p. 1650).

5. Remarks. It will remain undecided whether the hypothesis |z | <} ||H||/|| D ||
in Theorem 5 can, as in the isometric non-unitary case, be weakened to |z | < || H || /|| D ||
An analogous situation exists for the real part 4 (D + D*) of a semi-normal operator for which
it is known [4] that, if H > 0 in (8),

[0 AT T 2 OO (9)

where s denotes the measure of the spectrum of 3 (D + D*) = J, and for which it is undecided
whether || H || < }|| D||s can also be claimed. (In the isometric operator example men-
tioned one has || H|| = 4|| D || s; cf. [4, p. 1651).)

Actually the inequality || H || < 4 || D || s, rather than (9), was stated in [4] but it is clear
from the proof as given in [3] and applied to the case at hand, that the refinement (9) holds.

In fact, it follows from (8) that $H = DJ ~JD. Hence,if J = f AdE (3), then, proceeding as

in [3], one obtains
y AE HAE = AEDJ ()\—)\o)dE—f (A= A,) dE DAE,
a4 a4

where 4 denotes a real interval and A is any point of 4. If A is chosen to be the mid-point of
4, the argument of [3] then yields the desired inequality (9). It can be remarked here that
the 4 in both Theorem 2 and Corollary 3 of [4] can be replaced by 2.

REFERENCES

1. T. Kato, On finite-dimensional perturbations of self-adjoint operators, J. Math. Soc. Japan, 9
(1957), 239-249.

2. T. Kato, Perturbation of continuous spectra by trace class operators, Proc. Japan Academy,
33 (1957), 260-264.

3. C. R. Putnam, On commutators and Jacobi matrices, Proc. American Math. Soc., 7 (1956),
1026-1030.

4. C. R. Putnam, On semi-normal operators, Pactfic J. Math. 7 (1957), 1649-1652.

5. C. R. Putnam, Commutators and absolutely continuous operators, Trans. American Math.
Soc., 87 (1958), 513-525.

6. M. Rosenblum, Perturbation of the continuous spectrum and unitary equivalence, Pacific J.
Math., 7 (1957), 997-1010.

7. H. Woeyl, Uber beschrinkte quadratische Formen, deren Differenz vollstetig ist, Rend. Oirc.
Math. Palermo, 27 (1909), 373-392.

Purpue UNIVERSITY
LAFAYETTE
Inniava, US.A.

https://doi.org/10.1017/52040618500033992 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500033992

