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STOCHASTIC SEQUENCES WITH A REGENERATIVE
STRUCTURE THAT MAY DEPEND BOTH ON
THE FUTURE AND ON THE PAST
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Abstract

Many regenerative arguments in stochastic processes use random times which are akin
to stopping times, but which are determined by the future as well as the past behaviour
of the process of interest. Such arguments based on ‘conditioning on the future’ are
usually developed in an ad-hoc way in the context of the application under consideration,
thereby obscuring the underlying structure. In this paper we give a simple, unified, and
more general treatment of such conditioning theory. We further give a number of novel
applications to various particle system models, in particular to various flavours of contact
processes and to infinite-bin models. We give a number of new results for existing and
new models. We further make connections with the theory of Harris ergodicity.
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1. Introduction

Many arguments in stochastic processes use random times akin to stopping times to establish
regenerative or ergodic behaviour. These may be randomised stopping times as in the theory
of Harris ergodicity. Alternatively, they may be random times in which there is an element of
probabilistic conditioning on the, possibly infinite, future of the process of interest, but in which
this conditioning is sufficiently controlled that, with respect to these random times, the process
behaves as if they were stopping times; such times are used, for example, in establishing the
long-term behaviour of particle systems and population processes conditional on their survival,
and in establishing the behaviour of processes conditioned to avoid given regions of their state
spaces. More generally, such random times, defined by conditioning on future behaviour, may
also be used to establish the unconditional behaviour of their parent processes—as we illustrate
in the applications of Sections 3 and 4. Such arguments based on ‘conditioning on the future’
are usually developed from scratch and in an ad-hoc way in the context of the application under
consideration, thereby to some extent obscuring the underlying structure.

Our aim in the present paper is to give a unified treatment of these phenomena. In doing so
we develop a simple theory which is more general than the sum of those already existing, and
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which has applications—for example, to some variants of the models considered in Sections 3
and 4—which cannot be managed by the simple application of such bits of theory as already
exist. We further apply the results obtained to a number of new models, including variants of
the three-state contact process of Section 3 and of the infinite-bin models of Section 4.

For simplicity of exposition, we work in this paper in discrete time. In general, the process of
interest {Xn}n≥0, say, may be constructed as a functional of an underlying process {ξn}n≥1, or
{ξn}n∈Z, where, as usual, Z is the set of integers. In the present paper we assume that the process
{ξn} consists of independent, identically distributed (i.i.d.) random variables ξn. However,
some of the phenomena studied here for the process {Xn} continue to occur under more relaxed
assumptions for the underlying process {ξn}, for example, that it is regenerative in the sense
that there are some random times at which the process starts anew independently of the past.
These extensions are typically straightforward; for example, in the case where the process {ξn}
is regenerative we may restrict arguments to the regeneration times. Extensions to continuous
time are also straightforward provided that the process {ξn} is replaced by something satisfying
analogous homogeneity and independence conditions; in the case of interacting particle systems
(see Section 3) this is typically the collection of underlying Poisson processes.

In Section 2 we present our basic theory. Our aim is to identify sequences of random times
0 ≤ τ0 < τ1 < · · · , the definition of each of which may depend both on the (typically infinite)
past and on the (typically infinite) future, but which are nevertheless such that the segments of
the process {ξn} between successive such times are i.i.d. Following Kuczek [19], we shall refer
to these times (which are an instance of regeneration times) as break times.

It is helpful to give an immediate example (in which the dependence is on the future only).

Example 1. Let {ξn}n≥1 consist of i.i.d. random variables, with common distribution given by

P(ξi = 1) = p, P(ξi = −1) = q, P(ξi = 0) = 1 − p − q,

where 0 < q < p and p + q < 1. We consider three variant constructions of random times
whose definitions involve conditioning on the (infinite) future.

(a) For each n ≥ 0, let Fn be the ‘future’ event that
∑m
i=1 ξn+i ≥ 0 for all m ≥ 1. Note

that the common probability of the events Fn is strictly positive. Let 0 ≤ τ0 <

τ1 < · · · be the successive times n at which the event Fn occurs. Then it is easy to
see (and is a special case of the result of Example 2 below) that the successive segments
{ξτk+1, . . . , ξτk+1}, k ≥ 0, of the process {ξn} are i.i.d. in k. In particular, the successive
time intervals τk+1 − τk, k ≥ 0, are i.i.d.

(b) Now suppose that, for each n ≥ 0, we let F ′
n be the future event that

∑m
i=1 ξn+i ≥ 0

for all m ≥ 1 and, additionally, ξn+2 = 0. Again, the common probability of the
events F ′

n is strictly positive. Let 0 ≤ τ ′
0 < τ ′

1 < · · · be the successive times n at which
the event F ′

n occurs. In this case we do not have independence of the successive
segments {ξτ ′

k+1, . . . , ξτ ′
k+1

}, k ≥ 0; for example, if the events F ′
0 and F ′

1 both occur,
then necessarily ξτ ′

1+1 = ξ2 = 0.

(c) Finally, suppose that the events F ′
n are as in (b). However, define the sequence 0 ≤

τ ′′
0 < τ ′′

1 < · · · by τ ′′
0 = min{n ≥ 0 : F ′

n occurs} (i.e. τ ′′
0 = τ ′

0) and, for k ≥ 1, τ ′′
k =

min{n ≥ τ ′′
k−1 + 2 : F ′

n occurs}. Then it is again easy to see that the successive segments
{ξτ ′′

k +1, . . . , ξτ ′′
k+1

}, k ≥ 0, of the process {ξn} are once more i.i.d. in k.

The reason for the different behaviours in the above example is that, in order to obtain i.i.d.
behaviour, we require the definitions of the successive times τk to satisfy a form of monotonicity
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condition in which, in a sense which we make clear in Section 2, information about the future
does not cumulate; this condition is satisfied in variants (a) and (c) of Example 1, but not
in variant (b). In Section 2 we develop the relevant theory in a general setting in which the
break times τk may depend on both the past and future behaviours of the underlying process
{ξn}. In particular, we give conditions for the segments of the process {ξn} between break
times to constitute i.i.d. cycles. We believe this theory to be novel in the general setting. As a
simple example, we apply the theory to a general random walk with positive drift (generalising
Example 1).

In Section 3 we give applications of our theory to a number of discrete-time contact process
models, both showing how existing results are more readily understood, and giving some new
results for a three-state contact process. The theory is equally applicable in the continuous-
time setting, and has applications in general to particle systems and similar models in which
processes ‘survive’with probabilities strictly between 0 and 1. In Section 4 we give applications
of the theory of Section 2 to a class of ‘infinite-bin’ models.

In Section 5 we make some connections with the existing theory of Harris-ergodic
Markov chains. Finally, in Section 6 we discuss a number of other models and extended
applications, including conditioning, scaling, and regeneration/asymptotic stationarity of the
driving sequence {ξn}.

2. Conditioning on the future

We assume that the underlying process {ξn}n∈Z (defined on some underlying probability
space (�, F , P)) consists of i.i.d. random variables ξn. For two events A and B, we write
A = B if their symmetric difference, A�B = A \ B ∪ B \ A, has probability 0.

For m ≤ n, denote by σm,n the σ -algebra generated by ξm, . . . , ξn, and let σn = σ−∞,n.
The process {Xn}n∈Z (or {Xn}n∈Z+ ) of interest will typically be defined in terms of the process
{ξn}n∈Z and adapted with respect to the filtration {σn}n∈Z; for example, it may be defined by
the stochastic recursion

Xn+1 = f (Xn, ξn+1) (1)

for some function f (and, hence, homogeneous Markov).
Define also σ to be the σ -algebra generated by all the random variables ξn, −∞ < n < ∞.

As usual, we may introduce a measure-preserving shift transformation θ on σ -measurable ran-
dom variables by assuming that ξn◦θ = ξn+1 for all n, and that, more generally, g(ξm, . . . , ξn)◦
θ = g(ξm+1, . . . , ξn+1) for any measurable function g. (Here the finite sequence of random
variables {ξm, . . . , ξn} may also be replaced a half-infinite or an infinite sequence.)

We may further extend the shift transformation to events in σ by defining (with a slight abuse
of notation) G1 ◦ θ = G2 if 1G1 ◦ θ = 1G2 . (Here by 1G1 we denote the indicator function
of the event G1 which equals 1 if the event G1 occurs and 0 otherwise). We then say that a
sequence of events {Gn} is stationary if it is so with respect to θ , i.e. Gn ◦ θ = Gn+1 for all n.
Therefore, if there are two sequences and each of them is stationary, then they are also jointly
stationary.

In what follows, we consider, in addition to the process {ξn}, a given sequence of events
{Fn}n∈Z+ which always satisfies the following conditions.

(F1) The sequence {Fn}n∈Z+ is stationary, with the common value of P(Fn) strictly positive.

(F2) For each n, the event Fn is defined in terms of the ‘future’ process {ξm}m>n, i.e. 1Fn =
g(ξn+1, ξn+2, . . . ) for some function g (which by stationarity is independent of n).

https://doi.org/10.1239/aap/1386857859 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1386857859


1086 S. FOSS AND S. ZACHARY

Here the future dependence of each of the events Fn may be on either the finite or
the infinite future.

It is our intention to define, in terms of the process {ξn} and the sequence {Fn}, a sequence
of random times 0 ≤ τ0 < τ1 < · · · on the nonnegative integers Z+. Our interest is in the
behaviour of the successive segments of processes {ξτk+1, . . . , ξτk+1}, k ≥ 0. (Note that the
definition of any such segment {ξτk+1, . . . , ξτk+1} includes a specification of its length τk+1−τk .)
It is convenient to take a ‘point process’approach, and to define first a further sequence of events
{An}n∈Z+ ; the times τk are then defined to be the successive times n ≥ 0 such that the eventAn
occurs. (We observe that the need to unambiguously index the times τk obliges us to choose
some origin 0 of time, and it is then convenient to restrict attention to behaviour subsequent to
time 0. However, to the extent that the occurrence times of the events An may be viewed as a
point process on the positive integers, much of what follows may be extended without difficulty
to the entire set Z of all the integers.)

Remark 1. Insofar as the occurrence times of the events An may be regarded as a point
process on the integers, the determination of their locations, in the results below, is the result of
simultaneous, and essentially Markovian, conditioning from both the past and the future. There
are therefore connections with the theory of one-dimensional Markov random fields. However,
for our present purposes, it is natural to define the conditions for these results directly in terms
of events. The distribution of the point process is then induced by the underlying i.i.d. driving
sequence {ξn}.

Our main result of this section is now the following theorem. For the result to hold, we
require some conditions which imply, in particular, that each event An may be represented as
an intersectionAn = Hn∩Fn of a ‘past’ eventHn ∈ σn and the ‘future’event Fn defined earlier
(see Remark 2 below).

Theorem 1. Let a sequence of events {An}n∈Z+ be given. Let τ0 = min{n ≥ 0 : 1An = 1},
and, for k ≥ 0, let τk+1 = min{n > τk : 1An = 1}. Assume that τk < ∞ almost surely (a.s.)
for all k. Also, let the following be given: a sequence of ‘future’events {Fn}n∈Z+ satisfying the
earlier conditions (F1) and (F2), sequences {H ′

n}n∈Z+ and {H ′′
n }n∈Z+ of ‘past’events such that,

for each n, we have H ′
n ∈ σn and H ′′

n ∈ σn, and, finally, an array of events {En,n+m}n≥0,m>0
with each En,n+m ∈ σn+1,n+m and such that, for each fixed m, the sequence {En,n+m}n≥0 is
stationary. Suppose further that all these sequences are linked by the following relations: for
n ≥ 0,

{τ0 = n} ≡ Ac
0 ∩ · · · ∩ Ac

n−1 ∩ An = H ′
n ∩ Fn, (2)

and, for 0 ≤ n′ < n,

{there exists k : τk = n′, τk+1 = n} ≡ An′ ∩Ac
n′+1 ∩· · ·∩Ac

n−1 ∩An = H ′′
n′ ∩En′,n∩Fn. (3)

Then the successive segments of processes {ξτk+1, . . . , ξτk+1}, k ≥ 0, are i.i.d. In particular,
the random variables τk+1 − τk, k ≥ 0, are i.i.d. Furthermore, for some constant a > 0 and
all k ≥ 0,

P(τk+1 − τk = n) = aP(E0,n). (4)

Note that it follows directly from (2) and (3) that, for all n, we have An ⊆ Fn, and from (3)
that, for all n′, we have An′ ⊆ H ′′

n′ . Hence, we note that

An ⊆ H ′′
n ∩ Fn, n ≥ 0.
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Proof of Theorem 1. Fix k ≥ 0. For any 0 ≤ n0 < · · · < nk+1, it follows, from (2), (3),
and the observation that An ⊆ Fn for all n, that the following representation holds:

{τ0 = n0, . . . , τk = nk, τk+1 = nk+1}
= H ′

n0
∩H ′′

n0
∩ En0,n1 ∩H ′′

n1
∩ · · · ∩H ′′

nk
∩ Enk,nk+1 ∩ Fnk+1 . (5)

Here the intersection of all but the last two events in (5), say H̃nk , belongs to the σ -algebra σnk
and is the same for all values ofnk+1. Thus, for any eventsGnk ∈ σnk andGnk,nk+1 ∈ σnk+1,nk+1 ,

P({τ0 = n0, . . . , τk = nk, τk+1 = nk+1} ∩Gnk ∩Gnk,nk+1)

= P(G′
nk

∩ Enk,nk+1 ∩Gnk,nk+1 ∩ Fnk+1)

= P(G′
nk
)P(Enk,nk+1 ∩Gnk,nk+1)P(Fnk+1), (6)

where the eventG′
nk

= H̃nk ∩Gnk belongs to σnk and is the same for all values of nk+1 and all
events Gnk,nk+1 . Thus, also using the stationarity of the sequence {Fn}n∈Z+ and (for each m)
of the sequence {En,n+m}n≥0, it follows that, conditional on {τ0 = n0, . . . , τk = nk} and the
process {ξn}1≤n≤nk , the distribution of {ξτk+1, . . . , ξτk+1} is that of {ξτ0+1, . . . , ξτ1} conditional
on the occurrence of the event {τ0 = n} for any n such that the latter probability is strictly
positive. All the assertions of the theorem now follow. In particular, to establish (4), we
consider (6) again with Gnk = Gnk,nk+1 = � and with nk+1 = nk + n, where n is fixed. Then
we sum expression (6) over all 0 ≤ n0 < · · · < nk to obtain P(τk+1 − τk = n). This is of the
form aP(E0,n), where, clearly, a does not depend on n; therefore, a also does not depend on k
since the probabilities aP(E0,n) sum to 1.

Remark 2. It is worth pausing to note, in somewhat intuitive terms, the significance of the
conditions of Theorem 1. Note first that it follows straightforwardly from (2) and (3) that, for
all n, we have

An = Hn ∩ Fn with Hn = H ′
n ∪

⋃
0≤n′<n

H ′′
n′ ∩ En′,n ∈ σn.

Suppose now that we proceed forward in time with the process {ξn}. At each time n such that
the event An occurs, we learn something about the future evolution of the process, namely that
the event Fn occurs. In order to have some regeneration at this time, we need to ensure that,
at each such time n, given the knowledge that Fn occurs, our knowledge at that time about the
future probabilistic behaviour of the process is not further conditioned by our knowledge of
whether or not, for each earlier time n′ < n, the eventAn′ occurs. This is essentially guaranteed
by condition (3), which is in effect a form of monotonicity condition.

We now give some special cases of Theorem 1. Corollary 1 below will be applied later to
the two-state contact process of Section 3.1 and to the basic infinite-bin model of Section 4.1.

Corollary 1. Suppose that, for all n, we have An = Fn, and that the sequence {Fn}n∈Z+
satisfies the earlier conditions (F1) and (F2) and, additionally, the monotonicity condition

Fn ∩ Fn+m = E′
n,n+m ∩ Fn+m, n ≥ 0, m > 0, (7)

for some array of events {E′
n,n+m}n≥0,m>0 with each E′

n,n+m ∈ σn+1,n+m and such that, for
each fixed m, the sequence {E′

n,n+m}n≥0 is stationary. Then the conclusions of Theorem 1
follow (with (4) holding for appropriately defined E0,n).

Proof. Note first that (7) also implies that

F c
n ∩ Fn+m = (E′

n,n+m)c ∩ Fn+m, n ≥ 0, m > 0. (8)
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Since An = Fn for all n, it follows from (7) and (8) that, for all n ≥ 0,

Ac
0 ∩ · · · ∩ Ac

n−1 ∩ An = (E′
0,n)

c ∩ · · · ∩ (E′
n−1,n)

c ∩ Fn
and, for 0 ≤ n′ < n,

An′ ∩ Ac
n′+1 ∩ · · · ∩ Ac

n−1 ∩ An = E′
n′,n ∩ (E′

n′+1,n)
c ∩ · · · ∩ (E′

n−1,n)
c ∩ Fn.

Thus, the conditions of Theorem 1 are readily seen to be satisfied with {Fn}n∈Z+ as here, and for
appropriately defined {H ′

n}n∈Z+ , {H ′′
n }n∈Z+ (with H ′′

n = � for all n), and {En,n+m}n≥0,m>0.

Remark 3. We can now provide some explanation for the observations of Example 1 in the
introduction. In the variant (a), condition (7) of Corollary 1 is readily seen to be satisfied,
with E′

n,n+m = {∑m′
i=1 ξn+i ≥ 0 for all 1 ≤ m′ ≤ m}. In the variant (b) of Example 1 the

monotonicity condition (7) of Corollary 1 (with the sequence {Fn}n≥0 replaced by {F ′
n}n≥0)

clearly cannot be satisfied, and, more generally, the conditions of Theorem 1 cannot be satisfied
(for otherwise that theorem would contradict the known behaviour for this example). However,
for the variant (c) of Example 1, we may observe that condition (7) of Corollary 1 (again
with the sequence {Fn}n≥0 replaced by {F ′

n}n≥0) is satisfied whenever m ≥ 2, with E′
n,n+m =

{∑m′
i=1 ξn+i ≥ 0 for all 1 ≤ m′ ≤ m and ξn+2 = 0}. Since the enforced minimum separation

τk − τk−1 ≥ 2 for k ≥ 1 implies that An ∩ An+1 = ∅ for all n, this restricted version of
condition (7), coupled with the proof of Corollary 1, is now sufficient to establish that the
conditions of Theorem 1 are satisfied as before.

We now give a generalisation of Corollary 1 in which the sequence {An}n∈Z+ is defined by
An = Hn ∩ Fn for the sequence {Fn}n∈Z+ as above and with {Hn}n∈Z+ some sequence such
that each Hn ∈ σn. Here a monotonicity condition is additionally required on the sequence
{Hn}n∈Z+ . However, the monotonicity condition on the sequence {Fn}n∈Z+ is only required to
hold in relation to those times n at which the event Hn occurs. The result, which reduces to
Corollary 1 in the case where Hn = � for all n, is entirely natural for many applications. It
will be applied in Example 2 below, to the three-state contact process of Section 3.2, and to the
continuous-space ‘infinite-bin’ model of Section 4.2.

Corollary 2. Suppose that, for all n, we have An = Hn ∩ Fn, where the sequence {Fn}n∈Z+
satisfies the earlier conditions (F1) and (F2) and the sequence {Hn}n∈Z+ is such thatHn ∈ σn for
all n. Suppose further that these sequences satisfy the following monotonicity conditions.

(a) For all n ≥ 0 and m > 0,

An ∩ An+m = Hn ∩ E′
n,n+m ∩ An+m, (9)

where the array of events {E′
n,n+m}n≥0,m>0 is such that each E′

n,n+m ∈ σn+1,n+m and,
for each fixed m, the sequence {E′

n,n+m}n≥0 is stationary.

(b) For all n ≥ 0 and m > 0,

An ∩Hn+m = An ∩ E′′
n,n+m, (10)

where the array of events {E′′
n,n+m}n≥0,m>0 is again such that each E′′

n,n+m ∈ σn+1,n+m
and, for each fixed m, the sequence {E′′

n,n+m}n≥0 is stationary.

Then the conclusions of Theorem 1 follow (again with (4) holding for appropriately defined
E0,n).
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Proof. The proof is similar to that of Corollary 1, if a little messier. It is necessary to verify
conditions (2) and (3) of Theorem 1, in which the sequence {Fn}n∈Z+ of that theorem is as
given here. Note first that (9) also implies that, for all n ≥ 0 and m > 0,

Hn ∩ F c
n ∩ An+m = Hn ∩ (E′

n,n+m)c ∩ An+m, (11)

while (10) similarly also implies that, for all n ≥ 0 and m > 0,

An ∩H c
n+m = An ∩ (E′′

n,n+m)c. (12)

Consider first the verification of condition (3). For 0 ≤ n′ < n, the event

An′ ∩ Ac
n′+1 ∩ · · · ∩ Ac

n−1 ∩ An (13)

may be written as a union of events of the form

An′ ∩ Bn′+1 ∩ · · · ∩ Bn−1 ∩ An, (14)

where, for each n′ < k < n, the event Bk is either H c
k or Hk ∩ F c

k . Now using (12) to simplify
An′ ∩H c

k , (11) and then (12) to simplify Hk ∩ F c
k ∩ An, and, finally, (9) to simplify An′ ∩ An,

it follows that each of the events given by (14), and so also the event given by (13), has a
representation as Hn′ ∩ En′,n ∩ Fn, where, by construction, the array {En′,n}n′≥0, n>n′ satisfies
the conditions of Theorem 1.

The verification of condition (2) of Theorem 1 (for some readily calculable sequence
{H ′

n}n∈Z+ with each H ′
n ∈ σn) is similar, but simpler.

We now consider a process {Xn}n≥0 which, as indicated at the beginning of this section,
is adapted with respect to the filtration {σn}n∈Z (or {σn}n∈Z+ ). We further assume that this
process is defined via the specification ofX0 and the stochastic recursion (1). This is a standard
situation (but not the only one) in which the regenerative structure of the successive blocks of the
process {ξn}, as identified in Theorem 1, may be inherited by a (functional of the) process {Xn}.
We introduce here a number of typical scenarios which will be complemented by the examples
of the following sections.

In what follows we wish to consider, for any time n, the dynamics of the sequence {Xn+i}i≥0,
and of functionals of this sequence, relative to ‘an initial’Xn. (One may think of a growth model
in which we are adding points at each time, or of a model in which we centre the system around
the value of Xn at time n.) In order to do this, we introduce functions Ri(Xn,Xn+i ), i ≥ 1,
which capture this relative behaviour. We assume further that each such function Ri acts as
Ri : X2 → Y, where (X,BX) is the space in which Xn take values and (Y,BY) is another
measurable space. In various of the remaining examples of this paper, we indicate precisely
the form of the functions Ri .

Recall that a sequence, say {Yn}, is stationary one-dependent if it is stationary and, for any n,
the families of random variables {Yk, k < n} and {Yk, k > n} are independent. The following
result is an immediate extension of Theorem 1 and the given conditions (15), (16), and (17).

Theorem 2. Suppose again that the sequence {ξn}n∈Z consists of i.i.d. random variables and
that the random times 0 ≤ τ0 < τ1 < · · · are defined as in Theorem 1, with all the conditions
of that theorem holding.

(a) Suppose that the functions Ri, i ≥ 1, introduced above are such that, for any n, given
that the event An occurs, each random variable Ri(Xn+i , Xn) is a measurable function
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of ξn+1, . . . , ξn+i only, i.e. for every i ≥ 1,

Ri(Xn+i , Xn) 1An = gi(ξn+1, . . . , ξn+i ) 1An . (15)

Then the random elements

(Ri(Xτj+i , Xτj ), i = 1, . . . , τj+1 − τj ) (16)

are i.i.d. in j .

(b) Suppose, more generally, that, for some fixedm ≥ 1, the functions Ri, i ≥ 1, introduced
above are now as follows: for any n, given that the event An occurs, each random
variable Ri(Xn+i , Xn) is a measurable function of ξn−m+1, . . . , ξn+i only, i.e. for every
i ≥ 1,

Ri(Xn+i , Xn) 1An = gi(ξn−m+1, . . . , ξn+i ) 1An

and that
τn+1 − τn ≥ m a.s. for all n. (17)

Then the random elements (16) are stationary one-dependent.

Recall that a random sequence {Zn} is regenerative if there exist (random) times 0 ≤ τ0 <

τ1 < · · · such that the random elements

Y0 := (τ0;Z0, . . . , Zτ0),

Y1 := (τ1 − τ0;Zτ0+1, . . . , Zτ1),

Y2 := (τ2 − τ1;Zτ1+1, . . . , Zτ2),

etc. are mutually independent and the elements {Yk}k≥1 are identically distributed. The
random sequence {Zn} is wide-sense regenerative if, for each n ≥ 0, the distribution of the
sequence {Zτn+k, k ≥ 0} does not depend on τn. Furthermore, {Zn} possesses one-dependent
regenerative cycles induced by {τn} if the sequence {Yk}k≥0 is one-dependent, and the random
variables {Yk}k≥1 are identically distributed. The latter two properties imply that the sequence
{Yk}k≥1 is stationary and that the time instants {τk} form a renewal process.

Corollary 3. Suppose that the sequence {ξn}n∈Z consists of i.i.d. random variables and that
the random times 0 ≤ τ0 < τ1 < · · · are defined as in Theorem 1, with all the conditions
of that theorem holding. Suppose that the functions Ri, i ≥ 1, introduced above are such
that either the conditions of part (a) or those of part (b) of Theorem 2 hold. Finally, suppose
that the (common) distribution of the random variables τn − τn−1, n ≥ 1, is aperiodic, i.e.
GCD{j : P(τ1 − τ0 = j) > 0} = 1.

For any n > τ0, let

Zn = Rn−τj (Xn,Xτj ) if τj < n ≤ τj+1.

Then the sequenceZn converges in the total variation norm to a proper limiting random variable.

Indeed, by Theorem 1, the sequence Zn is wide-sense regenerative and, by Theorem 2, it
possesses one-dependent regenerative cycles, so that Corollary 3 follows from the stability
theorem for wide-sense regenerative processes; see, e.g. Section 10 of [27] or [1].

https://doi.org/10.1239/aap/1386857859 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1386857859


Stochastic sequences with a regenerative structure 1091

Example 2. (Random walk with positive drift.) We extend Example 1 to consider a general
random walk with positive drift. Such a process provides possibly the simplest instance of the
application of the above theory, and our aims here are to both demonstrate the use of Theorem 1
and illustrate the use of conditioning simultaneously on both past and future events. The results
we give for this example are not new, but rather illustrate the immediate applicability of the
present theory. The sequence {ξn}n≥1 consists as usual of i.i.d. nondegenerate random variables
ξn with positive mean a = Eξ > 0. To make the example nontrivial, assume that P(ξ < 0) > 0.
The process of interest is the random walk {Sn}n≥0 with S0 = 0 and Sn = ∑n

i=1 ξi (here we
use the notation Sn instead of Xn).

We define the earlier sequence {Fn}n∈Z+ , satisfying conditions (F1) and (F2), by taking each
Fn to be the event that

∑m
k=1 ξn+k > 0 for all m ≥ 1, i.e. that Sm > Sn for all m > n.

First, for a trivial application, we define the eventsAn of Theorem 1 by, for each n,An = Fn,
so that the random times τk, k ≥ 0, are simply the successive occurrence times of the events
Fn, and are simply the last exit times of the process {Sn} above successive levels. As in the
variant (a) of the earlier Example 1, condition (7) of Corollary 1 is easily seen to be satisfied
(with E′

n,n+m = {∑m′
k=1 ξn+k > 0 for all 1 ≤ m′ ≤ m}). Thus, the conclusions of Theorem 1

follow, and we have the well-known and elementary result that the segments of the process {Sn}
between the successive last exit times above are i.i.d.

We also observe that the functionalsRi defined above are typically given byRi(Sn+i , Sn) =
Sn+i − Sn.

A more interesting application is given by defining the eventsAn of Theorem 1 by, for each n,
An = Hn ∩ Fn, where Hn is the event that Sn′ < Sn for all 0 ≤ n′ < n. Thus, the times τk
are the successive times n at which both Sn′ < Sn for all n′ < n and Sn′ > Sn for all n′ > n.
The sequences of events {Fn}n∈Z+ and {Hn}n∈Z+ satisfy conditions (9) and (10) of Corollary 2,
with E′

n,n+m as above and E′′
n,n+m = {Sn′ < Sn+m for all n ≤ n′ < n + m}. Hence, again,

the conclusions of Theorem 1 follow, and we again have the result that the segments of the
process {Sn} between the successive times τk are i.i.d. A weak consequence is that these times
themselves form a delayed renewal process.

Here, again, the functionalsRi of Section 2 are typically given byRi(Sn+i , Sn) = Sn+i−Sn.

3. The asymptotic behaviour of supercritical contact processes

The theory of Section 2 has applications to a variety of particle systems and oriented
percolation models. In this section we consider some fairly general discrete-time contact,
or oriented percolation, processes on the integers Z. These models are normally studied in a
continuous-time setting, and it is clear that the relevant theory of Section 2 could, at the cost of
some work, be adapted to that setting.

In Section 3.1 we study a modest generalisation of the traditional two-state contact process on
Z, in which, at each time n, each site a ∈ Z is either healthy (state 0) or infected (state 1). We use
our earlier theory to study the behaviour of the right-endpoint process, defined for each time n to
be the rightmost infected site at time n. The underlying ideas here are those of Kuczek [19] and
of Mountford and Sweet [23]—the somewhat greater generality of the model considered here
makes little difference. However, we show that the results of Kuczek are an almost immediate
application of the theory of Section 2, and become clearer when thus understood. (These ideas
are further used by Mountford and Sweet, but the main work of their paper is an additional
‘block’ construction to show that a certain event has a strictly positive probability—see the
discussion at the end of this section.) The basic theory of Section 3.1 is further a necessary
preliminary for applications to other particle system models. We give one such application in
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Section 3.2 in which we study an extension to a three-state process. In this model, which has
been considered by a number of authors, healthy sites differ in their susceptibility to subsequent
infection according to whether they have previously been infected. Tzioufas [28] deduced right-
endpoint behaviour for the ‘reverse-immunisation’ version of the process, in which previously
infected sites are easier to reinfect. His argument used a monotonicity property which fails to
hold in the ‘immunisation’ version of the process, in which previously infected sites are more
difficult to reinfect. We show how this difficulty is overcome by a suitable definition of the sets
Fn of Section 2.

3.1. The two-state contact process

Consider a process in which sites, indexed by the integers Z, are at each time n either
healthy or infected. We define the state Xn of the process at time n to be the set of infected
sites at that time. Between times n and n + 1 each site x ∈ Xn which is infected at time n
produces a set ηn+1,x ⊆ Z of descendants, which is again a subset of Z; at time n + 1 these
descendants infect a set of sites x + ηn+1,x ⊆ Z, where, for any x ∈ Z and any A ⊆ Z, we
define x + A = {x + a : a ∈ A}. The state Xn+1 of the process at time n+ 1 is given by

Xn+1 =
⋃
x∈Xn

(x + ηn+1,x),

i.e. the union over x ∈ Xn of the sites infected by the descendants of these x. Finally, we
assume that the random sets ηn+1,x are i.i.d. over both times n and sites x. This model is
a fairly general form of the discrete-time version of the one-dimensional contact process, or
oriented percolation. Note that we do not make the restriction (common for both discrete-time
oriented percolation and continuous-time contact processes) that, for each n and x, the random
set ηn+1,x is such that the events {a ∈ ηn+1,x} are independent over a.

Let p be the probability that the process started with X0 = {0}, say, survives, i.e. Xn �= ∅

for all n ≥ 0. Suppose that p > 0, so that the process is described as supercritical. Our
interest is then in the long-run behaviour of this process. In particular, we are concerned with
the behaviour of the right-endpoint process {rn}n≥0, conditional on survival, where we define
rn = max(x : x ∈ Xn) (with rn = −∞ in the case where Xn is empty). This, coupled with
the behaviour of the corresponding left-endpoint process, determines the growth rate of the
process. We assume that X0 is such that r0 < ∞ (and, hence, rn < ∞ for all n); usually,
r0 = 0.

Consider first the case in which the process possesses the following skip-free property: for
all n and all x, y ∈ Z,

x < y �⇒ x + a ≤ y + b for all a ∈ ηn+1,x, b ∈ ηn+1,y a.s. (18)

This is the discrete-time version of the nearest-neighbour property of the contact process on Z.
The process {rn}n≥0 was studied by Galves and Presutti [17] and by Kuczek [19]. The argument
here is essentially a rephrasing, in the framework of the present paper, of that of Kuczek, and
is given not only as an example and for completeness, but because it is required for subsequent
developments, in particular for the theory of Section 3.2, in which the present arguments are
extended and generalised.

We take the driving sequence {ξn}n≥1 (the index range n ≥ 1 is sufficient), introduced in
Section 2, to be defined as follows. For each n, ξn = {ξn,z}z≤0, where, for each nonpositive
integer z, ξn,z has the same distribution as any of the random sets ηn,x identified above.
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In addition to being identically distributed, the random sets ξn,z are taken to be independent
over all n and all z. We now define the process {Xn}n≥0 via a stochastic recursion

Xn+1 = f (Xn, ξn+1); (19)

for each x ∈ Xn, the random set ηn+1,x of its descendants at time n+ 1 is given by

ηn+1,x = ξn+1,x−rn . (20)

Thus, in particular—and this is critical for the understanding of the argument below, in which
everything is in effect viewed from the right endpoints of the processes of interest—the random
set ξn+1,0 determines the set of descendants of the rightmost infected site rn at time n, and, for
every other infected site at time n, we count its distance from rn in order to determine which
of the random sets ξn+1,z to use for its set of descendants. Different initial sets X0 of infected
sites lead to different instances of the process {Xn}n≥0.

For each n ≥ 0, consider the process {X(n)
n′ }n′≥n defined by X(n)n = {0} and X(n)

n′+1 =
f (X

(n)

n′ , ξn′+1) for n′ ≥ n. Define also the associated right-endpoint process {r(n)
n′ }n′≥n by

r
(n)

n′ = max(x : x ∈ X(n)
n′ ) (again with r(n)

n′ = −∞ in the case where X(n)
n′ is empty).

We define the sequence of events {Fn}n∈Z+ of Section 2 saying that the eventFn occurs if and
only if the process {X(n)

n′ }n′≥n survives for all future time. It follows from the definition of the
process {X(n)

n′ }n′≥n that the sequence {Fn}n∈Z+ satisfies conditions (F1) and (F2) of Section 2.
In particular, the common value of the probability of the events Fn is p, which, by our earlier
assumption of supercriticality is strictly positive.

We define the events An of Theorem 1 by, for each n, An = Fn, so that the random times
τk, k ≥ 0, are simply the successive occurrence times of the events Fn. It is our intention to
apply Corollary 1. Fix therefore n ≥ 0 and m > 0, and suppose that the event Fm+n occurs.
Then if the process {X(n)

n′ }n′≥n also survives to time n+m, i.e.X(n)n+m �= ∅, it follows from (19)
and (20) that

r
(n)

n+m+n′ = r
(n)
n+m + r

(n+m)
n+m+n′ for all n′ ≥ 0. (21)

It now follows that, given that the event Fm+n occurs, the event Fn occurs if and only if
there occurs the event E′

n,n+m that the process {X(n)
n′ }n′≥n survives to time n + m. Thus, the

monotonicity condition (7) of Corollary 1 is satisfied (with Fn, Fn+m, and E′
n,n+m as defined

here) and, by construction, the array {E′
n,n+m}n≥0,m>0 satisfies the conditions of that corollary,

so that the conclusions of Theorem 1 follow. Since the events Fn also have strictly positive
probabilityp, and since their indicator random variables 1Fn form a stationary ergodic sequence,
the first statement of Proposition 1 below is now immediate from Theorem 1 combined with
the strong law of large numbers for such sequences.

The proof of the second statement of Proposition 1 is also essentially due to Kuczek, but, as
we require essentially the same argument (with a little extra complication) in Section 3.2 below,
we summarise it here. Define the random time τ ′ = {min n ≥ 1 : Fn occurs}. The common
distribution of the intervals τk+1 − τk, k ≥ 0, is that of the random time τ1 conditioned on
the event {τ0 = 0}, i.e. on the event F0, which has strictly positive probability. The latter
distribution is also that of the random time τ ′ conditioned on the event F0. Hence, for the
second statement of Proposition 1, it is sufficient to show that the (unconditional) distribution
of τ ′ is geometrically bounded. We show that this follows from the well-known property of
supercritical contact processes that if ρ = min{n ≥ 1 : X(0)n = ∅} then there exists α > 0 such
that

P(n ≤ ρ < ∞) ≤ e−αn, n ≥ 1.
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To see that τ ′ is geometrically bounded, we may proceed forward in time, starting at time 1,
checking at that and at selected subsequent times n whether the event Fn occurs: if, at any
such time, it fails to do so, we wait until the process {X(n)

n′ }n′≥n dies before resuming checking
at subsequent times, thereby ensuring that checks are independently successful, each with
probability p > 0; the time to the occurrence of a first success, and, hence, to the occurrence
of some event Fn, is thus a geometric sum of i.i.d. geometrically bounded random variables,
and is hence itself geometrically bounded, implying the same result for τ ′. We thus have the
following proposition.

Proposition 1. The successive (segments of) processes {ξτk+1, . . . , ξτk+1}, k ≥ 0, are i.i.d.,
each with finite mean length 1/p. Furthermore, the distribution of each of these lengths is light
tailed, i.e. geometrically bounded, and in particular possesses moments of all orders.

Now let {Xn}n≥0 be any version of the contact process defined by (19) such that X0 �= ∅

and, if {rn}n≥0 is its right-endpoint process then r0 < ∞. Let F be the event that the process
{Xn}n≥0 survives. Then, as in the argument above used to establish (7), the event F occurs
if and only if the process survives to time τ0. Note also that F0 ⊆ F ; in the extreme case
where there is a single infected site at time 0 we have F0 = F , while in the case the number of
infected sites at time 0 is infinite, we have P(F ) = 1. Furthermore, from the construction of
the processes involved and recalling (21), conditional on the event F and for all k ≥ 0,

rτk+n′ = rτ0 +
k−1∑
j=0

r
(τj )
τj+1 + r

(τk)

τk+n′ for all n′ ≥ 0.

We thus immediately have the following corollary to Proposition 1.

Corollary 4. (Kuczek [19].) On the set F the successive (segments of) processes {rτk+1, . . . ,

rτk+1}, k ≥ 0, are i.i.d. Furthermore, for some constant μ,

rn

n
→ μ a.s. as n → ∞

and, in the Skorokhod topology,

r[nt] − ntμ√
n

→ B(t) in distribution as n → ∞,

where, for any a > 0, we denote by [a] the integer part of a, and where B is Brownian motion
with some nontrivial diffusion constant.

Remark 4. We believe that it is also worth discussing briefly the more general case, considered
by Mountford and Sweet [23], in which the skip-free condition (18) is replaced by the more
general condition that the sets ηn+1,x have bounded support, if only as an illustration of our
general thesis that everything depends of the appropriate definition of the sequence {Fn}n∈Z+
of Section 2. Here it is sufficient to redefine the events Fn and to show that their common
probability remains strictly positive. Thus, for each n, define not only the process {X(n)

n′ }n′≥n
as above (in which X(n)n = {0}) and its associated right-endpoint process {r(n)

n′ }n′≥n, but also
the process {X̄(n)

n′ }n′≥n given by X̄(n)n = Z− (where Z− is the set of nonpositive integers) and

X̄
(n)

n′+1 = f (X̄
(n)
n , ξn+1) for n′ ≥ n; denote also the latter process’s associated right-endpoint

process by {r̄ (n)
n′ }n′≥n. Note that the process {X̄(n)

n′ }n′≥n survives a.s., and that, sinceX(n)n ⊂ X̄
(n)
n ,

we have X(n)
n′ ⊆ X̄

(n)

n′ for all n′ ≥ n. The event Fn is now defined to occur if and only if
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r
(n)

n′ = r̄
(n)

n′ for all n′ ≥ n. (The latter condition implies the survival of the process {X(n)
n′ }n′≥n

and is equivalent to it in the earlier skip-free case.) Furthermore, the sequence {Fn}n∈Z+
continues to satisfy conditions (F1) and (F2) of Section 2, provided that we can show that the
common probability p′ of the events Fn is strictly positive.

As before, we define the events An of Theorem 1 by An = Fn for all n, so that the times
τk are once more the times of successive occurrences of the events Fn. It follows from the
definition of the latter events that condition (21) continues to hold for those n ≥ 0 and m > 0
such that event Fn+m occurs. Thus, the conditions of Corollary 1 hold as in the skip-free case,
and indeed the entire argument of that case also holds in the present more general case, subject
only to the above proviso that P(Fn) > 0. Thus, in this case, we once more obtain Proposition 1
(with p replaced by p′) and Corollary 4 describing the behaviour of the right-endpoint process.

That p′ > 0 is shown by Mountford and Sweet [23]—in the most difficult part of their
paper—using a block construction and under a condition on the random sets ηn+1,x which
limits the extent of the dependence between the events {a ∈ ηn+1,x}. While it seems likely that
p′ > 0 in the present slightly more general model and that this should not be too difficult to
show, we do not pursue this here.

3.2. A three-state contact process with immunisation

We consider a model in which the susceptibility of sites to infection depends on whether
they have been previously infected. As noted above, such models (in continuous time) have
been considered by a number of authors (see [12], [26], and [28]). We show here how right-
endpoint, and hence growth, behaviour can be deduced for a model with immunisation, in
which previously infected sites are more difficult to infect than those which have not previously
been infected. What is interesting here is that we do not have monotonicity of the process
in the initial level of infection, in that the introduction of additional infected sites at time 0
may possibly, by premature infection and then immunisation of neighbouring sites, reduce
the number of infected sites at subsequent times (see [26] for details). This is in contrast to
the two-state contact process and to the ‘reverse-immunisation’ three-state process mentioned
earlier. However, in the present model there do still exist sufficient monotonicity-preserving
couplings, between instances of the process with suitably different initial states, as to enable
progress to be made with a little extra care, notably in the definition below of the ‘future’ events
Fn of Section 2 and below. A further complication is that the events An of Section 2 are no
longer simply defined by An = Fn, but rather the occurrence of the event An depends both on
the past and future behaviours of the process {ξn′ }n′≥1 relative to the time n.

We take our argument in stages: we consider first the model, then its formulation as a
stochastic recursion suitable for the application of the theory of Section 2, and then the definition
of the events Fn and the times τk of Section 2; finally, we apply the earlier theory and such
additional arguments as are necessary to obtain our results.

3.2.1. The model. The varying susceptibility of sites forces a more careful identification
between sites at one time period and another. We therefore focus on the following generalisation
of a simple oriented percolation model, which possesses the skip-free property (18) identified
in the previous section and which is the discrete-time analogue of the three-state nearest-
neighbour contact process with a similar immunisation property. The model corresponds to
oriented percolation through time on the integers in which, given the state of the process at
time n, each site which would potentially be infected at time n + 1 is only actually infected
with some fixed probability q, independently of all else, unless it has never previously been
infected, in which case it is infected with probability 1.
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The state Xn of the process {Xn}n≥0 at time n is given by Xn = {Xn(x), x ∈ Z}, where
each Xn(x) ∈ {−1, 0, 1}, and where this has the interpretation

Xn(x) =

⎧⎪⎨⎪⎩
−1 if the site x is uninfected for all n′ ≤ n,

0 if the site x is uninfected at time n but has previously been infected,

1 if the site x is infected at time n.

In order to obtain a spatially symmetric model and to maintain the above skip-free property,
we make the restriction that, at each time n, the set of sites x which possibly may be infected
(Xn(x) = 1) is the set of integers x ∈ Z such that n + x is even. This will follow from
the specification of the dynamics of the process below, provided we require that only evenly
numbered sites may be infected at time 0. (In these dynamics, which we make precise below, a
site which is infected at time n reverts to state 0 at time n+ 1; a site which is in state −1 or 0 at
time n remains in the same state at time n+1 unless it becomes infected at time n+1, in which
case its state becomes 1.) The above restriction on the locations of the infected sites at any
time is of a purely technical nature and is not necessary is the (more natural) continuous-time
version of the process.

We assume therefore thatX0 is such thatX0(x) �= 1 for odd x. The stateXn+1 of the process
is obtained from Xn as follows: for each n and each x ∈ Z such that n + x is even, associate
a random set ηn+1,x ⊆ {−1, 1}; the random sets ηn+1,x are assumed i.i.d. over all n and all x.
Define also, for each n, the set of ‘potentially infected’ sites Yn+1 at time n+ 1, given by

Yn+1 =
⋃

{x : n+x even, Xn(x)=1}
(x + ηn+1,x).

Then, for x ∈ Yn+1 such that Xn(x) = 0, we take Xn+1(x) = 1 with probability q and
Xn+1(x) = 0 with probability 1 − q, independently of all else; for x ∈ Yn+1 such that
Xn(x) = −1, we take Xn+1(x) = 1 with probability 1. For x /∈ Yn+1, we take Xn+1(x) = −1
if Xn(x) = −1 and Xn+1(x) = 0 otherwise. (Note that, by induction, these dynamics do
indeed imply the property that, for all n and all x, we may only have Xn(x) = 1 when n + x

is even. Note also that there is no additional generality in allowing the above probability 1,
that a never previously infected site in the set Yn+1 becomes infected, to be replaced by any
other probability q ′ ≥ q: in such a case we may instead simply redefine the distribution of the
random sets ηn+1,x to correspond to replacing each such set by the empty set with probability
1 − q ′, independently of all else; we then replace q ′ by 1, and q by q/q ′, to re-express the
model as an instance of that already considered.)

We shall say that the process {Xn}n≥0 survives to time n if Xn(x) = 1 for at least one x
and that it survives if it survives to all times n ≥ 0. We assume that the process {Xn}n≥0 is
supercritical, i.e. that, for any X0 such that X0(x) = 1 for at least one x, there is a strictly
positive probability that the process survives. Note that, if X′

0 is obtained from X0 by defining
X′

0(x) = max(0, X0(x)) for all x, and the resulting process {X′
n}n≥0 allowed to evolve as above,

then, in this coupling, the survival of the process {X′
n}n≥0 implies that of the process {Xn}n≥0.

The former process may be viewed as an instance of the basic two-state contact process. It
follows in particular that the supercriticality of the present three-state process is equivalent to
that of the two-state process obtained as above.

Given the process {Xn}n≥0 for each n, define rn = max{x : Xn(x) = 1} to be the right
endpoint of Xn (with, as usual, rn = −∞ when Xn(x) �= 1 for all x). Our interest is in the
behaviour of the process {rn}n≥0 for suitably chosen initial states X0. (As usual, this, taken
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together with the corresponding behaviour of the left-endpoint process, characterises the growth
of the process {Xn}.)
3.2.2. Formulation as a stochastic recursion and coupling. We now reformulate the process
{Xn}n≥0 as a stochastic recursion (1) as in Section 2. The i.i.d. driving sequence {ξn}n≥1 is
given, for each n ≥ 0, by the pair ξn+1 = (ξ ′

n+1, In+1). Here ξ ′
n+1 = {ξ ′

n+1,z}z≤0, z even and
each ξ ′

n+1,z ⊆ {−1, 1} is a random set with the common distribution of the random sets ηn+1,x
above. Furthermore, In+1 = {In+1,z}z≤0, z even and each In+1,z is an indicator random variable
which takes the value 1 with probability q and is 0 otherwise. For each n, the random elements
ξ ′
n+1 and In+1 are independent; furthermore, the random sets ξ ′

n+1,z are independent over all z,
as are also the random variables In+1,z. The process {Xn}n≥0 is now updated as described
above, via the stochastic recursion (1), taking, for each n and x,

ηn+1,x = ξ ′
n+1,x−rn , (22)

analogously to (20). Furthermore, given n, let r ′n+1 be the rightmost point of the set Yn+1
defined above; in the case where x′ ∈ Yn+1 is such that Xn−1(x

′) = 0 or Xn−1(x
′) = 1, we

take
Xn+1(x

′) = In+1,x′−r ′n+1
, (23)

while, for x′ ∈ Yn+1 such that Xn−1(x
′) = −1, we already have Xn+1(x

′) = 1.
For each n ≥ 0, let {X̂(n)

n′ }n′≥n be any version of the process {Xn′ }n′≥n, started at time n
and defined through the above stochastic recursion (1) using (22) and (23) (with X̂(n)

n′ replacing
Xn′ ), in which X̂(n)n (0) = 1 and X̂(n)n (x) = −1 for all x > 0. Let {r̂ (n)

n′ }n′≥n and {l̂(n)
n′ }n′≥n

respectively be the left- and right-endpoint processes associated with this process (i.e. r̂ (n)
n′ =

max{x : X̂(n)
n′ (x) = 1}, with r̂ (n)

n′ = −∞ if no such x exists, and l̂(n)
n′ = min{x : X̂(n)

n′ (x) = 1},
with l̂(n)

n′ = ∞ if no such x exists). (Note that, for each n′ ≥ n, it is only possible to have

X̂
(n)

n′ (x) = 1 at those sites x such that n′ − n + x is even. Since our various processes will
eventually be coupled starting from their right endpoints, this is as it ought to be.)

Define also the particular version {X(n)
n′ }n′≥n of the above process, in which

X(n)n (x) =

⎧⎪⎨⎪⎩
1 if x = 0,

0 if x < 0,

−1 if x > 0.

Also, let {r(n)
n′ }n′≥n and {l(n)

n′ }n′≥n respectively denote the associated right- and left-endpoint
processes. Note that it follows from the skip-free property of the dynamics of the process
{X(n)

n′ }n′≥n that, for all n′ to which this process survives,

X
(n)

n′ (x) �= −1 for all x ≤ r
(n)

n′ , X
(n)

n′ (x) = 0 for all x < l
(n)

n′ . (24)

We now require the following lemma, which is a simple generalisation of the classical result
for the nearest-neighbour two-state contact process on Z, and which gives the basic coupling
on which the application of the theory of Section 2 depends.

Lemma 1. For any instance of the process {X̂(n)
n′ }n′≥n defined above and for the particular

instance given by {X(n)
n′ }n′≥n for each n′ to which the latter process survives,

X̂
(n)

n′ (x) = X
(n)

n′ (x) for all x ≥ l
(n)

n′ . (25)

In particular, we have r̂ (n)
n′ = r

(n)

n′ for all n′ to which the process {X(n)
n′ }n′≥n survives.
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Proof. The proof is also a simple generalisation of that which is well known for the classical
two-state case, and is given by induction on n′ ≥ n. Thus, suppose that (25) holds for some
particular n′ ≥ n such that the process {X(n)

n′ }n′≥n survives to (at least) time n′ + 1. It then
follows from the dynamics of the two processes involved, and using the observations in (24),
that, for every x such that X(n)

n′+1(x) = 1, we also have X̂(n)
n′+1(x) = 1. Furthermore, since the

random sets ηn+1,x are subsets of {0, 1} (the skip-free property of the present model), any site
x ≥ l

(n)

n′+1 such that X̂(n)
n′+1(x) = 1 is necessarily infected (at least) by some site x′ such that

X
(n)

n′ (x′) = 1, so that X(n)
n′+1(x) = 1 also (i.e. no additional infection can pass from the left of

l
(n)

n′ at time n′ to the right of l(n)
n′+1 at time n′ + 1). Since we also have X(n)

n′+1(x) �= −1 and

X̂
(n)

n′+1(x) �= −1 for all x ≤ r
(n)

n′+1, and X̂(n)
n′+1(x) = X

(n)

n′+1(x) = −1 for all x > r
(n)

n′+1, then (25)
holds with n′ replaced by n′ + 1.

We shall also require below the particular instance {X̄n}n≥0 of the process {X̂(0)n }n≥0 defined
above (and started at time 0), given by

X̄0(x) =
{

1 if x ≤ 0,

−1 if x > 0.
(26)

This process is useful since, a.s., it survives for all time. This enables us to make some necessary
definitions without an a priori need to condition on survival. Also, define {r̄n}n≥0 to be the
right-endpoint process associated with the process {X̄n}n≥0.

3.2.3. Definition of events Fn and times τk . We define the sequence of events {Fn}n∈Z+ of
Section 2, analogously to Section 3.1, by saying that the event Fn occurs if and only if the
process {X(n)

n′ }n′≥n survives for all future time, i.e. r(n)
n′ > −∞ for all n′ ≥ n. It again follows

from the definition of the process {X(n)
n′ }n′≥n that the sequence {Fn}n∈Z+ satisfies conditions

(F1) and (F2) of Section 2. (That the common value p, say, of P(Fn) is strictly positive follows
once more from our earlier assumption of supercriticality.)

For each n ≥ 0, define the event

Hn = {X̄n(x) = −1 for all x > r̄n}
(where {X̄n}n≥0 is the process defined above with initial state X̄0 given by (26)). Note that
an equivalent definition is that Hn = {r̄n ≥ r̄n′ for all n′ < n}, i.e. that n is such that at that
time the right-endpoint process {r̄n}n≥0 is at a record value. Note also that the eventH0 always
occurs, and further that, for all n, we have Hn ∈ σn.

We define the sequence of events {An}n≥0 of Theorem 1 by, for each n, An = Hn ∩ Fn. As
usual the random times τk are the successive occurrence times of the events An. (The more
complex definition of the eventsAn, in comparison with that of Section 3.1, is required to make
the right-endpoint couplings below work correctly.)

We can now state and prove the following analogue of Proposition 1.

Theorem 3. The successive (segments of) processes {ξτk+1, . . . , ξτk+1}, k ≥ 0, are i.i.d.
Furthermore, the distribution of each of these lengths is light tailed, i.e. geometrically bounded,
and in particular possesses moments of all orders.

Proof. We show first that the sequences of events {Fn}n≥0 and {Hn}n≥0 defined above are
such that the conditions of Corollary 1 are satisfied. Note first that it follows from Lemma 1
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(applied at the time n) that, for any n such that the event Hn occurs,

r̄n′ = r̄n + r
(n)

n′ for all n′ ≥ n to which the process {X(n)
n′ }n′≥n survives. (27)

We first show condition (b) of Corollary 2. Fix n ≥ 0 andm > 0. Given that the eventAn occurs
(which implies both the occurrence of the event Hn and the survival for all time of the process
{X(n)

n′ }n′≥n), it follows from (27) that the eventHn+m occurs if and only if there occurs the event
E′′
n,n+m that the process {r(n)

n′ }n′≥n is at a record value at time n+m, i.e. r(n)n+m ≥ r
(n)

n+m′ for all
0 ≤ m′ < m. Condition (b) of Corollary 2 is now immediate, since the array {E′′

n,n+m}n≥0,m>0
trivially possesses the properties required by that condition. For condition (a) of Corollary 2,
again fix n ≥ 0 andm > 0. Given that the eventHn ∩An+m occurs, it follows from (27) (both
as stated and with n replaced by n+m) that the event An occurs if and only if there occurs the
event E′

n,n+m that the process {X(n)
n′ }n′≥n survives to time n+m. Condition (a) of Corollary 2

now follows, since again the array {E′
n,n+m}n≥0,m>0 trivially possesses the properties required

by that condition. Thus, the first statement of the present theorem follows from Corollary 2.
In order to prove the second statement, define the random time τ ′ = {min n ≥ 1 : An occurs}.

As in the corresponding argument for the second statement of Proposition 1, it is sufficient to
show that the (unconditional) distribution of τ ′ is geometrically bounded.

We first show that if ρ is the first time to which the process {X(0)n }n≥0 fails to survive then,
as for the basic two-state contact process, there exists α > 0 such that

P(n ≤ ρ < ∞) ≤ e−αn, n ≥ 0. (28)

For each n ≥ 0, define the process {X̃(n)
n′ }n′≥n via the above stochastic recursion (1) and (22),

(23), with the initial state X̃(n)n given by X̃(n)n (0) = 1 and X̃(n)n (x) = 0 for all other x. Let ρ̃
be the minimum value of n ≥ 0 such that the process {X̃(n

n′ }n′≥n (started at time n) survives.
Suppose now that the process {X(0)

n′ }n′≥0 survives to time ρ̃; then, in yet another instance of the
coupling arguments used above (in which processes are ‘matched’ from their right endpoints),
it follows from the above stochastic recursion that the process {X(0)

n′ }n′≥0 necessarily survives
for all time. We deduce that if ρ < ∞ then necessarily ρ < ρ̃, and, thus, we conclude that, for
all n ≥ 0,

P(n ≤ ρ < ∞) ≤ P(ρ̃ > n). (29)

However, given the driving sequence {ξn}n≥1, the successive processes {X̃(n)
n′ }n′≥n are simply

successive instances of the basic two-state nearest-neighbour contact process, in each case
started with a single infective, launched by the sequence {ξn}n≥1 exactly as in Section 3.1. We
have already observed in that section that the time required to initiate such a process which
survives (the time to the first of the events Fn of that section) is geometrically bounded. The
required conclusion (28) now follows from this and (29).

To complete the proof, we need to show that the distribution of τ ′ is geometrically bounded.
We argue as in Section 3.1, again with a little extra complication. We again proceed forward in
time, starting at time ν1 = 1 and checking at that, and at selected subsequent times νk, k > 1,
such that the event Hνk occurs, whether the event Fνk also occurs; if it fails to do so, we wait

until the process {X(νk)
n′ }n′≥νk dies out—which we have shown it then does in a time which is

geometrically bounded—before resuming checking for Fνk+1 at the first subsequent time νk+1
such that Hνk+1 occurs. It follows, again from the right-endpoint coupling of Lemma 1 as in
the first part of the present proof, that, for each such k ≥ 1, the increment r̄νk+1 − r̄νk is equal to
the maximum value attained by the right endpoint of the process {X(νk)

n′ }n′≥νk prior to its dying
out, and so this increment is geometrically bounded. Furthermore, from the construction, the
successive increments r̄νk+1 − r̄νk are i.i.d. LetK be the number of checks required to obtain a
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success (the eventFνK occurs). Then, since each of the above checks is independently successful
with probability p > 0, the random variable K is geometrically distributed, independently of
the above increments in the right-endpoint process {r̄n}. Thus, r̄νK − r̄1 is a geometric sum of
i.i.d. geometrically bounded random variables, and so r̄νK is geometrically bounded.

Now let {r̃n}n≥0 be the right endpoint of the three-state process {X̃n}n≥0 in which X̃0(0) = 1
and X̃0(x) = 0 for x �= 0. Then, from the usual coupling r̃n ≤ r̄n for all n, and so r̃νK is also
geometrically bounded. However, {X̃n}n≥0 is simply an instance of the supercritical two-state
contact process, in which the set of initially infected sites is Z−. It follows easily from the results
of Kuczek for the regenerative behaviour of this process (as given in the previous section) that,
since r̃νK is geometrically bounded, the random variable νK is itself geometrically bounded.
Since νK is the time n to the occurrence of some event An, the result that τ ′ is geometrically
bounded now follows.

Finally, consider again any instance {X̂n}n≥0 of our three-state process, defined by the
stochastic recursion (1) using (22) and (23) as above, in which the initial state X̂0 is such that
X̂0(x0) = 1 for some x0 and X̂0(x) = −1 for all x > x0. Again, let r̂n′ = max{x : X̂n′(x) = 1}
be its associated right-endpoint process. Let F be the event that the process {X̂n}n≥0 survives.
It follows from the earlier coupling for this process (with the time τ0 replacing the time 0)
that event F occurs if and only if the process {X̂n}n≥0 survives to time τ0. Analogously to the
situation for the two-state process, we have F0 ⊆ F , and, conditional on the event F and for
all k ≥ 0,

r̂τk+n′ = r̂τ0 +
k−1∑
j=0

r
(τj )
τj+1 + r

(τk)

τk+n′ for all n′ ≥ 0.

Thus, again as for the two-state process, we have the following corollary to Theorem 3.

Corollary 5. For the process {X̂n}n≥0 and on the setF defined above, the successive (segments
of) processes {r̂τk+1, . . . , r̂τk+1}, k ≥ 0, are i.i.d. Furthermore, for some constant μ,

r̂n

n
→ μ a.s. as n → ∞

and, in the Skorokhod topology,

r̂[nt] − ntμ√
n

→ B(t) in distribution as n → ∞,

where again B is Brownian motion with some nontrivial diffusion constant.

Similar behaviour holds for the left-endpoint process for any process {Xn}n≥0 whose initial
state X0 is such that X0(x0) = 1 for some x0 and X0(x) = −1 for all x < x0. Thus, finally,
for any process {Xn}n≥0 whose initial state X0 is such that X0(x) = −1 for all x outside some
finite interval, we may deduce the behaviour, conditional on its survival, of both its left and
right endpoints. In particular, conditional on its survival, the growth rate of the process is given
by 2μ, where μ is as given by Corollary 5.

4. Infinite-bin models

In this section we consider a discrete-space infinite-bin model and its continuous-space
analogue.

In the discrete setting, we review the basic model introduced and studied in [13] (see also
[10] and [15]). We recall a stability result from [13] (see Proposition 2 below), with a new
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proof, and provide a new generalisation (see Theorem 4). We show that the both results may be
considered as applications of the techniques developed in Section 2. Then we introduce a new
continuous-space model and prove a new stability result there (see Theorem 5), by applying
again the methodology from Section 2.

4.1. Discrete-space infinite-bin model

4.1.1. Basic model. Consider an infinite number of bins arranged on the line and indexed,
say, by the nonpositive integers. Each bin can contain an unlimited number of particles (we
assume it to be finite for the moment). A configuration is either a finite-dimensional vector
x = (x−l , . . . , x0), where xi is the number of particles in bin i, or an infinite-dimensional
vector x = (. . . , x−l , . . . , x0).

The indexing by nonpositive integers is convenient because we are interested in the
asymptotic behaviour of a finite number of rightmost coordinates of vectors representing a
stochastic recursion. At each integer step, precisely one particle—the active particle—of the
current configuration is chosen according to some rule (to be given below). If the particle is in
bin −i ≤ −1 then a new particle is created and placed in bin −i + 1. Otherwise, if the chosen
particle is in bin 0 then a new bin is created to hold the ‘child particle’ and a relabelling of the
bins occurs: the existing bins are shifted by one place to the left (are re-indexed) and the new
bin is given the label 0.

To be more precise, define the configuration space X as the set of all infinite-dimensional
vectors x = (. . . , x−2, x−1, x0) with nonnegative integer-valued coordinates, which have the
following property: if x−l > 0 then x−l+1 > 0. In other words, either all the coordinates of a
configuration vector are strictly positive or there is only a finite number of nonzero coordinates,
say l+1—then these are coordinates x−l , x−l+1, . . . , x0. We endow X with the natural topology
of pointwise convergence, and let BX be the corresponding class of Borel sets generated by
this topology.

The extent of an x ∈ X is defined as |x| = l if there is l + 1 nonzero coordinates, x =
(. . . , 0, 0, x−l , . . . , x0), with the L1-norm

‖x‖ =
l∑

j=0

x−j ,

and if all the coordinates of x are positive, we set |x| = ‖x‖ = +∞.
Let N be the set of positive integers. The dynamics of the model may be defined using the

map f : X × N → X, where

f (x, ξ) =

⎧⎪⎨⎪⎩
[x, 1] if ξ ≤ x0,

x + e−k if
∑k
j=0 x−j < ξ ≤ ∑k+1

j=0 x−j , 0 ≤ k < |x|,
x + e−|x| if ξ > ‖x‖.

Here [x, 1] is a concatenation of the vector x with 1, i.e. if x = (. . . , x−l , . . . , x0) then [x, 1] =
(. . . , y−l−1, y−l , . . . , y−1, y0),where y0 = 1 and y−j−1 = x−j for j ≥ 0. Furthermore, e−j is
the infinite unit vector whose −j th coordinate is 1 with all other coordinates equal to 0. Then,
given an i.i.d. sequence {ξn}n∈Z+ of N-valued random variables and an X-valued random
variable X0 = (. . . , X−k,0, X−k+1,0, . . . , X−1,0, X0,0), we define a stochastic recursion by

Xn+1 = f (Xn, ξn+1), n ≥ 0,

where Xn = (. . . , X−k,n, X−k+1,n, . . . , X−1,n, X0,n).
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In words, the dynamics may be explained as follows. Each time n, we number again
the existing particles from the rightmost bin to the leftmost (so, if Xn takes value x =
(. . . , 0, x−l , . . . , x0) then the particles in the rightmost bin are numbered 1 to x0, in the next bin
they are numbered x0 + 1 to x0 + x−1, and so on). Then the random variable ξn is the number
of the active particle defined in the earlier description.

Fix a nonnegative integer k, and let Xn(−k) be the (k + 1)-dimensional projection of Xn,

Xn(−k) = (X−k,n, X−k+1,n, . . . , X0,n).

The following result may be found in [13].

Proposition 2. Assume that {ξn}n∈Z+ is an i.i.d. sequence. Assume also that P(ξi = 1) > 0
and Eξi < ∞. Then, for any integer k ≥ 0, Xn(−k) converges to a proper limiting random
vector in the total variation norm. Therefore, Xn weakly converges to its proper limit.

Based on the theory from Section 2, we can provide a short alternative proof of Proposition 2.
We start with the simplest case k = 0. In this case, the proof is based on Corollaries 1 and 3.

In order to avoid trivialities, assume that P(ξi = 1) < 1.
Let the functions Ri of Section 2 be given by Ri(Xn+i , Xn) = X0,n+i . Furthermore, let

Fn =
⋂
i≥1

{ξn+i ≤ i} ≡
⋂
i≥1

Fn,i . (30)

Note that, since Eξi < ∞, the events Fn have strictly positive probability, and indeed satisfy
conditions (F1) and (F2) of Section 2. Define now, for each n, the event An = Fn. Clearly,

Fn ∩ Fn+m =
m⋂
i=1

Fn,i ∩ Fn+m,

and so condition (7) of Corollary 1 holds. Furthermore, condition (15) of Theorem 2 holds
because, given the event Fn, the future process of placing particles is the same for all histories
up to time n.

Finally, the aperiodicity condition of Corollary 3 follows since

P(τn+1 − τn = 1) =
∑
l

P(τn = l, τl+1 = l + 1)

=
∑
l

P(τn = l)P(Fl+1 | Fl)

= P(F1 | F0)

=
∞∏
i=2

P(ξi ≤ i − 1 | ξi ≤ i)

≥
∞∏
i=2

P(ξi ≤ i − 1)

> 0.

The proof of Proposition 2 now follows in the case k = 0 from Corollaries 1 and 3.
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For the proof of general k > 0, we need events of the form Bn = Hn ∩Fn, where the events
Fn are again as given by (30) and

Hn =
⋂

1≤i≤k
{ξn+1−i = 1}.

We may observe that, given Hn, we have Xn(−k) = (1, 1, . . . , 1).
Now we define the events An as follows: An = ∅ for n < 2k and, for n ≥ 2k,

An =
k−1⋂
i=1

Bc
n−i ∩ Bn,

which may be represented as An = En−k,n ∩ Fn for a stationary sequence En−k,n ∈ σn−k+1,n.
Finally, we may take Ri(Xn+i , Xn) = Xn+i (−k). Then all conditions of Theorem 2 are
satisfied, and the result again follows from Corollary 3, on noting that once more aperiodicity
follows from the condition P(ξi = 1) > 0.

Remark 5. This model has close links to the model from [9]; see [13] for more details.

4.1.2. Extension of the basic model. Consider the infinite-bin model introduced in Section 4.1.1,
and let pi = P(ξ = i). One of the main conditions in Proposition 2 is that p1 > 0. We assume
now that this condition is violated and that instead the following condition holds: there exist
two positive integers 1 < i1 < i2 such that

pi1 > 0 and pi2 > 0. (31)

Then the following statement holds.

Theorem 4. Assume that {ξn}n∈Z+ is an i.i.d. sequence with a common finite mean Eξi . Assume
also that p1 = 0 and that condition (31) holds. Assume further that the numbers i1 and i2 are
mutually prime. Then, for any integer k ≥ 0, Xn(−k) converges to a proper limiting random
vector in the total variation norm. Therefore, Xn weakly converges to its proper limit.

The proof of Theorem 4 will be based on the following simple observation (see, e.g. [8]).

Lemma 2. For any two integers 1 < i1 < i2, there exist a positive integer m and a sequence
of integers j1, j2, . . . , jm−1 ∈ {i1, i2} such that, for any n > m and any vector Xn−m as in
Section 4.1.1, we have

Xn,01Bn ≥ i11Bn a.s.,

where the events Bn are defined as

Bn = {ξn = i2} ∩
m−1⋂
l=1

{ξn−m+l = jl} ∩ {ξn−m = i2}. (32)

Proof of Theorem 4. By the conditions of the theorem, the stationary events Bn defined
by (32) have a positive probability.

Let r = j1(k + 1). For n ≤ r , we let An = ∅. For n > r , let An = Hn ∩ Fn, with

Hn = Bn−r ∩Dn, where Dn =
⋂

1≤l≤r
{ξn+1−l = i1},

and where
Fn =

⋂
l≥1

{ξn+l ≤ i1 + l − 1}.
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Clearly, for n > r , given the occurrence of the event Hn, all the coordinates of the vector
Xn(−k) are equal to i1. Thus, given the event An, the placings of the particles numbered
n + 1, n + 2, . . . do not depend on the left tail of the vector Xn or on the past values of the
vector Xj , j < n.

One can check directly that both conditions (9) and (10) are satisfied.
We may now define the functions Ri of Section 2 by Ri(Xn+i , Xn) = Xn+i (−k). Then

condition (15) holds, which implies conclusion (16) of Theorem 2(a).
Observe further that Bn+l ∩ Dn = ∅ for any 1 ≤ l ≤ r . Therefore, An ∩ An′ = ∅ for all

n < n′ with n′ − n ≤ r + i2 − i1 and P(An ∩ An′) > 0 if n′ − n > r + i2 − i1. The latter
implies the aperiodicity condition of Corollary 3, and the required result follows.

4.2. Continuous-space model with varying link lengths

In this section we introduce and study a new model which is a continuous-space extension
of the infinite-bin model, and which has applications in, for example, queueing theory. As
described below, it may be viewed as a model for the locations of points on the negative real
line, in which at each successive time precisely one of these points gives birth to a further point,
and in which it is convenient to associate a link between this child point and its parent. We thus
think of it as a random links model. Once again, our aim is to study the asymptotic behaviour
of this model as ‘seen from the right’.

Before introducing the new model, we remark that the basic model of Section 4.1.1 may be
described slightly differently. Namely, we may assume that, at each time n, particle number
−j may be active with some probability, say p(−j). Each active particle proposes to put a new
particle in the bin next to its own (in other words, at distance 1 to the right), and the rightmost
active particle wins. If particles become active independently then this description coincides
with the description proposed earlier if we let P(ξ > j) = ∏j

i=1(1 − p(−i)).
Now assume, for simplicity, that all the p(−j) are equal and introduce the following

continuous-space extension of the model, in which the positions of particles are real valued:
at time n, each active particle (say particle −j ) proposes a location for the new particle at a
random distance, ln,−j to the right of particle −j (here the ln,−j needs not be integer), and the
rightmost proposed location (say that proposed by particle −j0) wins. Then we say there is a
link of length ln,−j0 from particle −j0 to the new particle.

Remark 6. One may view this model as a model of a system with infinitely many servers
and with random constraints. There is an infinite queue in front; each successive client n is
allocated to a free server, but the start of its service is delayed by the maximum of times ln,−j of
all previous clients that are active; see e.g. [13] and the references therein for further comments.

Remark 7. One can consider various natural generalisations of this setting where the same
methodology may be easily applied. For example, we may assume that, at any time, the first
K ≥ 0 particles cannot be active and that all the others become active independently, with
either equal probabilities p ∈ (0, 1] or varying probabilities.

Here is a formal description of the model. Let X be the space of left-infinite vectors of the
form x = (. . . , x−k, x−k+1, . . . , x−1, x0), where x0 = 0 and x−k ≤ x−k+1 for all k ≥ 1. We
also assume that either all the coordinates of x are finite or some of them are equal to −∞. In
the latter case, due to the monotonicity, there will be only a finite number of finite coordinates,
say, x−j = −∞ for all j > k and x−j > −∞ for all j ≤ k for some k = 0, 1, . . .. Then we
write x = (x−k, . . . , x0) for short. We denote by X0 the space of finite-dimensional vectors
(which may be viewed as a subspace of X).
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Let L be the space of infinite sequences l = (. . . , l−k.l−k+1, . . . , l0) consisting of non-
negative real-valued elements, and let Q be the space of infinite sequences of the form q =
(. . . , q−k, q−k+1, . . . , q0), where each q−k ∈ {0, 1}.

Introduce the function
f : X0 × L × Q → X0

using the following rule. For x = (x−k, . . . , x0), let

h := h(x, l, q) = max{i : q−i=1}(x−i + l−i )

and
h := h(x, l, q) = x−k

if q−i = 0 for all 0 ≤ i ≤ k.
If h ≤ 0 and, say, x−j ≤ h ≤ x−j+1 for some j , then

f (x, l, q) = (x−k, . . . , x−j , h, x−j+1, . . . , x0)

and if h > 0 then

h(x, l, q) = (x−k − h, x−k+1 − h, . . . , x0 − h, 0).

In other words, if h ≤ 0, we add an extra coordinate h, and if h > 0, we again add the coordinate
and then subtract h from all coordinates of the new vector.

Remark 8. An equivalent way to describe the dynamics is to use point processes. Instead of
considering vectors, we may consider finite-ordered sequences of points, with the rightmost
point at 0.

Now we introduce stochastic assumptions. Let {ln} and {qn} be two i.i.d. sequences of
vectors that do not depend on each other. Assume also that each ln and each qn consists of i.i.d.
random variables, ln,j and qn,j . Let q = P(qn,j = 0) = 1 −p with p = P(qn,j = 1). Assume
that P(l0,0 > 0) = 1 and that

E(l0,0)
2 < ∞, (33)

and let
a = El0,0.

Recall that vectors Xn always have infinitely many coordinates. Our model is now defined
by starting from a fixed vector X0 ∈ X0 and running the stochastic recursion

Xn+1 = f (Xn, ln, qn).

Our aim is now to establish the following analogue of Theorem 4 for the discrete-space
model.

Theorem 5. For any j ≥ 0, the finite-dimensional projections (Xn,−j , . . . , Xn,0) of vectors
Xn converge to a proper limiting vector in the total variation norm.

Proof. Let νn = min{i : qn,−i = 1}. Then {νn} is an i.i.d. sequence with a common
geometric distribution. It is convenient to us to assume this sequence to be doubly infinite,
−∞ < n < ∞.
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Analogously to Section 4.1.1, introduce the events

F (1)n =
⋂
j≥1

{νn+j ≤ j}

and conclude that these events form a stationary ergodic sequence, each with a strictly positive
probability

P(F
(1)
0 ) =

∏
j≥1

(1 − qj ) > 0,

and, moreover, satisfy the monotonicity condition (7). Thus, by Corollary 1, the times 0 <
T1 < T2 < · · · of the occurrences of the events F (1)n form a stationary renewal sequence. We
may easily extend this sequence to the stationary renewal sequence · · · < T−1 < T0 ≤ 0 <
T1 < T2 < · · · on the whole real line.

Furthermore, the i.i.d. cycle lengths tk = Tk+1 − Tk, k �= 0, have a light-tailed distribution
(i.e. have a finite exponential moment) and, therefore, a finite positive mean b = Et1. Also,
the cycle T1 − T0 has a light-tailed distribution.

Assume for simplicity that the initial vector X0 corresponds to a single particle at the origin
with all the others at −∞. Number this particle 0. Each subsequent configuration Xn adds
precisely one further, finitely located, particle to the configuration Xn−1 (with the existing
particles relocated if necessary). Number this particle n. Thus, particles are numbered in
the order of their creation, and are assumed to keep their numbering for all subsequent times
(including when they are relocated). Now colour ‘red’ all particles numbered T1, T2, . . ., i.e.
those created at the occurrence times of the events F (1)n ; colour ‘green’ the remaining particles.
For each n and each k such that n > Tk+1, consider the relative locations of the particles in
vector Xn. The following observations are clear:

• the red particle Tk is located to the left of the red particle Tk+1, and the distance between
them is a random variable, say, dk which is stochastically bigger than the ‘typical’ link
l0,0; in particular, Edk ≥ a > 0;

• all the green particles numbered Tk + 1, . . . , Tk+1 − 1 are located between these two red
particles;

• the relative locations and, in particular, the distances between particles numbered Tk, . . . ,
Tk+1 stay the same for all n > Tk+1.

Therefore, if n = Tk+1 for some k ≥ 0 then the tk last coordinates of vector Xn take values
between −dk and 0, the next (to the left) tk−1 coordinates take values between −dk−1 − dk
and −dk , . . ., tk coordinates take values between −d1 − d2 − · · · − dk and −d2 − · · · − dk ,
and then T1 coordinates are smaller than −dk − · · · − d1 (recall that there are also infinitely
many coordinates equal to −∞). Therefore, the vectorXn is smaller (coordinatewise) than the
vector, say Yn, with infinitely many finite coordinates where the last tk coordinates equal 0, the
next tk−1 coordinates equal −dk , . . ., t1 coordinates equal −d2 − · · · − dk , t0 coordinates equal
−dk − · · · − d1, t−1 coordinates equal −dk − · · · − d0, etc.

Furthermore, we may define vectors Yn for all n (and not only for those with 1
F
(1)
n

= 1) as
follows: if Tk ≤ n < Tk+1 for some k, we obtain the vector Yn by concatenating the vector YTk
with n − Tk coordinates equal to 0, i.e. Yn = (. . . , YTk , 0, 0, . . . , 0). Then, clearly, Yn ≥ Xn,
coordinatewise, for all n ≥ 0.

Since the sequence {Tn} is stationary and renewal, the vectors {Yn} form a stationary ergodic
sequence. For any n, let Tn,0 ≤ n be the last occurrence time of the events F (1)k before or at
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time n, let Tn,−1 < Tn,0 the previous such time, and so on. Furthermore, let dn,i be the distance
between particles Tn,i−1 and Tn,i in the vector Yn. By stationarity, the random variable Tn,0 −n
has the same distribution as T0 and the random vectors {(Tn,i − Tn,i−1, dn,i)}, i ≤ 0, do not
depend on Tn,0 and are i.i.d., with the same distribution as (t1, d1).

Let b0 = E|T0|. For ε ∈ (0, 1), consider the following events:

Hn = {n− Tn,0 ≤ b0(1 + ε)} ∩
⋂
i≤0

{Tn,i − Tn,i−1 ≤ b(1 + ε), dn,i ≥ a(1 − ε)}. (34)

These events form a stationary ergodic sequence and, by the strong law of large numbers, have
a positive probability for any ε > 0. Furthermore, one can see that, for n′ < n, if the events
Hn′ and F (1)

n′ occur, with Tn,j = n′ for some j ≤ 0, then, for event Hn to occur, it is sufficient
for (34) to hold only for j between i and 0. Namely,

Hn′ ∩ F (1)
n′ ∩ {Tn,j = n′} ∩Hn = Hn′ ∩ F (1)

n′ ∩ {Tn,j = n′} ∩ En′,n, (35)

where the event En′,n belongs to the σ -algebra σn′,n and does not depend on j . Let Ân =
Hn ∩ F (1)n . Taking the union in all j in (35), we obtain condition (10) with Ân in place of An.
Condition (9), again with Ân in place of An, may be verified similarly.

Let the constants c−j , j ≥ 0, be defined as

c−j = 0 for 0 ≤ j ≤ b0(1 + ε)+ b(1 + ε)

and, for r ≥ 1,

c−j = ra(1 − ε) for (1 + ε)(b0 + rb) < j ≤ (1 + ε)(b0 + (r + 1)b).

Introduce now a second ‘future’ event

F (2)n =
{
ln+1,0 ≥ sup

j>0
(ln+1,−j + cn,−j )

}
∩

{
for all i > 1, ln+i,νn+i ≥ sup

j>i

(ln+1,−j + cn,−j )
}
.

Clearly, for each n, the events Hn, F (1)n , and F (2)n are mutually independent. Furthermore, the
events F (2)n form a stationary ergodic sequence and, by (33), have a strictly positive probability.
The meaning of the event F (2)n is: all locations for ‘new’particles (with numbers greater than n)
generated by ‘old’ particles (with numbers less than n) are relatively small; thus, given the
simultaneous occurrence of the three events Hn, F (1)n , and F (2)n , all future links (starting from
time n) are established only between particles numbered n, n+ 1, n+ 2, . . ..

LetFn = F
(1)
n ∩ F (2)n , and letAn = Hn∩Fn. We may conclude that the stationary sequence

of events {Fn} satisfy properties (F1) and (F2). Furthermore, an extra intersection with events
F
(2)
n preserves properties (10) and (9), so the conclusion of Corollary 2 holds.

The conclusions of Theorem 1 thus hold. It is also easy to verify aperiodicity for the times
τn defined in Theorem 1, because P(τ2 = 1) > 0. Then we may take the random functions Ri
of Section 2 to be given by Ri(Xn+i , Xn) = (Xn,−j , . . . , Xn,0) for any fixed j , and conclude
that the conditions of Theorem 2 and Corollary 3 are satisfied too. The result now follows from
the latter corollary.

5. Relation to Harris ergodicity

In this section we revisit the basic concept of Harris ergodicity and show that it may be
considered as a particular case of the approach developed in Section 2.
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It is known (see, e.g. [6], [7], and [18]) that a time-homogeneous Markov chain {Xn} taking
values in a measurable state space (X,BX) may be represented as a stochastic recursion (1)
with i.i.d. driving sequence {ξn} if one assumes BX to be countably generated. Moreover,
without loss of generality, one may assume that the random variables ξn are real valued and
uniformly distributed on the interval (0, 1).

Recall the following classical definition.

Definition. A time-homogeneous aperiodic Markov chain {Xn} taking values in a general state
space (X,BX) is Harris ergodic (or Harris positive recurrent) if the following conditions
hold:

(i) there exist a set V ∈ BX, a number 0 < p ≤ 1, an integer m ≥ 1, and a probability
measure ϕ on (X,BX) such that

(i.1) if τ ≡ τ(V ) := min{n ≥ 1 : Xn ∈ V } is the first hitting time of the set V then, for
any x ∈ X,

Px(τ < ∞) = 1,

(i.2) supx∈V Exτ < ∞,

(ii) for any x ∈ V ,
Px(Xm ∈ ·) ≥ pϕ(·),

where Px and Ex respectively denote the probability and expectation conditional on {X0 = x}.
Note that, frequently, the set V is called positive recurrent if conditions (i.1)–(i.2) hold.

The following result holds (see, e.g. [22]).

Proposition 3. Assume that the Markov chain {Xn} is Harris ergodic. Then there exists a
unique stationary (invariant) distribution π , which is also limiting in the sense of convergence
in the total variation norm: for any X0 = x ∈ X,

sup
B∈BX

|Px(Xn ∈ B)− π(B)| → 0 as n → ∞. (36)

Conversely, if (36) holds for any initial value X0 = x ∈ X then the Markov chain is Harris
ergodic.

The ‘coupling-type’ interpretation of the dynamics of a Harris ergodic Markov chain was
proposed in [2] and [24]; see also [6], [7], and [14]. This may be done as follows: we run
a Markov chain until it hits the set V (say at time n), then we flip a coin (independently of
everything else) with probability p of getting a head. If this happens then we say that n+m is
the success time when the Markov chain ‘forgets its past’, i.e. Xn+m has distribution ϕ which
is independent of what has happened before time n (but may depend on what has happened at
times n+ 1, . . . , n+m− 1). If, on the contrary, we get a tail (which occurs with probability
1 − p), we wait for the first time after time n+m when the Markov chain visits V again and
then independently flip another coin. After a geometric number of trials, we come to a success
with probability 1. It is well known (see, e.g. [1] or [22]) that the Harris ergodic Markov
chain may be made regenerative if m = 1, and wide-sense regenerative and possessing the
one-dependence property if m ≥ 2 (the definitions are given in Section 2 after Theorem 4).
More precisely, let 0 = T0 < T1 < T2 < · · · be the times of successes. Then the cycle lengths
Ti+1 − Ti are i.i.d. in i ≥ 0, and the cycles (Ti+1 − Ti, XTi , XTi+1, . . . , XTi+1−1) are i.i.d.
in i ≥ 1 if m = 1, and are one-dependent and identically distributed (for i ≥ 1) if m ≥ 2.
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The one-dependence follows since if m ≥ 2 then the set {n+ 1, . . . , n+m− 1} is nonempty,
and if, say, Ti = n+m for some i, then the values Xn+1, . . . , Xn+m−1 belong to the ith cycle,
but they also depend, in general, on the value Xn+m that belongs to the (i + 1)th cycle.

For self-containedness, we recall in more detail the coupling construction of Athreya and
Ney [2], in the particular case m = 1; see [27, p. 366] for the general case. Let P(x, B) be
the transition kernel of the Markov chain. Then, using condition (2) in the above definition of
Harris ergodicity, for x ∈ V ,

P(x, B) = pϕ(B)+ (1 − p)
P (x, B)− pϕ(B)

1 − p
≡ pϕ(B)+ (1 − p)Q(x, B),

where Q is also a transition probability kernel.
Now we provide the coupling construction. First, let {αn} be an i.i.d. sequence with

common distribution P(αn = 1) = 1 − P(αn = 0) = p. Second, let {ζn} be another i.i.d.
sequence (having, say, a distribution which is uniform on (0, 1)) that does not depend on {αn}.
Furthermore, let g1 : X × (0, 1) → X and g2 : V × (0, 1) → X be two measurable functions
such that g1(x, ζn) has distribution P(x, ·) and g2(x, ζn) has distribution Q(x, ·). Finally, let
{ψn} be a third independent i.i.d. sequence with distribution ϕ.

Then the dynamics of Xn are defined as follows:

• if Xn ∈ V and αn+1 = 1, then Xn+1 = ψn+1;

• if Xn ∈ V and αn+1 = 0, then Xn+1 = g2(x, ζn+1);

• if Xn ∈ V̄ then Xn+1 = g1(x, ζn+1).

Clearly, Xn may be represented as a stochastic recursion with an i.i.d. driving sequence ξn =
(ζn, αn, ψn). Therefore, for m = 1, Proposition 3 may be viewed as a particular case of
Corollary 3, with Hn = {Xn ∈ V }, Fn = {αn+1 = 1}, An = Hn ∩ Fn, τn = Tn, and
Ri(Xτn+i , Xτn) = Xτn+i . This follows since condition (7) and then conditions (9) and (10) are
immediately verified.

In the case m > 1, we need a slightly more elaborated coupling construction to conclude
that again Proposition 3 may be viewed as a particular case of Corollary 3.

6. Comments

There is an extensive list of other examples, and we mention here a few only.
First, there are directions where the methodology may be applied directly: Markov chains

with long memory (see, e.g. [9], [11], and [16]); excited random walks (see, e.g. [4], [5], and
[21]); modified random walks (see, e.g. [25]).

Second, there are models which involve conditioning on the infinite future which—in contrast
with examples considered in this paper—has probability 0 in the original probability space; see,
e.g. [3].

A further interesting example of an embedded regenerative structure is of shifts of Brownian
motions; see [20].

In the case where the future event Fn admits a representation

Fn =
⋂
k≥n

Fn,k,

where theFn,k ∈ σn,k satisfy the monotonicity property (7), one can introduce a general scheme
for ‘perfect simulation’ of the process along the lines of, say, [13].
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We also comment that our results may be directly extended onto more general models where
either the elements of the driving sequence {ξn} remain independent but are only ‘asymptotically
identically distributed’, or where this sequence is regenerative or, more generally, converges
(in an appropriate manner) to a regenerative sequence. Here the renovation method (see, e.g.
[6]), or the method of renovating events, may be of use.
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