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Let B be an associative ring with identity, A a subring of B containing the
identity of B. If B is commutative then it is customary to define an element b of
B to be integral over A if it satisfies an equation of the form

(1) b n + a i b n - l + ••• + a n = 0

for some at, a2, • • -,ane A. This definition does not generalize readily to the case
when B is non-commutative. Van der Waerden ([11], p. 75) defines b e B to be
integral over A if all powers of b belong to a finite ^-module. This definition is
quite satisfactory when A satisfies the ascending chain condition for left ideals, but
in the general case this type of integrity is not necessarily transitive, even when B
is commutative. Krull [6] calls an element be B which satisfies the above condition
almost integral over A (but he only considers the commutative case). The subset
A of B consisting of all almost integral elements over A is called the complete
integral closure of A in B. If A = A, A is said to be completely integrally closed
in B. More recently (in [3]), Gilmer and Heinzer (see also Bourbaki, [1]) have
discussed these properties in the commutative case and have shown that the
complete integral closure of A in B need not be completely integrally closed in B.
If 2? is not commutative, the set A of elements of B almost integral over A, may not
even form a ring. In [5] p. 122, Jacobson uses a definition equivalent to Van der
Waerden's for the non-commutative case but the definition applies only for a very
restricted class of rings.

In the present paper a new definition of integrity is proposed which is transitive
and is equivalent to the usual definition in the commutative case. It produces an
integral closure A which is a ring and has the property that A <= A <= B. In section
2 a (presumably) new type of quotient ring is introduced which differs from that
used in Jacobson [5], p. 118 or the quotient rings, discussed by Utumi [10] and
Lambek [7] p. 94. Our aim is to imitate more closely the theory of commutative
rings, using Jacobson's definition of an 'm-system' ([4], p. 195). We define a
quotient ring As such that A <= As <= B where S is an m-system of A. This section
is devoted almost exclusively however to the case where S is the complement in
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434 T. W. Atterton [2]

A (a ring with identity) of a prime ideal 01 of A. For this type of quotient ring a
Cohen and Seidenberg 'lying over' theorem is shown to hold (see [2] for the
original version or [9], section 10 for a more recent treatment). In the final section
some partial results are obtained relating to the question of existence of 'lying
over' ideals for the non-commutative case.

1. Integral elements

Let first, B be commutative, A and B have a common identity and suppose
that b e B satisfies an equation of the form (1). Zariski and Samuel ([12], Chapter
V) show that this condition is equivalent to the following:

There exists a finitely generated A -module M contained in B with the following
two properties:

(1) Mb c M

(2) Mx = 0 for x e A [b]

(the ring generated by b over A) implies x = 0. Condition (2) is obviously satisfied
if Mis a unitary module, i.e. if 1 e M. Conversely, if M satisfies the above conditions
then there exists a finitely generated unitary ^-module N satisfying

(1) Nb cz N

and

(2) Nx = 0 for xeA[b] implies x = 0.

Indeed we may take N = M+A+Ab+ • • • +Ab"~l. Then condition (2)
on N may be omitted as it follows from the fact that N is unitary.

Hence, b is integral over A if and only if there exists a finitely generated
unitary A-module N contained in B such that Nb c N. This property will be used
as essentially the definition when the restriction that B be commutative is dropped.

Now letA,B be rings (not necessarily commutative) having the same identity
and such that A cz B.'tf denotes the centre of B, i.e. the elements of B commuting
with all of B.

If b e B, b is said to be integral over A if there exists a finitely generated
unitary A -module M, say Act +Ac2 + • • • Acn, where the generators ci,c2,- • -,cn

all belong to ^ , such that Mb <= M. Note that Mis a two-sided ^4-module. Further,
the apparent asymmetry of this definition is easily removed. Since Mb cz M there
exist n2 elements a^ e A such that

Since M is unitary, there exist als • • ; ane A such that 1 = a1cl + a2c2+ "'
+ ancn. Then

bM = bc1A + bc2A+ • • • +bcnA cz Acx+Ac2+ • • • +Acn
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[3] Definitions of integral elements and quotient rings 435

that is bM <= M. In fact Mb c M if and only if bM <= M. The set of elements of
B integral over A will be called the integral closure of A in B and denoted by A.
A will be called integrally closed in B if A = A.

THEOREM 1. The integral closure A of A in B is a ring containing A.

PROOF. Let b, V e A and let M = Act+Ac2 + • •• +Acn, M' = Ac\+ • • •
+ Ac'r be finitely generated unitary ,4-modules such that cy, c2, • • •, cn,
c[, • • •, c'r e &, Mb cz M and M'b' cz M'. Then MM' = M'M is a unitary A-
module generated by the nr products c^) e <£ (i = 1, • • •, n;j = 1, • • •, r). Also

MM'{b'b) = M(M'b')b

c MM'b = M'(Mb)

c M'M = MM'

and hence b'b e A. Further,

MM'(b + b') c MM'b +MM'b'

= M'(Mb) + M(M'b')

<= M'M+MM'

= MM'

and therefore b + b' e A. This proves that A is a ring. If a e A take M = A\ —A.
Then 1 e ^ and Aa c A. Hence aeA, i.e. A c A.

If B = A, i.e. if every element of B is integral over A then B is said to be in-
tegral over A or integrally dependent on A.

LEMMA. If A CZ B and B is integral over A then the centre of A is contained
in the centre of B.

PROOF. Let <€1 be the centre of A and ^ be the centre of B. Let de ^ and

b e B. Since B is integral over A,

where at, a2,
Then

b =

• ' •,ane A and

bd =

=
_

: a1c1+a2c2+ • •

Cl,

ayc

dax

db

c2,--;cne%

1d+a2c2d+ •

c1+da2c2+ •

• +ancn

• • +ancnd

• • +dancn

Hence de <€, that is ^ <= <€.

THEOREM 2. If A, B, C are rings having the same identity such that
A cz B cz C, B is integral over A and C is integral over B then C is integral over A.

PROOF. Let xeC. Suppose # ' is the centre of C and suppose M =

https://doi.org/10.1017/S1446788700009174 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009174
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Bct + Bc2 + • • • + Bcn where ct, c2, • • -, cn e
 c€' is unitary and such that Mx <= M.

Then for / = 1, 2, • • •, n
n

(2) xci = £ b,jCj
. 7 = 1

and x = bicl+b2c2+ • • • +bncn where /3fe5 (/ = 1, 2, • • •, n) and b^eB
(i,j= 1, 2, • • •, «). Since 5 is integral over 4̂ there exist finitely generated unitary
/I-modules My, Nk with generators in the centre ft of B such that Afy/3y <= My

for each /,y = 1, • • •, n and Nkbk <= Nk for each k = 1, • • •, n.
Let N = \\i,j,kMijNk (i.e. the product of the n2 ^-modules MtJ with the n

v4-modules Nk). Each of these modules commute with one another so the product
may be taken in any order. Further N is a finitely generated unitary ,4-module
with generators in ^ having the property that for each i,j

Nbtj <= N and for each k, Nbk c N.

Finally, let L = N+Ncl+Nc2+ • • • +Ncn. Then L is an ,4-module of the
required type (unitary with generators in ^") such that

Lx <= L, because

Nxct <= Nct+ ••• +Ncn ( f r o m ( 2 ) )

( a n d t h e r e f o r e (Nc1+Nc2+ • • • +Ncn)x a L) a n d Nx c Nct+Nc2+ ••• +Ncn

(from (2)).

COROLLARY. The integral closure A of A in B is integrally closed in B.

The definition of b e B being integral over A may be reworded as follows:

PI. b is integral over A if and only if there exist elements ct, c2, • • •, cn e ^
and elements atJ, ak e A (i,j, k = 1, 2, • • •, «) such that

n

bct = £ aijCj ((' = 1,2, • • •, n)
j=i

and
n

i = X>*c*-

Some other elementary properties will be listed below.

P2. If£ cz A then A is integrally closed in B.IfActf then I c 1 ^ .

PROOF. Let be A and suppose bM <= M where M = Acx + Ac2 + • • • +Acn

and Cx, c2, • • •, cn e
 <€. Then /3Af c A and hence Z) e A since M is unitary. The

second statement is proved similarly.

P3. Ifb is integral over A and commutes with all of A then b satisfies an equa-
tion of the form

bn+a1b"~1+ ••• +an_1b + an = 0
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[5] Definitions of integral elements and quotient rings 437

where alt a2, • • % ane A. Conversely, if be'tf and b satisfies an equation of this
form then be A.

PROOF. Let b be as in PL

Then Yj=i(atj~^ij)cj = 0 (/ = 1, 2, • • •, «). These n homogeneous equations
equations have a non-trivial solution c t , c2, • • % cn (since Iakck = 1). Since all
quantities in these equations commute, the determinant A of the coefficients
exists and

Acx = Ac2 = • • • = Acn = 0.

Using Zakck = 1 it follows that A = 0. This yields, on expansion, the desired
equation for b. Conversely, if b e 'W satisfies an equation

bn + atb"-1+ • • • +an = 0

let M = A+Ab+ • • • +Ab"~1. Then M is a finitely generated unitary ,4-module
such that Mb c M. Hence be A.

The following fact has already been used in the proof of Theorems 1 and 2.

P4. Given any finite number of elements bl,b2, • • ~,bk of A (with corresponding
modules Mt, M2 ,•••, Mk) there exists a unitary A-module M with generators in
<€ such that Mbt c M, Mb2 c M, • • •, Mbk <= M. Equivalently, using PI, the
same set of elements c1, c2, • • •, cn of ^ may be used in the definitions of
bl,b2,- • \bk being integral over A.

PROOF. Take M = M^M2- • • Mk.

The question naturally arises, in the previous proposition, as to what happens
when one considers more than a finite number of elements of A. This question is
partially answered in the following theorem:

THEOREM 3. If ft is a finitely generated (necessarily unitary) A-module then

PROOF. Let ^ = Ac1 + Ac2+ • • • +Acn where

n

(1) X>;C; = 1 {a1,a2,---, aneA).
.7 = 1

Let b e A and suppose, by PI, that c[, c'2, • • •, c'm e ^ are such that

(2) ^ ; = E « > ; ( y = 1,2, •••,!«)

(where all a'Jr e A) and also that

(3) b = y£a'Jc'J

(where a\, • • •, a'm e A). Hence

(4) bct = Y,
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Also there exists aijk e A such that

(5) c^) = Y^aijkck (i=l,2,--;n;j=l,2,--;m).

Finally, from (4) and (5),

(6) tet = 'Zajatjkck

Equations (1) and (6) imply A c (€.

COROLLARY. If B is integral over A and *€ is a finitely generated A-module
then B is commutative.

P5. If 0(5) is a homomorphic image of B then 0(A) is integral over 0(A)
(0 is a ring homomorphism).

PROOF. Let b e A be as in PI. Then 0(cx), • • •, 0(cn) e 0(#) (which is also the
centre of 0(2?)) are such that

and

Hence from PI, 0{b) is integral over 0(^4).

P6. If B is integral over A and Q is an ideal in B, then

B . . , A
— is integral over .
Q Qc\A

PROOF. A/(Q n A) may be thought of as a subring of BjQ because of the
isomorphism A/(Q n A) ~ (A + Q)/Q. Also (^+Q)/Q is contained in the centre
of B/Q. The result now follows from PI and P5.

We conclude this section by considering some examples.

EXAMPLE 1. It is trivial to show that the set of integral elements A is con-
tained in the set of integral elements according to the Van der Waerden definition.
Thus if be A has corresponding module M then b, b2, b3, • • % e M, and b is
almost integral over A. To distinguish these in the non-commutative case we
choose A to be the set Z of rational integers and B to be the ring Qt of integral
quaternions, i.e. all elements x of the form x = \(a + bi + cj+dk) where a,b,c,deZ
and are either all even or all odd. Then any such element satisfies a monic quadratic

x2—ax+-^(a2+b2 + c2+d2) = 0

with coefficients in Z. Hence the Van der Waerden (or complete) integral closure
of A in B is B. However, since A = ^ it follows from P2 that A = A.

EXAMPLE 2. To obtain a non-commutative example where A # A or B we
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[7] Definitions of integral elements and quotient rings 439

take A to be the commutative ring Z of rational integers and B to be QU/2] —
Q + Q^Jl = Q + -J2Q where Q denotes the set of quaternions with integer coeffi-
cients, i.e. the set of x = a+bi+cj+dk where a, b, c, d, e Z, and *J2 is assumed
to commute with each element of Q. Here ^ = Z[y/2] and ^ => A. Hence by
P2, A <= Z[y/2]. Conversely, if x = a+b^/2 where a,beZthen

x2-2ax + (a2-2b2) = 0.

Since xe<€ it follows from P3 that xe A. Hence A = Z\-J2\. In this example
both A and A are commutative. It is easy to show that, in general, A commutative
implies A is commutative.

EXAMPLE 3. To obtain a non-trivial example for the case A non-commutative
we simply extend the rings in Example 2 to complete matrix rings. In the matter
of notation, if R is a ring, then Rn denotes the complete matrix ring (and also
algebra) consisting of all n x n matrices with elements in R. We now take A = Zn,
B = QW2]n where Q[s/2] is as described in Example 2. Then it can be shown
that ^ consists of the set of scalar matrices of Z[s/2]n. Let TeA where
Ct, C2, • • •, Cn e <£ are such that

TC^ZAJCJ ( i = l , . - M I )

and YjAiCi = I, where all At,AtjeA = Zn and / is the unit matrix. If for
i = 1, • • •, n we write Ct = (ai+bi^2) /where ait bt e Zthen the above equations
can be written

These imply Te Z[yJ2]n. Conversely consider the matrix units EtJ having 1 in the
i,jth place and zeros elsewhere. Then EtjeA (because E^eA). Finally, by P3
^ c A. The scalar matrices of Z[V2]n and the Etj together generate all of
Z[V2]n. Hence A = Zy2]n.

2. Quotient rings and prime ideals

In this section we will study the concept of a quotient ring defined somewhat
differently from Jacobson and Utumi (see [5] p. 118); or [7] p. 94; or (10]), but
more directly related to the theory of commutative rings. No apology is made for
using the same notation.

First, in the matter of definitions, we use Jacobson's idea of an 'm-system'
([4], p. 195). A subset S of a ring R is called an m-system if (i) 0 £ S and (ii)
whenever a, be S there exists xeR such that axb s S. The following proposition
is easily proved by induction:

https://doi.org/10.1017/S1446788700009174 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009174


440 T. W. Atterton [8]

P7. If S is an m-system of a ring R and s1,s2, • • ',sne S then there exist

r1,r2,---, >•„_! e R such that s1rls2 • • • rn_tsn e S.

Next, a prime ideal SP in a ring A is denned to be a two-sided ideal with the
property that if a, jS are ideals of A such that a/? c SP then either a <= 3Pox$ c ^ .
A list of properties of prime ideals is given in [8], Chapter 4. Amongst these we
select for reference:

P8. SP is a prime ideal in A if and only if 0* is an ideal with the property that
aAb c & implies ae 0> orbe 0>.

P9. 0s is a prime ideal in A if and only if the complement A — SP of 3? in A is
an m-system.

If S is an m-system of a ring A and A c B then the quotient ring As is denned
to be the set of elements b e B such that there exists an element s(b) e S such that

sAb c A and bAs <= A.

Note that, if A has a 1, this implies sb e A and bs e A.

P10. As is a ring containing A.

PROOF. If b e A choose any s e S. Hence As => A. If bx, b2 e As let s1, s2 e S
be such that

slAb1 <= A, b1As1 c A,

s2Ab2 c A, b2As2 <= A.

Sinces t , s2 e Sit follows thats2as t e Sfor some ae A and then

(s2as1)A(b1b2) c s2aAb2 c s2Ab2 <= A.

Also (b1b2)A(s2asl) c A^ajj c: /i. Hence b1b2eAs.
Now consider bl—b2.

s2as1A(bl—b2) <

Hence b1—b2e As and so ^ s is a ring.

For the remainder of this section it will be assumed that A has an identity.
When 3P is a prime ideal of A (and A <= B) the complement A- & o f ^ in A is an
m-system. Using this m-system, denote by ^ the corresponding quotient ring
(A c A? <= B), i.e. be Apif and only if there exists SE A — 2P such that J^Z) c 4̂
and 6.4J C A. The respective left, right and two-sided ideals A? SP, ^A9, A9 3PA9
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[9] Definitions of integral elements and quotient rings 441

are of some interest. The last of these contains the first two. That it is a proper
ideal follows from the next theorem.

THEOREM 4. (A9 0>Ap) n A = 0>.

PROOF. Let b e (A& 0JA&) n A. Suppose

b = b1p1b'1+b2p2b'2+ •• • +bnpnb'n

where b,, b[ e Ag,,pte 0> (i = 1, 2, • • •, n). Choose, for / = 1, 2, • • •, n elements
S;, s[e A-0*such that

SiAbi c A, biAst <= A, sjXfcJ c A, tyAsl <= A (i = 1, 2, • • •, n),

and a l 5 • • •, an_l, a\, • • •, a'n_1 e A such that

s = sla1s2 • • •an^lsneA~0>
and

5' = s[a[s'2 • • • a^tS^eA-01.

Then sAbAs' c & because any term of the form

Si al s2 • • • (s ; • • • a n _ i snAb)pi{b'iAs[ a\ • • • s[) • • • s'n

is contained in 0i. Since A has an identity, A2 = A and therefore

(AsA)(AbA)(As'A) <= 0>.

Since 8P is prime this implies either s, b or s' belongs to 2P. Hence b e & and the
theorem is established.

We now define 0' as the set of elements b e A& such that there exist s,
s'eA-gPfor which sAbAs' c &.

PI 1. 0*' is an ideal of A9 containing A& &A&.

PROOF. A9 @Ag, <= 0" from the proof of Theorem 4. To show that 0" is
an ideal Ietb1,b2e 0*' where

and

There exist a,a'eA such that s = s2 ast and s' = s'2 a's{ e A - 0i. Then

sA(bl-b2)As' <= s2a(s1Ab1As'2a's'1) + (s2as1Ab2As'2)a'sl cz

Hence b^-b2B0'.
Let xeAp. Then there exists reA — 01 such that rAx c 4̂ and

Since r, 1̂ e 4̂ - ^ there exists at e A such that t = r ^ si e A - 0>. Then for
Si, t e A — 0* we have

https://doi.org/10.1017/S1446788700009174 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009174


442 T. W. Atterton [10]

s1Ab1xAt = s^Ab^xA^ats'i c slAb1As[ c 0>.

Hence bvxe 0>'. Similarly xbx e 0s'. Thus 0*' is an ideal.

THEOREM 5. 0>' is aproper prime idealofA9 with the property that 8P' r\ A = 0>.

PROOF. We first show that 0*' n A = 0>. That &' n A => 0> follows from
PI 1 and Theorem 4. Now let b e 0" n A. Then for some s,s'eA-0> we have
sAbAs' c ^ . Hence

The fact that 0> is prime and be A implies that one of s, b or s' belongs to 0*.
Hence b e 0> and ^ " n ^ = 0*.

To show that 0i' is prime, let x-^.y <= 0" where x, 7 e A9. Choose /,
t' eA~0> such that

MJC C A, xAt c y4, 7^/ ' c A, t'Ay cz A.

From xAy <=. 0>' it follows that tAx Ay At' <= &' and hence that tAxAyAt' <=. 0>
since the left hand side is contained in A and 0*' r\ A = 0>. From the fact that 0*
is prime and that

(tAx)A(yAt') cz 0>

it follows that either tAx a 0> or j ^ ' <= 0>. (Take any a e ^ . Either taxe ^ or
tax$ 0>. If tax $ 0s then jvO' c ^>). If Mx <= ^ then Mjt<4f <= ^ and hence
x e ^". If .Mf c ^ then / '^ j^? ' c 0> and hence j e 0". Hence either X E ^ "
or y e ^" , i.e. 01' is prime.

COROLLARY. 7/' 01 is a maximal ideal of A then 0*' is a maximal ideal of A&.

PROOF. (Since A has a 1, every maximal ideal of A is prime). If 2.' is an ideal
of A9 such that J ' => 0*' than 2t' r\A^ 0i. Hence, since ^ is maximal, either
£' n A = A (in which case B' = .4#) or J ' n 4̂ = ^ . Assume that 2.' is a proper
ideal strictly containing 0*' and let be<H',b$ 0*'. Then for all s, s' e A - 0>,
sAbAs' <k 0*. Since b e A9 choose s = s' e A-0> such that sAb cz A and
bAs cz A. Then there exist at, a\ e A such that Y^^t^^t & contradicting the
fact that „ _, , .

YJ sa^als e £ n A(= 0s).

3. Lying over theorems

W e r e t u r n t o t h e c a s e o f rings A , B w i t h t h e s a m e i d e n t i t y s u c h t h a t A c B
and B is integral over A. 0s is any ideal of A. Let A e l Consider, if they exist,
any finite set of elements cx, c2, • • •, cn e <# having the properties that

(1) bct = £ aijCj(i = 1, • • -, n) where all ay e A

(2) there exist alta2, • • ; aneA such that aicl+a2c2+ • • • +ancn = 1.

(3) 0>c1 + 0>c2+ • • • +0>ctt = 0>.
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If be A such a set exists since we may take the set consisting of the single
element 1.

P12. If for b e B a set cx, c2, • • •, cne^ exists having properties (1), (2), (3)
then any finite set of generators in <€ of M = Act +Ac2+ • • • +Acn also has these
properties.

PROOF. Suppose M — Adt + Ad2 + • • • +Adr where d1, d2, • • •, dr e <€. Let

di = Z a . 7 c j (' = 1»- • •, r)
where a y e ^ . Then

bd, = X aydc,- = X <*y «,•*<*

= I! ZijBjkPkA

where ct = £ jS*5rfs, fikse A. This proves (1).
Property (2) is obvious since 1 e M and therefore £ a,</f = 1, af e A.
It is clear from the relations dt = £ a y c , that ^ ^ + ^rf2 + • • • + ^tf, c ^

and from Y;aidi = l t h a t ^ + ^di + " ' ' ^ 4 =» ^*-
Hence 0>dy + 0>d2+ • • • 0>dr = &, proving (3).

A set of elements cx, c2, • • •, cn e <€ satisfying property (2) will be called
unitary. If cx, • • •, cn e & and c[, • • • c'm e %> are two unitary sets their sum is de-
fined to be the set ct, • • •, cn, c[, • • •, c'm and their product the set of mn products
cxci , • • •, CjCj, • • •, cnc'm. It is easy to verify that the sum and product are them-
selves unitary. If M, M' denote the corresponding unitary ^-modules defined by

M = Acx + • • • Acn, M' = Ac[+ • • • +Ac'm

then their sum M+M' is generated by the sum of the generators and their product
MM' = M'M is generated by the product of the generators.

P13. If be B is such that there exist two sets of elements ct, c2, • • •, cn e <&
and c\, c'2, • • •, c'm e ^ having properties (1), (2) and (3) then the sum and product
of these elements also have properties (1), (2) and (3).

PROOF. TO say that c\, c'2, • • -, c'm e <€ have properties (1), (2), (3) means
that

(1) bcl = £ a'ijc'j (i = 1, • • •, m) where all a'i} e A

(2) there exist a[, a2, • • -,a'ne A such that a\ +c\ + • • • +a'nc'n = 1.

(3) & c \ + 0 > c ' 2 + ••• +0>c'm = 0>.

These properties obviously hold for the sum. For the product we observe that

(1) bc^ = £ a,jCjc'k (i = 1, • • •, n; k = 1, • • •, m)

(2) Yjaia'jcic'j — 1' obtained from multiplying together the relations

(3)
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and on the other hand, 

0>cxc\ + • • • + 0>cic'j + • • • + 0cnc'm => 9 

because Hp e 0* thenp = 'YjPaidjcic'i- This proves P 1 3 . 

THEOREM 6. The set of elements be B for which there exists c t , c2, • • •, c„ e 
having properties ( 1 ) , ( 2 ) and (3) forms a subring of B containing A. 

PROOF. It is clear that A <=. A(9). Let b, V e A(9). Then there exist 
cl, c2, • • •, c„ e m such that 

( 1 ) bci = £ OijCj, al} eA (i = 1, • • •, n) 

( 2 ) X« ;c f = 1, « ¡ 6 . 4 ( / = 1 , • • • , « ) 

( 3 ) ^ C i + ^ - f - • • • 0>cn = ^ 

and c' t, , • • •, c'm e ^ such that 

(1 ) ' b'c't = Za'tjc'j,a'tjeA (i = 1, • • n) 

(2 ) ' E «I'CI' = hale A (i = 1, • • •, n) 

( 3 ) ' + ^ c i + • • • + = ^ . 

Then for b — V and £Z>' use the product of c1, • • •, c„ and c\, • • •, c'm. Hence b — b', 
bb' e A(p), so A(9) is a ring. 

Note that, if B is integral over ^ , then for any element beB there exist 
ct, c2, • • •, c„ e ^ having properties ( 1 ) and ( 2 ) and, in place of (3) , the weaker 
condition 

&cx + &c2 + • • • + 0>c„ => 0>. 

Also if M denotes the unitary ,4-module Ac, +Ac2 + • • • +Acn then ( 3 ) may be 
written MSP = 3PM = 0. Zorn's Lemma can be used to show (in the case 
where ( 3 ) is not necessarily satisfied) that for a given ideal 3P of A, there exists 
a unitary ^-module M (not necessarily finitely generated) such that M01 = 
@M = 0. 

P 1 4 . If B is integral over A and if, for a given ideal 0 of A, A^ = B then 
there exists an ideal P of B lying over 0. i.e. P n A = 0. 

PROOF. Consider the set 5? of ideals Q of B such that Q n A <= 0. Then 
£f # 0 since 0 e SP. Clearly any totally ordered subset of SP (partially ordered 
by inclusion) has an upper bound in Sf. Hence by Zorn's Lemma, £P has a maximal 
element P. It will be shown that P n A = 0. 

Suppose, on the contrary, that there exists xe 0, x$P. Then P+BxB is 
an ideal strictly containing P and therefore (P+BxB) n A <£ 0. Hence there exists 
seA — such that seP+BxB and therefore there exist also elements bt, 
b2e B such that s — b1xb2 eP. Since bt, b2e B, which is integral over A, there 
exist elements ct, c2, • • •, c„ e ^ such that: 
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biCi = 5>yC,- 0" = 1, • •- ,«),

bzCi = X X ; c j 0" = 1> •••>«),
£ fliCj = 1 where at, atJ, dit e A (i,j = 1, • • •, n),

0>cl + 0lc2 + • • • + 0>cn = 0> (using PI3 and the fact that Ai9) = B).
Hence

blxb2ci = X OijxbiCj = X

and therefore b1xb2 = X! tfy*0/*fliCk> that is,

Hence s-b1xb2 eP n A <=. 0>. However s-b^xb2 e 0>, b1xb2 e ^ imply j e # ,
a contradiction.

THEOREM 7. If B is integral over A and if £P is a maximal ideal of A such that
A(p) = B then there exists a maximal idealP ofB such that P n A = 0*.

PROOF. Define P' to be the set of be B for which there exists s, s' e A - 0>
making sAbAs' cz 3P. Then

(i) P' n A = &>, because if b e & choose s = s' = 1. If b e P n A then
sAbAs' cz 0> and 5, s' e A - 3P imply be & ( = prime ideal of A).

(ii) P' is an ideal of B : P' is clearly closed under subtraction. Let b e P',
xe B where s, s' e A - 0> are such that sAbAs' cz ^ and ct , c2, • • •, cn e <€ are
such that

xci = Z aijcj> (au 6 A) 0 = ! » • • • , « ) ,

Then 6xcf = £ ba^Cj and hence

Therefore
sAbxAs' cz

Hence bx e P'. Similarly xb e P' and so P' is an ideal of B.

(iii) P' is contained in a maximal ideal P of B. Hence P n A => 2P. Since 0*
is maximal it follows that P n A = 0. This concludes the proof of the theorem.

The question remains open as to whether, in the case B integral over A, for
a given prime ideal 0> of A there exists a prime ideal P of B such that P n A = 0.
This is true when B is commutative (see [2]) or in any of the examples of Section 1.
Nevertheless this result is unlikely but a counterexample is still lacking.
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