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1. Introduction. It is well known that a 6-dimensional sphere S6(1) admits an
almost kaehler structure J by making use of the Cayley system. Many interesting
theorems about the topology and the geometry of nearly kaehler manifolds have been
proved (see[2, 4, 7]). There have been many results on geometry of submanifolds
in a kaehler manifold. Especially, submanifolds (called Lagrangian submanifolds)
for which J interchanges the tangent and normal spaces. The theory of Lagrangian
submanifolds in a nearly kaehler manifold was studied by many authors (cf. e.g.
N. Ejiri, B. Y. Chen, F. Dillen, L. Vrancken and L. Verstraelen etc.). About
Lagrangian submanifolds of S6(1), in [5], the authors classified the compact Lagrangian
submanifolds of S6(1) whose sectional curvatures satisfy K ≥ 1

16 . In [2], the authors
classified the Lagrangian submanifolds of S6(1) with constant scalar curvature
that realize the Chen’s inequality. In this paper, we classify Lagrangian Willmore
submanifold of the nearly kaehler 6-sphere S6(1) with constant scalar curvature and
obtain all possible values for the norm square of the second fundamental form S about
these submanifolds. It is similar to Chern’s conjecture which states that the set of all
possible values for S of a compact minimal submanifold in the sphere with S = constant
is a limit set.

2. Preliminaries. We give a brief introduction to the standard nearly kaehler
structure on S6(1). Let e0, e1, · · · , e7 be the standard basis of R8. Then each point
m of R8 can be written in a unique way as m = ae0 + x, where a ∈ R and x is a
linear combination of e1, e2, · · · , e7. m can be regarded as a Caylay number, and is
called purely imaginary when a = 0. If x and y are purely imaginary, we defined the
multiplication · as

x · y = − < x, y > e0 + x × y,
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where <,> is the standard inner product on R8 and x × y is defined by the following
multiplication table for ej × ek:

Table 1. multiplication table for ej × ek

× e1 e2 e3 e4 e5 e6 e7

e1 0 e3 −e2 e5 −e4 e7 −e6

e2 −e3 0 e1 e6 −e7 −e4 e5

e3 e2 −e1 0 −e7 −e6 e5 e4

e4 −e5 −e6 e7 0 e1 e2 −e3

e5 e4 e7 e6 −e1 0 −e3 −e2

e6 −e7 e4 −e5 −e2 e3 0 e1

e7 e6 −e5 −e4 e3 e2 −e1 0

For two Cayley numbers m = ae0 + x and n = be0 + y, the Cayley multiplication·,
which makes R8 the Cayley algebra �, is defined by

m · n = abe0 + ay + bx + x · y.

The set �+ of all purely imaginary Cayley numbers clearly can be viewed as a 7-
dimensional linear subspace R7 of R8. In �+ we consider the unit hypersphere which
is centered at the origin:

S6(1) = {x ∈ �+ |< x, x > = 1}.

Then the tangent space TxS6 of S6(1) at a point x may be identified with the affine
subspace of �+ which is orthogonal to x. The standard nearly kaehler structure on
S6(1) is obtained as follows:

JA = x × A, x ∈ S6(1), A ∈ TxS6(1). (2.1)

Let G be the (2,1)-tensor field on S6 defined by

G(X, Y ) = (∇X J)Y, (2.2)

where X, Y ∈ T(S6) and ∇ is the Levi-Civita connection on S6. This tensor field has
the following properties (see[7])

G(X, X) = 0; G(X, Y ) + G(Y, X) = 0; G(X, JY ) + JG(X, Y ) = 0 . (2.3)

It is clear that a Lagrangian submanifold M of S6(1) is 3-dimensional. In [7], Ejiri
proved that M is minimal, orientable and that for tangent vector fields X and Y to M,
G(X, Y ) is normal to M, i.e.

G(X, Y ) ∈ T⊥M.

We denote the Levi-Civita connection of M by ∇. The formulas of Gauss and
Weingarten are then given by

∇X Y = ∇X Y + h(X, Y ); ∇Xξ = −Aξ X + DXξ, (2.4)
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where X and Y are vector fields on M and ξ is a normal vector field on M. The second
fundamental form h is related to Aξ by

< h(X, Y ), ξ > = < Aξ X, Y > . (2.5)

From (2.3) and (2.4), we find

DX (JY ) = G(X, Y ) + J∇X Y ; AJX Y = −Jh(X, Y ). (2.6)

Since M is a Lagrangian submanifold of S6(1), JT⊥M = TM and JTM = T⊥M.
We can easily verify that the second formula of (2.6) is equivalent to

< h(X, Y ), JZ > = < h(X, Z), JY > = < h(Y, Z), JX >. (2.7)

Next, we give some lemmas

LEMMA 2.1. ([15]) Let M be a 3-dimensional Lagrangian submanifold of (S6, J).
If p is every non totally geodesic point of M. Then there exists an orthonormal basis
{e1, e2, e3} of TpM such that

h(e1, e1) = λ1Je1, h(e2, e2) = λ2Je1 + λ3Je2 + λ4Je3,

h(e1, e2) = λ2Je2, h(e2, e3) = λ4Je2 − λ3Je3,

h(e1, e3) = −(λ1 + λ2)Je3, h(e3, e3) = −(λ1 + λ2)Je1 − λ3Je2 − λ4Je3.

(2.8)

where λ1 > 0 and h is the second fundamental form of M.

REMARK 2.1. Lemma 1 means that (hk∗
i j ) can be expressed as

(
h1∗

i j

) =




λ1 0 0

0 λ2 0

0 0 −λ1 − λ2




(
h2∗

i j

) =




0 λ2 0

λ2 λ3 λ4

0 λ4 −λ3




(
h3∗

i j

) =




0 0 −λ1 − λ2

0 λ4 −λ3

−λ1 − λ2 −λ3 −λ4




where k∗ = k + 3, 1 ≤ i, j, k, · · · ≤ 3 and hk∗
i j denotes the element of the second

fundamental form of the immersion.

Recently, B. Y. Chen has given in [1] a best possible inequality between the sectional
curvature K , the scalar curvature τ (p) = ∑

i<j K(ei ∧ ej) definded in terms of an
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orthonormal basis {e1, e2, e3} of the tangent space TpM to 3-dimensional submanifolds
of S6(1), states

δM(p) ≤ 9
4

H2(p) + 2

for each point p ∈ M, where H denotes the length of the mean curvature vector and
δM(p) is the Riemannian invariant, definded by

δM(p) = τ (p) − (inf K)(p).

Here

(inf K)(p) = inf {K(π ) | π is a 2 − dimensional subspace of TpM}.

Submanifolds realizing the equality are called submanifolds satisfying Chen’s equality.
For a Lagrangian submanifold of S6(1), M realizes Chen’s equality if and only if
δM = 2. About those submanifolds, we have

LEMMA 2.2. (Theorem 2.2 of [2]). Let M be a 3-dimensional Lagrangian submanifold
of S6(1). Then δM ≤ 2 and equality holds at a point p of M if there exists a tangent basis
{e1, e2, e3} of TpM such that

h(e1, e1) = λJe1, h(e2, e2) = −λJe1,

h(e1, e2) = −λJe2, h(e2, e3) = 0,

h(e1, e3) = 0, h(e3, e3) = 0.

where λ is a positive number satisfying 2λ2 = 3 − τ (p).

REMARK 2.2. If we replace e2, e3 by e3, −e2 respectively in Lemma 2.2, then we
have: Let M be a 3-dimensional totally real submanifold of S6(1). Then δM ≤ 2 and
equality holds at a point p of M if there exists a tangent basis {e1, e2, e3} of TpM such
that

h(e1, e1) = λJe1, h(e3, e3) = −λJe1,

h(e1, e3) = −λJe3, h(e2, e3) = 0,

h(e1, e2) = 0, h(e2, e2) = 0.

where λ is a positive number satisfying 2λ2 = 3 − τ (p).

LEMMA 2.3. (Main Theorem of [2]). Let x : M3 → S6(1) be a Lagrangian
immersion. If M3 has constant scalar curvature τ and δM = 2 holds identically, then
either x is totally geodesic, or locally congruent to ϕ1 or ϕ2, where ϕ1 and ϕ2 has been
given in Section 3.

From now on, we agree on the following index ranges:

1 ≤ i, j, k, · · · ≤ 3; i∗ = 3 + i; j∗ = 3 + j; · · ·

Choose {e1, e2, e3, e1∗ , e2∗ , e3∗ } to be a local orthonormal frame field of the
tangent bundle TS6 such that ei lies in TM and ei∗ = Jei lies in NM. Let
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{ω1, ω2, ω3, ω1∗ , ω2∗ , ω3∗ } be the associated coframe field. Denote (ωi∗j∗ ) to be the
associated Levi-Civita connection form. Then the structure equations of M are:

dx =
∑

i

ωiei; dei =
∑

j

ωi jej +
∑
k,j

hk∗
i j ωjek∗ − ωix, (2.9)

dek∗ = −
∑

i,j

hk∗
i j ωjei +

∑
l

ωk∗l∗el∗ . (2.10)

The Gauss equations are:

Ri jkl = −(δikδjl − δilδjk) −
∑

r

(hr∗
ikhr∗

jl − hr∗
il hr∗

jk), (2.11)

Rik =
∑

l

Rillk = 2δik −
∑

r,j

hr∗
i j h

r∗
jk; 2τ = 6 − S, (2.12)

where S = ∑
l,i,j(h

l∗
i j)

2 is the norm square of the second fundamental form.
The Codazzi equation is:

(∇h)(X, Y, Z) = (∇h)(Y, X, Z),

where (∇h)(X, Y, Z) = DX h(Y, Z) − h(∇X Y, Z) − h(Y,∇X Z).
Finally, we introduce Willmore submanifolds. x : M3 → S6(1) is called Willmore

if it is an extremal submanifold of the following Willmore functional:

W (x) =
∫

M
(S − 3H2)

3
2 dv, (2.13)

where S = ∑
i,j,k∗ (hk∗

i j )2 and H are respectively the norm square of the second
fundamental form and the mean curvature of the immersion x, dv is the volume
element of M. For more details about Willmore submanifolds we refer the reader to
[11] and [10]. About Willmore submanifolds, we have:

LEMMA 2.4. Let M be a Lagrangian submanifold in (S6, J) with constant scalar
curvature. Then M is a Willmore submanifold if and only if

ρ


∑

i,j,k,l

ht∗
i jh

l∗
ikhl∗

k j


 = 0, ∀t with 1 ≤ t ≤ 3, (2.14)

where ρ2 = S = ∑
i jk(hk∗

i j )2.

Proof. Since M is minimal and has constant scalar curvature, we can easily get our
result by using of Theorem 1.1 of [11].

3. Examples. In this section, we give some examples of Lagrangian Willmore
submanifolds of S6(1) with constant scalar curvature. In addition, we also give one
example of Lagrangian submanifold of S6(1) with constant scalar curvature which is
not a Willmore submanifold.
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EXAMPLE 3.1. Define a map

f : S3(1) =
{

(x1, x2, x3, x4) ∈ R4 |
4∑

i=1

x2
i = 1

}
−→

S6(1) =
{

(y1, y2, y3, y4, y5, y6, y7) ∈ R7 |
7∑

i=1

y2
i = 1

}
,

where

y1 = x1, y3 = x2, y5 = x3, y7 = x4, y2 = y4 = y6 = 0.

It is clear that f : S3(1) → S6(1) is a Lagrangian totally geodesic immersion.
That M is totally geodesic implies M is a Einstein submanifold. In [8], the authors
proved that all n-dimensional minimal Einstein submanifolds in a sphere are Willmore
submanifolds. So M3 is a Lagrangian Willmore submanifold with constant scalar
curvature.

EXAMPLE 3.2. Define a map

f : S3( 1
16 ) =

{
(x1, x2, x3, x4) ∈ R4 |

4∑
i=1

x2
i = 16

}
−→

S6(1) =
{

(y1, y2, y3, y4, y5, y6, y7) ∈ R7 |
7∑

i=1

y2
i = 1

}
,

where

y1 = √
152−10(x1x3 + x2x4)(x1x4 − x2x3)

(
x2

1 + x2
2 − x2

3 − x2
4

)
y2 = 2−12

[
−

∑
i

x6
i + 5

∑
i<j

(xixj)2(x2
i + x2

j

) − 30
∑

i<j<k

(xixjxk)2
]

y3 = 2−10
[
x3x4

(
x2

3 −x2
4

)(
x2

3 + x2
4 − 5x2

1 − 5x2
2

)+x1x2
(
x2

1 − x2
2

)(
x2

1 + x2
2 − 5x2

3 − 5x2
4

)]
y4 = 2−12

[
x2x4

(
x4

2 + 3x4
3 − x4

4 − 3x4
1

) + x1x3
(
x4

3 + 3x4
2 − x4

1 − 3x4
4

)
+ 2(x1x3 − x2x4

(
x2

1

(
x2

2 + 4x2
4

) − x2
3

(
x2

4 + 4x2
2

))]
y5(x1, x2, x3, x4) = y4(x2,−x1, x3, x4)

y6 = √
62−12

[
x1x3

(
x4

1 + 5x4
2 − x4

3 − 5x4
4

) − x2x4
(
x4

2 + 5x4
1 − x4

4 − 5x4
3

)
+ 10(x1x3 − x2x4)((x3x4)2 − (x1x2)2)

]
y7(x1, x2, x3, x4) = y6(x2,−x1, x3, x4).

In [5], the authors proved that f : S3( 1
16 ) → S6(1) is a Lagrangian immersion with

constant sectional curvature 1
16 . That M3 is a constant sectional curvature submanifold

implies M3 is a Einstein submanifold. From [7], we know that M is minimal. In [8], the
authors proved that all n-dimensional minimal Einstein submanifolds in a sphere are
Willmore submanifolds. So M3 is a Lagrangian Willmore submanifold with constant
scalar curvature.

EXAMPLE 3.3. (Example 3.1 of [2]) Consider the unit sphere

S3 = {
(y1, y2, y3, y4) ∈ R4

∣∣y2
1 + y2

2 + y2
3 + y2

4 = 1
}
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in R4. Let X1, X2 and X3 be the vector fields defined by

X1(y1, y2, y3, y4) = (y2,−y1, y4,−y3); X2(y1, y2, y3, y4) = (y3,−y4,−y1, y2)

X3(y1, y2, y3, y4) = (y4, y3,−y2,−y1).

Then X1, X2 and X3 form a basis of tangent vector fields to S3. Moreover, we have
[X1, X2] = 2X3, [X2, X3] = 2X1 and [X3, X1] = 2X2. In [2], the authors define a metric
<,>1 on S3 such that X1, X2 and X3 are orthogonal and such that < X1, X1 >1 = <

X2, X2 >1 = 6 and < X3, X3 >1 = 36. Then E1 = 1√
6
X1, E2 = 1√

6
X2 and E3 = 1

6 X3

form an orthonormal basis on S3. We denote the Levi-Civita connection of <,>1 by
∇, then ∇Ei Ej and R(Ei, Ej)Ek can be computed. We now define a symmetric bilinear
form α on TS3 in accordance with Theorem 2.2 of [2] by

α(E1, E1) =
√

5
3 E1, α(E3, E1) = 0, α(E1, E2) = −

√
5
3 E2,

α(E3, E2) = 0, α(E2, E2) = −
√

5
3 E1, α(E3, E3) = 0.

A straightforward computation shows that α satisfies the conditions of the existence
theorem, i.e. Theorem 3.2 of [2]. Hence we obtain a Lagrangian isometric immersion

ϕ1 : (S3,< ., . >1) → S6(1),

whose second fundamental form satisfies h(X, Y ) = Jα(X, Y ). That is,

h(E1, E1) =
√

5
3 JE1, h(E3, E1) = 0, h(E1, E2) = −

√
5
3 JE2,

h(E3, E2) = 0, h(E2, E2) = −
√

5
3 JE1, h(E3, E3) = 0.

Hence


i,j,k,lh1∗
ij hl∗

ikhl∗
kj =

(√
5
3

)3

−
(√

5
3

)3

+
√

5
3

5
3

−
√

5
3

5
3

= 0,


i,j,k,lh2∗
i j hl∗

ikhl∗
k j = 0 + 0 = 0 = 
i,j,k,lh3∗

i j hl∗
ikhl∗

k j,

S =
∑
l,i,j

(hl∗
i j)

2 = 20
3

, τ = −1
3
.

From Lemma 2.4, we know that M is a Lagrangian Willmore submanifold with
constant scalar curvature.

EXAMPLE 3.4. (Example 3.2 of [2]) We also consider the unit sphere S3 in R4. Let
X1, X2 and X3 be the vector fields defined in the previous example. In [2], the authors
define a metric < ., . >2 on S3 such that X1, X2 and X3 are orthogonal and such that
< X1, X1 >2 = < X2, X2 >2 = 2 and < X3, X3 >2 = 4. Then E1 = 1√

2
X1, E2 = 1√

2
X2

and E3 = − 1
2 X3 form an orthonormal basis on S3. We denote the Levi-Civita

connection of <,>2 by ∇, then ∇Ei Ej and R(Ei, Ej)Ek can be computed. We now
define a symmetric bilinear form α on TS3 in accordance with Theorem 2.2 of [2] by

α(E1, E1) = E1, α(E3, E1) = 0, α(E1, E2) = −E2,

α(E3, E2) = 0, α(E2, E2) = −E1, α(E3, E3) = 0.

https://doi.org/10.1017/S0017089505002867 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002867


60 HAIZHONG LI AND GUOXIN WEI

A straightforward computation shows that α satisfies the conditions of the existence
theorem, i.e. Theorem 3.2 of [2]. Hence we obtain a Lagrangian isometric immersion

ϕ2 : (S3,< ., . >2) → S6(1),

whose second fundamental form satisfies h(X, Y ) = Jα(X, Y ). That is,

h(E1, E1) = JE1, h(E3, E1) = 0, h(E1, E2) = −JE2,

h(E3, E2) = 0, h(E2, E2) = −JE1, h(E3, E3) = 0.

Hence


i,j,k,lh1∗
i j hl∗

i khl∗
k j = 1 − 1 + 1 − 1 = 0,


i,j,k,lh2∗
i j hl∗

i khl∗
k j = 0 = 
i,j,k,lh3∗

i j hl∗
i khl∗

k j,

S =
∑
l,i,j

(hl∗
i j)

2 = 4, τ = 1.

From Lemma 2.4, we know that M is a Lagrangian Willmore submanifold with
constant scalar curvature.

EXAMPLE 3.5. ([5]) Define a map

ϕ3 : S3(1) =
{

(x1, x2, x3, x4) ∈ R4
∣∣ 4∑

i=1

x2
i = 1

}

−→ S6(1) =
{

(y1, y2, y3, y4, y5, y6, y7) ∈ R7 |
7∑

i=1

y2
i = 1

}

where

y1 = 1
9

(
5x2

1 + 5x2
2 − 5x2

3 − 5x2
4 + 4x1

)
; y2 = − 2

3 x2

y3 = 2
√

5
9

(
x2

1 + x2
2 − x2

3 − x2
4 − x1

)
; y4 =

√
3

9
√

2
(−10x3x1 − 2x3 − 10x2x4)

y5 =
√

3
√

5
9
√

2
(2x1x4 − 2x4 − 2x2x3); y6 =

√
3
√

5
9
√

2
(2x1x3 − 2x3 + 2x2x4)

y7 = −
√

3
9
√

2
(10x1x4 + 2x4 − 10x2x3)

By direct computation, we have

h(e1, e1) =
√

5
2 Je1, h(e2, e2) = −

√
5

4 Je1, h(e3, e3) = −
√

5
4 Je1,

h(e1, e2) = −
√

5
4 Je2, h(e2, e3) = 0, h(e1, e3) = −

√
5

4 Je3.

Then we know that ϕ3 : S3 → S6(1) is a Lagrangian immersion with constant scalar
curvature 23

16 . On the other hand, we have


i,j,k,lh1∗
i j hl∗

i khl∗
k j = 45

√
5

64

= 0.

From Lemma 2.4, we obtain that ϕ3 : S3 → S6(1) is not a Willmore submanifold.
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4. Theorem and the proof. First of all, we give this paper’s main theorem.

THEOREM 4.1. Let ϕ : M3 → S6(1) be a Lagrangian Willmore immersion with
constant scalar curvature. Then locally one of the following four possibilities occurs:

(1) ϕ is congruent with a totally geodesic immersion;
(2) ϕ is congruent with a constant sectional curvature 1

16 immersion;
(3) ϕ is congruent with ϕ1;
(4) ϕ is congruent with ϕ2;
Here ϕ1 and ϕ2 are as in Section 3.

Proof. From Gauss equations (2.12) and τ = constant, we get

S =
∑
i,j,k

(
hk∗

i j

)2 = 6 − 2τ = C = const. (4.1)

If C = 0, then M is totally geodesic and ϕ is congruent with a totally geodesic
immersion.

If C 
= 0, then every point is not totally geodesic point. From Lemma 2.1, we can
choose an orthonormal basis {e1, e2, e3} of TpM such that

h(e1, e1) = λ1Je1, h(e2, e2) = λ2Je1 + λ3Je2 + λ4Je3,

h(e1, e2) = λ2Je2, h(e2, e3) = λ4Je2 − λ3Je3,

h(e1, e3) = −(λ1 + λ2)Je3, h(e3, e3) = −(λ1 + λ2)Je1 − λ3Je2 − λ4Je3.

where λ1 > 0.
By direct calculation, we obtain

S = 4λ2
1 + 6λ2

2 + 6λ1λ2 + 4λ2
3 + 4λ2

4,


i,j,k,lh1∗
i j hl∗

i khl∗
k j = −4λ2

1λ2 − 4λ1λ
2
2 − 2λ1λ

2
3 − 2λ1λ

2
4,


i,j,k,lh2∗
i j hl∗

i khl∗
k j = −2λ2

1λ3 − 2λ1λ2λ3 + 4λ2
2λ3,


i,j,k,lh3∗
i j hl∗

i khl∗
k j = −4λ2

1λ4 − 10λ1λ2λ4 − 4λ2
2λ4.

Then, by using of Lemma 2.4, λ1 > 0 and S = constant, we can deduce that


4λ2
1 + 6λ2

2 + 6λ1λ2 + 4λ2
3 + 4λ2

4 = C = const,

2λ1λ2 + 2λ2
2 + λ2

3 + λ2
4 = 0,

λ3
(
λ2

1 + λ1λ2 − 2λ2
2

) = 0,

λ4
(
2λ2

1 + 5λ1λ2 + 2λ2
2

) = 0.

(4.2)

In order to solve these equations, we consider the following cases.
Case 1: λ2 = 0.

Then (4.2) becomes 


4λ2
1 + 4λ2

3 + 4λ2
4 = C

λ2
3 + λ2

4 = 0

λ2
1λ3 = 0

λ2
1λ4 = 0
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Therefore, we have

λ1 =
√

C
2

, λ2 = 0, λ3 = 0, λ4 = 0. (4.3)

Case 2: λ2 
= 0, λ3 = 0, λ4 = 0.
In this case, (4.2) becomes

{
4λ2

1 + 6λ2
2 + 6λ1λ2 = C

λ1 + λ2 = 0

Then we have

λ1 =
√

C
2

, λ2 = −
√

C
2

, λ3 = λ4 = 0. (4.4)

Case 3: λ2 
= 0, λ3 = 0, λ4 
= 0.
In this case, (4.2) becomes




4λ2
1 + 6λ2

2 + 6λ1λ2 + 4λ2
4 = C

2λ1λ2 + 2λ2
2 + λ2

4 = 0

2λ2
1 + 5λ1λ2 + 2λ2

2 = 0

From 2λ1λ2 = −2λ2
2 − λ2

4 < 0, we deduce that λ2 < 0; From 2λ2
1 + 5λ1λ2 + 2λ2

2 = 0, it
then follows that either λ1 = −2λ2 or λ1 = − 1

2λ2. If λ1 = − 1
2λ2, then we obtain λ2

2 +
λ2

4 = 0. It is a contradiction. Hence λ1 = −2λ2. After a straightforward calculation
one has

λ1 =
√

2C
3

, λ2 = −
√

2C
6

, λ3 = 0, λ2
4 = C

9
. (4.5)

Case 4: λ2 
= 0, λ3 
= 0, λ4 = 0.
In this case, (4.2) becomes




4λ2
1 + 6λ2

2 + 6λ1λ2 + 4λ2
3 = C

2λ1λ2 + 2λ2
2 + λ2

3 = 0

λ2
1 + λ1λ2 − 2λ2

2 = 0

From 2λ1λ2 = −2λ2
2 − λ2

3, we see that λ2 < 0; From λ2
1 + λ1λ2 − 2λ2

2 = 0, it follows
that λ1 = λ2 or λ1 = −2λ2. Since λ1 > 0 and λ2 < 0, we deduce λ1 = −2λ2. Then we
obtain

λ1 =
√

2C
3

, λ2 = −
√

2C
6

, λ2
3 = C

9
, λ4 = 0. (4.6)
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Case 5: λ2 
= 0, λ3 
= 0, λ4 
= 0.
In this case, (4.2) becomes



4λ2
1 + 6λ2

2 + 6λ1λ2 + 4λ2
3 + 4λ2

4 = C

2λ1λ2 + 2λ2
2 + λ2

3 + λ2
4 = 0

λ2
1 + λ1λ2 − 2λ2

2 = 0

2λ2
1 + 5λ1λ2 + 2λ2

2 = 0

From 2λ1λ2 = −2λ2
2 − λ2

3 − λ2
4, we know that λ2 < 0; Since λ2

1 + λ1λ2 − 2λ2
2 = 0, we

deduce that λ1 = λ2 or λ1 = −2λ2. Since λ1 > 0 and λ2 < 0, we find λ1 = −2λ2. Then
we obtain

λ1 =
√

2C
3

, λ2 = −
√

2C
6

, λ2
3 + λ2

4 = C
9

. (4.7)

Firstly, we consider Case 3, Case 4 and Case 5. Let a1 = λ1, a2 = λ2 and a3 = −(λ1 +
λ2), from (2.7) and Gauss equations (2.11), we have

R1jkl = −(δ1kδjl − δ1lδjk) − ∑
r

(
hr∗

1khr∗
jl − hr∗

1lh
r∗
jk

)
= −(δ1kδjl − δ1lδjk) − ∑

r

(
akδkrhr∗

jl − alδlrhr∗
jk

)
= −(δ1kδjl − δ1lδjk) − (

akhk∗
jl − alhl∗

jk

)
= −(δ1kδjl − δ1lδjk) − (ak − al)hl∗

jk,

R1j1l = −(δ11δjl − δ1lδj1) − (a1 − al)hl∗
j1,

R1212 = −1 − (a1 − a2)h2∗
21 = −1 − (λ1 − λ2)λ2 = −1 + 3λ2

2 = −
(

1 − C
6

)
,

R1313 = −1 − (a1 − a3)h3∗
31 = −1 + (2λ1 + λ2)(λ1 + λ2) = −1 + 3λ2

2 = −
(

1 − C
6

)
,

R1223 = −(δ12δ23 − δ13δ22) − (a2 − a3)h3∗
22 = −(λ1 + 2λ2)λ4 = 0,

R1323 = −(δ12δ33 − δ13δ23) − (a2 − a3)h3∗
32 = (λ1 + 2λ2)λ3 = 0,

R2323 = −1 − ∑
r

(
hr∗

22hr∗
33 − hr∗

23hr∗
23

)
= −1 − [

λ2(−λ1 − λ2) − 2
(
λ2

3 + λ2
4

)]
= −1 − (

λ2
2 − 2C

9

) = −(
1 − C

6

)
.

Hence we have

Ri j kl = −
(

1 − C
6

)
(δi kδjl − δilδjk).

That is, M is a submanifold with constant sectional curvature c. In [7], Ejiri proved
that if M is a submanifold with constant sectional curvature c , then c = 1 (and M is
totally geodesic) or c = 1

16 . In these cases, C 
= 0 (and M is not totally geodesic). We
deduce that c = 1

16 . It follows that 1 − C
6 = 1

16 . Therefore C = S = 45
8 .
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Secondly, we consider Case 1:
In this case, we have

h(e1, e1) =
√

C
2 Je1, h(e3, e3) = −

√
C

2 Je1, h(e1, e2) = 0

h(e1, e3) = −
√

C
2 Je3, h(e2, e3) = 0, h(e2, e2) = 0

(4.8)

We see from Remark 2.2 that δM = 2. It follows from Lemma 2.3 that M is congruent
with ϕ1 or ϕ2.

Thirdly, we consider Case 2. Applying the similar argument as in Case 1, we can
obtain that ϕ is also congruent with ϕ1 or ϕ2. Theorem 4.1 is proved.

COROLLARY 4.1. The values for the norm square of the second fundamental form S
of Lagrangian Willmore submanifold with S = constant in (S6(1), J) are 0, 4, 45

8 , 20
3 .
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