DISTALITY OF CERTAIN ACTIONS ON p-ADIC SPHERES

RIDDHI SHAH[®] and ALOK KUMAR YADAV^{®⊠}

(Received 18 July 2018; accepted 30 April 2019; first published online 29 July 2019)

Communicated by B. Martin

Abstract

Consider the action of $GL(n, \mathbb{Q}_p)$ on the p-adic unit sphere S_n arising from the linear action on $\mathbb{Q}_p^n \setminus \{0\}$. We show that for the action of a semigroup \mathfrak{S} of $GL(n, \mathbb{Q}_p)$ on S_n , the following are equivalent: (1) \mathfrak{S} acts distally on S_n ; (2) the closure of the image of \mathfrak{S} in $PGL(n, \mathbb{Q}_p)$ is a compact group. On S_n , we consider the 'affine' maps \overline{T}_a corresponding to T in $GL(n, \mathbb{Q}_p)$ and a nonzero a in \mathbb{Q}_p^n satisfying $\|T^{-1}(a)\|_p < 1$. We show that there exists a compact open subgroup V, which depends on T, such that \overline{T}_a is distal for every nonzero $a \in V$ if and only if T acts distally on S_n . The dynamics of 'affine' maps on p-adic unit spheres is quite different from that on the real unit spheres.

2010 *Mathematics subject classification*: primary 37B05, 22E35; secondary 20M20, 20G25. *Keywords and phrases*: distal actions, affine maps, *p*-adic unit spheres.

1. Introduction

Let X be a (Hausdorff) topological space. Let \mathfrak{S} be a semigroup of homeomorphisms of X. The action of \mathfrak{S} is said to be *distal* if, for any pair of distinct elements $x, y \in X$, the closure of $\{(T(x), T(y)) \mid T \in \mathfrak{S}\}$ does not intersect the diagonal $\{(d,d) \mid d \in X\}$; (equivalently, we say that the \mathfrak{S} acts *distally* on X). Let $T: X \to X$ be a homeomorphism. The map T is said to be *distal* if the group $\{T^n\}_{n \in \mathbb{N}}$ acts distally on X. If X is compact, then T is distal if and only if the semigroup $\{T^n\}_{n \in \mathbb{N}}$ acts distally (cf. Berglund *et al.* [1]).

The notion of distality was introduced by Hilbert (cf. Moore [8]) and studied by many in different contexts (see Ellis [3], Furstenberg [4], Raja and Shah [10, 11] and Shah [12], and references cited therein). Note that a homeomorphism T of a topological space is distal if and only if T^n is so, for every $n \in \mathbb{Z}$.

For the *p*-adic field \mathbb{Q}_p for a prime p, let $|\cdot|_p$ denote the *p*-adic absolute value on \mathbb{Q}_p and for $x = (x_1, \dots, x_n) \in \mathbb{Q}_p^n$, $n \in \mathbb{N}$, let $||x||_p = \max_{1 \le i \le n} |x_i|_p$. This defines a *p*-adic

R. Shah would like to acknowledge the support of DST (SERB) through the MATRICS research grant. A. K. Yadav would like to acknowledge the support for a research assistantship from DST-PURSE grant in Jawaharlal Nehru University.

^{© 2019} Australian Mathematical Publishing Association Inc.

vector space norm on \mathbb{Q}_p^n . Let $S_n = \{x \in \mathbb{Q}_p^n \mid ||x||_p = 1\}$ be the *p*-adic unit sphere (in \mathbb{Q}_p^n). We refer the reader to Koblitz [7] for basic facts on p-adic vector spaces. We first define a canonical group action of $GL(n, \mathbb{Q}_p)$ on S_n as follows. For $T \in GL(n, \mathbb{Q}_p)$, let $\overline{T}: S_n \to S_n$ be defined as $\overline{T}(x) = ||T(x)||_p T(x)$, $x \in S_n$. This is a continuous group action. We show that a semigroup \mathfrak{S} of $GL(n,\mathbb{Q}_p)$ acts distally on S_n if and only if the closure of the image of \mathfrak{S} in $PGL(n, \mathbb{Q}_p) = GL(n, \mathbb{Q}_p)/\mathcal{D}$ is a compact group, where \mathcal{D} is the centre of $GL(n, \mathbb{Q}_p)$ (see Theorem 2.4). This is a p-adic analogue of Shah and Yadav [13, Theorem 1] for the action of a semigroup in $GL(n + 1, \mathbb{R})$ on the real unit sphere \mathbb{S}^n . In particular, we show for $T \in \mathrm{SL}(n,\mathbb{Q}_p)$ that T is distal if and only if \overline{T} is distal (more generally, see Proposition 2.3, Corollary 2.5 and the subsequent remark). For $T \in GL(n, \mathbb{Q}_p)$ and $a \in \mathbb{Q}_p^n \setminus \{0\}$, if $||T^{-1}(a)||_p < 1$, then the corresponding 'affine' map on S_n , $\overline{T}_a(x) = ||a + T(x)||_p(a + T(x))$, $x \in S_n$, is a homeomorphism. If Tor, more generally, \overline{T} is distal, then there exists a neigbourhood V of 0 in \mathbb{Q}_p^n such that, for every nonzero a in V, \overline{T}_a is distal. If \overline{T} is not distal, then every neighbourhood of 0 contains a nonzero a such that \overline{T}_a is not distal; see Theorem 3.2 and Corollary 3.3. For such 'affine' actions on the real unit sphere \mathbb{S}^n , there are many examples where $T \in GL(n+1,\mathbb{R})$ is such that T and/or \overline{T} are distal but \overline{T}_a is not distal; see [13, Theorem 7, Corollaries 10 and 12]. This illustrates that the dynamics of such 'affine' actions on S_n is different from that on $\mathbb{S}^n \subset \mathbb{R}^{n+1}$.

For an invertible linear map T on a p-adic vector space $V \approx \mathbb{Q}_p^n$, let $C(T) = \{v \in V \mid T^m(v) \to 0 \text{ as } m \to \infty\}$ and $M(T) = \{v \in V \mid \{T^m(v)\}_{m \in \mathbb{Z}} \text{ is relatively compact}\}$. These are closed subspaces of V, C(T) is known as the contraction space of T, and $V = C(T) \oplus M(T) \oplus C(T^{-1})$. It is easy to see that T is distal (on V) if and only if C(T) and $C(T^{-1})$ are trivial. We refer the reader to Wang [14] for more details on the structure of p-adic contraction spaces. We will use the notion of contraction spaces below.

2. Distality of the semigroup actions on S_n

Let \mathbb{Q}_p^n be an n-dimensional p-adic vector space equipped with the p-adic norm defined as above. For $T \in \mathrm{GL}(n,\mathbb{Q}_p)$, let $\|T\|_p = \sup\{\|T(x)\|_p \mid x \in \mathbb{Q}_p, \|x\|_p = 1\}$. Observe that the norm of an element or a matrix, defined this way, is of the from p^m for some $m \in \mathbb{Z}$. The map $\mathrm{GL}(n,\mathbb{Q}_p) \times \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ given by $(T,x) \mapsto T(x), T \in \mathrm{GL}(n,\mathbb{Q}_p), x \in \mathbb{Q}_p^n$, is continuous. We call $T \in \mathrm{GL}(n,\mathbb{Q}_p)$ an *isometry* if it preserves the norm, that is, if T keeps the p-adic unit sphere S_n invariant. Note that T is an isometry if and only if $\|T\|_p = 1 = \|T^{-1}\|_p$. For $x, y \in \mathbb{Q}_p^n$, $\|x + y\|_p \le \max\{\|x\|_p, \|y\|_p\}$; the equality holds if $\|x\|_p \ne \|y\|_p$. We will use this fact extensively. We first consider the group action of $\mathrm{GL}(n,\mathbb{Q}_p)$ on S_n defined in the introduction. For semigroups of $\mathrm{GL}(n,\mathbb{Q}_p)$, we prove a result analogous to [13, Theorem 1] (see Theorem 2.4).

Recall that $T \in GL(n, \mathbb{Q}_p)$ is said to be distal if $\{T^m\}_{m \in \mathbb{Z}}$ acts distally on \mathbb{Q}_p^n .

The following useful lemma may be known. We will give a short proof for the sake of completeness.

Lemma 2.1. Let $T \in GL(n, \mathbb{Q}_p)$. The following statements are equivalent.

- (1) T is distal.
- (2) The closure of the group generated by T in $GL(n, \mathbb{Q}_p)$ is compact.
- (3) T^m is an isometry for some $m \in \mathbb{N}$.

PROOF. (3) \Rightarrow (2) is obvious and (2) \Rightarrow (1) follows as compact groups act distally. Now suppose T is distal, that is. $\{T^m\}_{m\in\mathbb{Z}}$ acts distally on \mathbb{Q}_p^n . Then the contraction spaces C(T) and $C(T^{-1})$ are trivial. By [14, Lemma 3.4], we get that

$$\mathbb{Q}_p^n = M(T) = \{x \in \mathbb{Q}_p^n \mid \{T^m(x)\}_{m \in \mathbb{Z}} \text{ is relatively compact}\}.$$

By [14, Proposition 1.3], $\bigcup_{m \in \mathbb{Z}} T^m(S_n)$ is relatively compact, that is, $\{\|T^m\|_p\}_{m \in \mathbb{Z}}$ is bounded and hence $\{T^m \mid m \in \mathbb{Z}\}$ is relatively compact in $GL(n, \mathbb{Q}_p)$. This proves $(1) \Rightarrow (2)$. Now suppose T is contained in a compact group. Then $T^{\pm m_k} \to Id$, for some $\{m_k\} \subset \mathbb{N}$ (cf. [6]). Therefore, $\|T^{\pm m_k}\|_p \to 1$, and as $\{\|T^m\|_p \mid m \in \mathbb{Z}\} \subset \{p^l \mid l \in \mathbb{Z}\}$ we get that, for all large k, $\|T^{\pm m_k}\|_p = 1$ and T^{m_k} is an isometry. Therefore, $(2) \Rightarrow (3)$.

We say that a topological group G acts continuously on a topological space X by homeomorphisms if there is a homomorphism $\psi: G \to \operatorname{Homeo}(X)$ such that the corresponding map $G \times X \to X$ given by $(g,x) \mapsto \psi(g)(x), g \in G, x \in X$, is continuous. We say that a semigroup H of G (respectively, $T \in G$) acts distally on X if $\psi(H)$ acts distally on X (respectively, $\psi(T)$ is distal). We state a useful lemma which is well known and can be proven easily.

Lemma 2.2. Let X be a Hausdorff topological space and let G be a Hausdorff topological group which acts continuously on X by homeomorphisms. Let G be a semigroup and G be a compact subgroup of G such that all the elements of G normalize G. Then the semigroup G are such that G is and only if G acts distally on G. In particular, if G if G are such that G is and only if G generates a relatively compact group in G, then G acts distally on G if and only if G acts distally on G.

We now recall the natural action of $\mathrm{GL}(n,\mathbb{Q}_p)$ on \mathcal{S}_n defined earlier: for $T\in \mathrm{GL}(n,\mathbb{Q}_p)$ and $x\in \mathcal{S}_n$, $\overline{T}(x)=\|T(x)\|_pT(x)$. Here, \overline{T} defines a homeomorphism of \mathcal{S}_n and it is trivial if and only if $T=p^n$ Id for some $n\in\mathbb{Z}$. The map $\mathrm{GL}(n,\mathbb{Q}_p)\to \mathrm{Homeo}(\mathcal{S}_n)$, given by $T\mapsto \overline{T}$ as above, is a homomorphism which factors through the discrete central subgroup $\{p^n\ \mathrm{Id}\ |\ n\in\mathbb{Z}\}$ of $\mathrm{GL}(n,\mathbb{Q}_p)$. The corresponding map $\mathrm{GL}(n,\mathbb{Q}_p)\times\mathcal{S}_n\to\mathcal{S}_n$, given by $(T,x)\mapsto \overline{T}(x)$, is continuous. Therefore, $\mathrm{GL}(n,\mathbb{Q}_p)$ acts continuously on \mathcal{S}_n by homeomorphisms as above. Observe that $\mathcal{S}_1=\mathbb{Z}_p^*=\{x\in\mathbb{Q}_p\ |\ |x|_p=1\}$ and $\mathrm{GL}(1,\mathbb{Q}_p)=\mathbb{Q}_p\setminus\{0\}$ acts distally on \mathcal{S}_1 as $\overline{T}=\|T\|_pT\in\mathcal{S}_1$ for every $T\in\mathrm{GL}(1,\mathbb{Q}_p)$. The following will be useful in proving the main result of this section.

PROPOSITION 2.3. Let $T \in GL(n, \mathbb{Q}_p)$. If bT is distal for some $b \in \mathbb{Q}_p$, then \overline{T} is distal. Conversely, if \overline{T} is distal, then, for some $m \in \mathbb{N}$ and $l \in \mathbb{Z}$, $p^l T^m$ is distal. If $|\det T|_p = 1$ and \overline{T} is distal, then T is distal.

Proof. Observe that bT is distal if and only if $|b|_p^{-1}T$ is so. As $\overline{T} = \overline{p^mT}$ for any $m \in \mathbb{Z}$, we may replace T by $|b|_p^{-1}T$ and assume that T is distal. By Lemma 2.1, T generates a relatively compact group, and hence \overline{T} is distal. Conversely, suppose \overline{T} is distal. By [14, 3.3], there exists $m \in \mathbb{N}$ such that $T^m = AUC$, where C is a diagonal matrix, U is unipotent, A is semisimple, A, U and C commute with each other and A as well as U generate a relatively compact group. Now by Lemma 2.2, we have that \overline{C} is distal. Here, C = DD' = D'D for some diagonal matrices D and D' such that the diagonal entries of D (respectively, D') are of the form p^{l_k} , $l_k \in \mathbb{Z}$, k = 1, ... n (respectively, in \mathbb{Z}_p^*). Since D' also generates a relatively compact group and it commutes with D, by Lemma 2.2, \overline{D} is distal. It is enough to show that $D = p^l$ Id, as in this case, D would be central in $GL(n, \mathbb{Q}_n)$ and this would imply that AU and D' commute, and hence, $p^{-l}T^m = AUD'$ would generate a relatively compact group which in turn would imply that it is distal. If possible, suppose p^l and p^{l_1} are two entries in D such that $l < l_1$. As $\overline{D} = \overline{p^{-l}D}$, we get for $D_1 = p^{-l}D$ that $\overline{D}_1 = \overline{D}$ is distal, 1 is an eigenvalue of D_1 and D_1 has another eigenvalue p^{l_1-l} which has p-adic absolute value less than 1. Then the contraction space of D_1 , $C(D_1) \neq \{0\}$, as we can take a nonzero $y \in \mathbb{Q}_p^n$ satisfying $D_1(y) = p^k y$ for $k = l_1 - l \in \mathbb{N}$; and it follows that $y \in C(D_1)$. Let $x \in S_n$ be such that $D_1(x) = x$ and let y be as above such that $0 < ||y||_p < 1$. Then $\overline{D}_1(x) = x$ and $x + y \in S_n$. Now $D_1^i(x+y) = (x+p^{ki}y) \to x \in S_n$ as $i \to \infty$. Therefore, $\overline{D}_1^i(x+y) \to x$ and it leads to a contradiction as \overline{D}_1 is distal. Therefore, $D = p^l \operatorname{Id}$ and $p^{-l}T^m$ is distal.

Suppose $|\det T|_p = 1$. Then $|\det (T^m)|_p = |\det T|_p^m = 1$. As \overline{T} is distal, $T^m = p^l S$ for some $l \in \mathbb{Z}$, where S generates a relatively compact group. Therefore, $|\det S|_p = 1$, and hence l = 0 and $T^m = S$. This implies that T also generates a relatively compact group, and by Lemma 2.1, it is distal.

From now on, $\mathcal{D} = \{b \text{ Id } | b \in \mathbb{Q}_p\}$, the centre of $GL(n, \mathbb{Q}_p)$. The following theorem characterizes distal actions of semigroups on S_n . Recall that $PGL(n, \mathbb{Q}_p) = GL(n, \mathbb{Q}_p)/\mathcal{D}$.

THEOREM 2.4. Let $\mathfrak{S} \subset GL(n, \mathbb{Q}_p)$ be a semigroup. Then the following are equivalent.

- (i) \mathfrak{S} acts distally on \mathcal{S}_n .
- (ii) The group generated by \mathfrak{S} acts distally on \mathcal{S}_n .
- (iii) The closure of $(\mathfrak{SD})/\mathfrak{D}$ in PGL (n, \mathbb{Q}_p) is a compact group.

PROOF. Suppose (i) holds. First suppose $\mathfrak{S} \subset \mathrm{SL}(n,\mathbb{Q}_p)$. As the closure $\overline{\mathfrak{S}}$ of \mathfrak{S} is a semigroup in $\mathrm{SL}(n,\mathbb{Q}_p)$ and it also acts distally on S_n , we may assume that \mathfrak{S} is closed. By Proposition 2.3 and Lemma 2.1, each element in \mathfrak{S} generates a relatively compact group (in \mathfrak{S}). In particular, each element of \mathfrak{S} has an inverse in \mathfrak{S} and \mathfrak{S} is a group. Now by [5, Lemma 3.3], \mathfrak{S} is contained in a compact extension of a unipotent subgroup in $\mathrm{GL}(n,\mathbb{Q}_p)$ which is normalized by \mathfrak{S} . Now suppose $\mathfrak{S} \not\subset \mathrm{SL}(n,\mathbb{Q}_p)$. We will first show that \mathfrak{S} is contained in a compact extension of a nilpotent group in $\mathrm{GL}(n,\mathbb{Q}_p)$ and the latter is isomorphic to a direct product of \mathcal{D} and a unipotent subgroup normalized by elements of \mathfrak{S} .

Let $C = \{p^n \text{ Id} \mid n \in \mathbb{Z}\}$ and let $\mathcal{Z} = \{z \text{ Id} \mid z \in \mathbb{Z}_p^*\}$. Then C and \mathcal{Z} are closed subgroups of \mathcal{D} , C is discrete, Z is compact and $\mathcal{D} = C \times Z$. As the actions of both \mathfrak{S} and $\mathfrak{S}C$ on S_n are the same and the latter is also a semigroup, without loss of any generality, we may replace \mathfrak{S} by $\mathfrak{S}C$ and assume that $C \subset \mathfrak{S}$. As noted earlier, we may also assume that \mathfrak{S} is closed. Moreover, as \mathcal{Z} is compact and central, $\mathfrak{S}\mathcal{Z}$ is a closed semigroup and by Lemma 2.2, $\mathfrak{S} \mathbb{Z}$ acts distally on \mathcal{S}_n . Therefore, we may replace \mathfrak{S} by $\mathfrak{S}\mathcal{Z}$ and assume that $\mathcal{Z} \subset \mathfrak{S}$. Now we have $\mathcal{D} \subset \mathfrak{S}$ and $\mathfrak{S}\mathcal{D} = \mathfrak{S}$. Let $T \in \mathfrak{S}$. By Proposition 2.3, $T^m = p^l S$ for some $l \in \mathbb{Z}$ and $S \in GL(n, \mathbb{Q}_p)$ such that S generates a relatively compact group. Moreover, as $\mathcal{D} \subset \mathfrak{S}$, we have that $S \in \mathfrak{S}$. Therefore, the closure of the semigroup generated by S in \mathfrak{S} is compact and hence a group. In particular, S is invertible in \mathfrak{S} and we have that T^m is invertible in \mathfrak{S} , and hence $T^{m-1}(T^m)^{-1}$ is the inverse of T in \mathfrak{S} . Therefore, we may assume that \mathfrak{S} is a closed group. Let \mathbb{T} be a maximal torus in $GL(n, \mathbb{Q}_p)$. Let \mathbb{T}_a (respectively, \mathbb{T}_d) be the anisotropic (respectively, split) torus in \mathbb{T} . Then \mathbb{T}_a is compact and $\mathbb{T}_a\mathbb{T}_d$ is an almost direct product. Moreover, since all maximal tori are conjugate to each other, there exists $m \in \mathbb{N}$ such that, for any element $T \in \mathfrak{S} \subset \mathrm{GL}(n, \mathbb{Q}_p)$, we have $T^m = \tau_a \tau_d \tau_u$, where τ_u is unipotent, $\tau_s = \tau_a \tau_d \in \mathbb{T}$ is semisimple, $\tau_a \in \mathbb{T}_a$ which is a compact group, $\tau_d \in \mathbb{T}_d$ and τ_a , τ_d and τ_u commute with each other. Note that \mathbb{T} depends on T, but m is independent of the choice of T. We know that τ_u , being unipotent, generates a relatively compact group. As \overline{T} is distal, arguing as above in the proof of Proposition 2.3, we get that $\tau_d = (t_{ij})_{n \times n}$ is such that $t_{ij} = 0$ if $i \neq j$ and $|t_{ii}|_p$ is the same for all i. We have $T^m = CS$, where $C \in \mathcal{D}$ and S generates a relatively compact group. Let $\pi: \mathrm{GL}(n,\mathbb{Q}_p) \to \mathrm{GL}(n,\mathbb{Q}_p)/\mathcal{D}$ be the natural projection. Note that $GL(n, \mathbb{Q}_p)/\mathcal{D}$ is an algebraic group and is linear, that is, it can be realized as a subgroup of GL(V) for some p-adic vector space V. Now $\pi(\mathfrak{S})$ is a (closed) subgroup of $GL(n, \mathbb{Q}_p)/\mathcal{D}$ and every element of $\pi(\mathfrak{S})$ generates a relatively compact group. By [5, Lemma 3.3], $\pi(\mathfrak{S})$ is contained in a compact extension of a unipotent group, that is, $\pi(\mathfrak{S}) \subset K \ltimes \mathcal{U}$, a semi-direct product, where $K, \mathcal{U} \subset GL(V)$, K is a compact group and \mathcal{U} is unipotent. We can choose K such that $\pi(\mathfrak{S})\mathcal{U}/\mathcal{U}$ is isomorphic to K. Let $H = K \ltimes \mathcal{U} = \pi(\mathfrak{S}) \mathcal{U}$. Let \mathcal{G} be the smallest algebraic subgroup of $GL(n, \mathbb{Q}_p)/\mathcal{D}$ containing $\pi(\mathfrak{S})$. Here, since \mathcal{U} is unipotent and is normalized by $\pi(\mathfrak{S})$, it is also normalized by G. Then \mathcal{GU} is an algebraic group, and hence closed. As $H \subset \mathcal{GU}$ and $H = (\mathcal{G} \cap H)\mathcal{U}$, it follows that $K = H/\mathcal{U}$ is isomorphic to $(\mathcal{G} \cap H)/(\mathcal{G} \cap \mathcal{U})$. Let $H_0 = \mathcal{G} \cap H$ and let $\mathcal{U}_0 = \mathcal{G} \cap \mathcal{U}$. Then $\pi(\mathfrak{S}) \subset H_0$ and $\pi(\mathfrak{S})$ normalizes \mathcal{U}_0 . Here, $\pi^{-1}(\mathcal{U}_0) = \mathcal{D} \times \mathcal{U}'$ where \mathcal{U}' is the unipotent radical of $\pi^{-1}(\mathcal{U}_0)$; \mathcal{U}' is isomorphic to $\pi(\mathcal{U}') = \mathcal{U}_0$ and is normalized by \mathfrak{S} . Therefore $\mathfrak{S} \subset H' = \pi^{-1}(H_0)$. Also, $\mathcal{D} \times \mathcal{U}'$ is a co-compact nilpotent normal subgroup in H' and is also algebraic; see [2] and [9] for details on algebraic groups.

By Kolchin's theorem, there exists a flag $\{0\} = V_0 \subset \cdots \subset V_k = \mathbb{Q}_p^n$ of maximal \mathcal{U}' -invariant subspaces such that \mathcal{U}' acts trivially on V_j/V_{j-1} , $j=1,\ldots,k$. Note that each V_j is maximal in the sense that for any subspace W containing V_j such that $W \neq V_j$, \mathcal{U}' does not act trivially on W/V_{j-1} . It is easy to see that each V_j is \mathfrak{S} -invariant as \mathfrak{S} normalizes \mathcal{U}' . Now suppose \mathfrak{S}/\mathcal{D} is not compact. Then there exists

a sequence $\{T_i\} \subset \mathfrak{S}$ such that $\{\pi(T_i)\}$ is unbounded. Now we have $T_i = K_i D_i U_i$, $i \in \mathbb{N}$, where $D_i \in \mathcal{D}$, $U_i \in \mathcal{U}'$ and $K_i \in \pi^{-1}(K)$ such that $\{K_i\}$ is relatively compact and $\{U_i\}$ is unbounded. Note that, for each j, as \mathfrak{S} , \mathcal{U}' and \mathcal{D} keep V_j invariant, $K_i(V_j) = V_j$ for all i. Passing to a subsequence if necessary, we get that there exists $w \in S_n$ such that $\|U_i(w)\|_p \to \infty$, $\overline{T}_i(w) \to w' \in S_n$ and $K_i \to K_0$. For every $v \in V_1$, $T_i(v) = D_i K_i(v) \in V_1$, and hence $\{\|D_i^{-1}T_i(v)\|_p\}$ is bounded. Let $v \in V_1 \setminus \{0\}$ be such that $\|v\|_p < 1$. Then $v + w \in S_n$. As $\{\|K_iU_i(v + w)\|_p\}$ is unbounded and $K_iU_i(v) = K_i(v) \to K_0v$, we get that $\overline{T}_i(v + w) = \overline{K_iU_i}(v + w) \to w'$. This contradicts (i). Therefore, \mathfrak{S}/\mathcal{D} is compact, that is, (i) \Rightarrow (iii).

Suppose $\overline{\otimes \mathcal{D}}/\mathcal{D}$ is a compact group. Then it contains $G\mathcal{D}/\mathcal{D}$, where G is the group generated by \mathfrak{S} . Therefore, $G\mathcal{D}/\mathcal{D}$ is relatively compact. Using this fact, we want to show that G acts distally on S_n . Let C and Z be closed subgroups of \mathcal{D} as above. Since the actions of both G and GC on S_n are the same, without loss of any generality we may replace G by GC and assume that $C \subset G$. We may also assume that G is closed. Now, using the facts that $\mathcal{D} = C \times Z$ and Z is compact, we get that $G\mathcal{D} = GZ$ is closed. Now $G\mathcal{D}/\mathcal{D}$ is compact and is isomorphic to $G/[(G \cap Z) \times C]$. Therefore, G/C is compact, as $G \cap Z$ is compact. Since the action of G on S_n factors through C, the preceding assertion implies that G acts distally on S_n . Hence (iii) \Rightarrow (ii). It is obvious that (ii) \Rightarrow (i).

The following corollary is a consequence of the above theorem.

COROLLARY 2.5. A semigroup \mathfrak{S} of $SL(n, \mathbb{Q}_p)$ acts distally on S_n if and only if the closure of \mathfrak{S} is a compact group.

PROOF. Let $\pi: \mathrm{GL}(n,\mathbb{Q}_p) \to \mathrm{GL}(n,\mathbb{Q}_p)/\mathcal{D}$ be as above. By Theorem 2.4, \mathfrak{S} acts distally on S_n if and only if $\overline{\pi(\mathfrak{S})}$ is a compact group. Note that $\overline{\pi(\mathfrak{S})} \subset \overline{\pi(\mathfrak{S})}$. As $\mathrm{SL}(n,\mathbb{Q}_p)\mathcal{D}$ is closed and $\mathrm{SL}(n,\mathbb{Q}_p)\cap\mathcal{D}$ is finite, we get that $\overline{\pi(\mathfrak{S})}$ is compact if and only if $\overline{\mathfrak{S}}$ is compact; the latter statement is equivalent to $\overline{\mathfrak{S}}$ being a compact group (cf. [6]). Now the assertion follows from the above.

Remark. Note that the above corollary is valid for a semigroup $\mathfrak{S} \subset \mathrm{GL}(n,\mathbb{Q}_p)$ satisfying the condition that $|\det(T)|_p = 1$ for all $T \in \mathfrak{S}$, as the elements of $\mathrm{GL}(n,\mathbb{Q}_p)$ satisfying the condition form a closed subgroup (say) G such that $G\mathcal{D}$ is closed and $G \cap \mathcal{D}$ is a compact group (isomorphic to \mathbb{Z}_p^*).

In the real case, [13, Corollary 5] showed that a semigroup $\mathfrak{S} \subset GL(n+1,\mathbb{R})$ acts distally on the (real) unit sphere \mathbb{S}^n if (and only if) every cyclic subsemigroup of \mathfrak{S} acts distally on \mathbb{S}^n . The corresponding statement does not hold in the p-adic case, as there exists a class of closed noncompact subgroups of $SL(n,\mathbb{Q}_p)$, every cyclic subgroup of which is relatively compact but which do not act distally on S_n as they are not compact; for example, the group of strictly upper triangular matrices in $SL(n,\mathbb{Q}_p)$, $n \geq 2$.

3. Distality of 'affine' actions on S_n

In this section we discuss the 'affine' maps on the p-adic unit sphere S_n . Consider the affine action on \mathbb{Q}_p^n given by $T_a(x) = a + T(x)$, $x \in \mathbb{Q}_p^n$, where $T \in GL(n, \mathbb{Q}_p)$, and $a \in \mathbb{Q}_p^n$. We first consider the corresponding 'affine' map \overline{T}_a on S_n which is defined for any nonzero a satisfying $\|T^{-1}(a)\|_p \neq 1$ as follows: $\overline{T}_a(x) = \|T_a(x)\|_p T_a(x)$, $x \in S_n$. (For a = 0, $\overline{T}_a = \overline{T}$, which is studied in Section 2.) Observe that $T_a(x) = 0$ for some $x \in S_n$ if and only if $T^{-1}(a)$ has norm 1. Therefore, $\overline{T}_a(S_n) \subset S_n$ if $\|T^{-1}(a)\|_p \neq 1$. The map \overline{T}_a is a homeomorphism for any nonzero a satisfying $\|T^{-1}(a)\|_p < 1$ (see Lemma 3.1 below). In this section we study the distality of such homeomorphisms \overline{T}_a .

LEMMA 3.1. Let $T \in GL(n, \mathbb{Q}_p)$ and let $a \in \mathbb{Q}_p^n \setminus \{0\}$ be such that $||T^{-1}(a)||_p \neq 1$. Then the map \overline{T}_a on S_n is continuous and injective. \overline{T}_a is a homeomorphism if and only if $||T^{-1}(a)||_p < 1$.

PROOF. Suppose $||T^{-1}(a)||_p \neq 1$. From the definition of \overline{T}_a , it is obvious that it is continuous. Suppose $x, y \in S_n$ such that $\overline{T}_a(x) = \overline{T}_a(y)$. Then

$$||a + T(x)||_p(a + T(x)) = ||a + T(y)||_p(a + T(y))$$

or $(\beta - 1)T^{-1}(a) = y - \beta x$, where $\beta = ||a + T(x)||_p / ||a + T(y)||_p = p^m$ for some $m \in \mathbb{Z}$. If possible, suppose $\beta \neq 1$. Interchanging y and x if necessary, we may assume that $\beta > 1$ or equivalently, that $m \in \mathbb{N}$. This implies that $||\beta x||_p = |\beta|_p = p^{-m} < 1$, and we get

$$||T^{-1}(a)||_p = |\beta - 1|_p ||T^{-1}(a)||_p = ||y - \beta x||_p = 1,$$

a contradiction. Hence, $\beta = 1$ and x = y. Therefore, \overline{T}_a is injective.

Now suppose $||T^{-1}(a)||_p < 1$. It is enough to show that \overline{T}_a is surjective, as any continuous bijection on a compact Hausdorff space is a homeomorphism.

Let $y \in S_n$. Let $z = T^{-1}(y)$ and let $x = ||z||_p z - T^{-1}(a)$. Since the norm of $||z||_p z$ is 1 and $||T^{-1}(a)||_p < 1$, we have that $||x||_p = 1$. Moreover, as $||y||_p = 1$, we have that $||z||_p^{-1} = ||a + T(x)||_p$. Therefore, $\overline{T}_a(x) = y$. Hence \overline{T}_a is surjective.

Conversely, Suppose \overline{T}_a is surjective. Then there exists $x \in S_n$ such that $\overline{T}_a(x) = \|a\|_p a$. We get that $x = (p^m - 1)T^{-1}(a)$, where $p^m = \|a + T(x)\|_p^{-1}\|a\|_p$ for some $m \in \mathbb{Z}$; here $m \neq 0$ since $x \neq 0$. Now $1 = \|x\|_p = |p^m - 1|_p \|T^{-1}(a)\|_p \ge \|T^{-1}(a)\|_p$ since $|p^m - 1|_p \ge 1$ for every $m \in \mathbb{Z} \setminus \{0\}$. As $\|T^{-1}(a)\|_p \neq 1$, we have that $\|T^{-1}(a)\|_p < 1$. \square

In [13], we have studied 'affine' maps \overline{T}_a on the real unit sphere \mathbb{S}^n . The following result shows that in the p-adic case, \overline{T}_a is distal for every nonzero a in a certain neighbourhood of 0 in \mathbb{Q}_p^n if and only if \overline{T} is distal. This illustrates that the behaviour of such maps in the p-adic case is very different from that in the real case.

THEOREM 3.2. Suppose $T \in GL(n, \mathbb{Q}_p)$. For $a \in \mathbb{Q}_p^n \setminus \{0\}$ with $||T^{-1}(a)||_p \neq 1$, let \overline{T}_a : $S_n \to S_n$ be defined as $\overline{T}_a(x) = ||a + T(x)||_p (a + T(x))$, $x \in S_n$. There exists a compact open subgroup $V \subset \mathbb{Q}_p^n$ such that, for all $a \in V \setminus \{0\}$, we have that $||T^{-1}(a)||_p < 1$, \overline{T}_a is a homeomorphism and the following statements hold.

- (I) If \overline{T} is distal, then \overline{T}_a is distal for all nonzero $a \in V$.
- (II) If \overline{T} is not distal, then for every neighbourhood U of 0 contained in V, there exists a nonzero $a \in U$ such that \overline{T}_a is not distal.

PROOF. By [14, 3.3], we get that there exist D and S which commute with T and $m \in \mathbb{N}$ such that $T^m = SD = DS$, where D is a diagonal matrix with the diagonal entries in $\{p^i \mid i \in \mathbb{Z}\}$ and S generates a relatively compact group. Therefore, S^k is an isometry for some $k \in \mathbb{N}$. Replacing m by km, we may assume that S itself is an isometry. Let $c_0 = \min\{(1/||T^{-j}||_p) \mid 1 \le j \le m-1\}$ and $c_1 = \max\{||T^j||_p \mid 1 \le j \le m-1\}$. As S_n is compact, $0 < c_0 \le c_1 < \infty$. Also, $c_0 \le ||T^j(x)||_p \le c_1$ for all $x \in S_n$ and $1 \le j \le m-1$. Since $||T^j||_p \in \{p^i \mid i \in \mathbb{Z}\}$, we get that $\{||T^j(x)||_p \mid x \in S_n, 1 \le j \le m-1\}$ is finite.

Let *V* be a compact open *S*-invariant subgroup in \mathbb{Q}_p^n such that $V \cup c_0 V \cup c_0^2 V \cup c_0^2 c_1^{-2} V \subset W = \{ w \in \mathbb{Q}_p^n \mid ||w||_p < 1 \}$. Then $||v||_p < \min\{1, c_0, c_0^2, c_0^2 c_1^{-2}\} \le 1$ for all $v \in V$ and $c_0 c_1^{-1} V \subset c_0^2 c_1^{-2} V \subset W$. Moreover, $||T^{-1}(v)||_p < c_0^{-1} c_0 = 1$ for every $v \in V$.

Let p^l be the smallest nonzero entry in the diagonal matrix D and let

$$H = \{ x \in \mathbb{Q}_p^n \mid D(x) = p^l x \}.$$

This is a nontrivial closed subspace of \mathbb{Q}_p^n . As S and T commute with D, they keep H invariant and, as S is an isometry, $||T^m(x)||_p = p^{-l}||x||_p$ for all $x \in H$.

Let $a \in V \setminus \{0\}$. As noted above, $||T^{-1}(a)||_p < 1$, and hence, by Lemma 3.1, \overline{T}_a is a homeomorphism. Take any $x \in S_n$. Since $||a||_p < c_0$ and $||T(x)||_p \ge c_0$, we have $||T_a(x)||_p = ||a + T(x)||_p = ||(T(x))||_p$ and

$$\overline{T}_a(x) = ||T_a(x)||_p T_a(x) = ||T(x)||_p (a + T(x)).$$

Let $\alpha_1(x) = \|T_a(x)\|_p = \|T(x)\|_p = \beta_{1,x}$. Let $\alpha_j(x) = \|T_a(\overline{T}_a^{j-1}(x))\|_p = \|a + T(\overline{T}_a^{j-1}(x))\|_p$ and let $\beta_{j,x} = \alpha_1(x) \cdots \alpha_j(x)$ for all $j \in \mathbb{N}$ $(j \ge 2)$. Take $\beta_{0,x} = 1$ and $\phi^0 = \operatorname{Id}$ for any map ϕ . From the above, we have that $\alpha_j(x) = \|T(\overline{T}_a^{j-1}(x))\|_p$ for all $j \in \mathbb{N}$. It is easy to show by induction that, for every $j \in \mathbb{N}$,

$$\overline{T}_{a}^{j}(x) = \beta_{j,x} T^{j}(x) + \beta_{j,x} \sum_{i=1}^{j} \beta_{j-i,x}^{-1} T^{i-1}(a).$$
(3.1)

Observe that, as $a \in V$, $||T^k(a)||_p \le c_1 ||a||_p < c_1 (c_0 c_1^{-1}) = c_0$, and for any $x \in S_n$, $||T^k(x)||_p \ge c_0$, $1 \le k \le m - 1$. Therefore, for $j \in \mathbb{N}$ and $1 \le k \le m - 2$,

$$||T^{k}(\overline{T}_{a}^{j}(x))||_{p} = [\alpha_{j}(x)]^{-1}||T^{k}(a) + T^{k+1}(\overline{T}_{a}^{j-1}(x))||_{p}$$
$$= [\alpha_{j}(x)]^{-1}||T^{k+1}(\overline{T}_{a}^{j-1}(x))||_{p}.$$

Applying the above equation successively, we get that, for $1 \le j \le m - 1$,

$$\alpha_j(x) = ||T(\overline{T}_a^{j-1}(x))||_p = [\alpha_{j-1}(x) \cdots \alpha_1(x)]^{-1} ||T^j(x)||_p,$$

that is, $\beta_{j,x} = ||T^j(x)||_p$. Hence, $c_0 \le \beta_{j,x} \le c_1$ for all $x \in S_n$ and $1 \le j \le m-1$. Moreover, applying the same equation again successively, we get for $j \ge m$ that

$$\alpha_j(x) = [\alpha_{j-1}(x) \cdots \alpha_{j-m+1}(x)]^{-1} ||T^{m-1}(a) + T^m(\overline{T}_a^{j-m}(x))||_p.$$
 (3.2)

Now we take $a \in V \cap H \setminus \{0\}$. Then $\overline{T}_a(S_n \cap H) = S_n \cap H$. Let $x \in S_n \cap H$. Then $\|T^{-1}(a)\|_p < c_0^{-1}c_0 = 1$, and hence $\|T^{-1}(a) + \overline{T}_a^{j-m}(x)\|_p = 1$. This implies that

$$||T^{m-1}(a) + T^m(\overline{T}_a^{j-m}(x))||_p = ||T^m(T^{-1}(a) + \overline{T}_a^{j-m}(x))||_p = p^{-l}.$$
 (3.3)

Using Equations (3.2) and (3.3), we get $\alpha_j(x) = [\alpha_{j-1}(x) \cdots \alpha_{j-m+1}(x)]^{-1} p^{-l}$, and hence $\beta_{j,x} = p^{-l}\beta_{j-m,x}$ for all $j \ge m$. In particular, $\beta_{m,x} = p^{-l} = \|T^m(x)\|_p$. This implies that $\beta_{km+j,x} = p^{-kl}\beta_{j,x} = p^{-kl}\|T^j(x)\|_p$, $k, j \in \mathbb{N}$. Therefore, $\beta_{j,x} = \|T^j(x)\|_p$, $j \in \mathbb{N}$. Moreover, for all $j, k \in \mathbb{Z}$ and $x \in H$, $T^{km+j}(x) = p^{kl}S^kT^j(x) = p^{kl}T^jS^k(x)$ and $\|T^{km+j}(x)\|_p = p^{-kl}\|T^j(x)\|_p$, as S is an isometry. In particular, $\beta_{km+j,x} = p^{-kl}\|T^j(x)\|_p$ for all $k, j \in \mathbb{Z}$ such that $km + j \ge 0$. Using the above facts together with Equation (3.1), we get, for $k \in \mathbb{N}$,

$$\overline{T}_{a}^{km}(x) = \beta_{km,x} T^{km}(x) + \beta_{km,x} \sum_{j=1}^{km} \beta_{km-j,x}^{-1} T^{j-1}(a)
= S^{k}(x) + \sum_{j=1}^{km} ||T^{-j}(x)||_{p}^{-1} T^{j-1}(a)
= S^{k}(x) + \sum_{i=1}^{k} \sum_{j=1}^{m} ||T^{-j}(x)||_{p}^{-1} T^{j-1}(S^{i-1}(a))
= S^{k}(x) + \sum_{i=1}^{m} \gamma_{j,x}^{-1} T^{j-1}(a_{k}),$$

where $a_k = \sum_{i=1}^k S^{i-1}(a) \in V \cap H$, $k \in \mathbb{N}$, $\gamma_{j,x} = ||T^{-j}(x)||_p = p^l \beta_{m-j,x}$ and $c_1^{-1} \le \gamma_{j,x} \le c_0^{-1}$, $1 \le j \le m-1$, and $\gamma_{m,x} = p^l$. From the above, we get that, for any $k \in \mathbb{N}$ and $x, y \in S_n \cap H$,

$$\overline{T}_{a}^{km}(x) - \overline{T}_{a}^{km}(y) = S^{k}(x - y) + \sum_{i=1}^{m-1} [\gamma_{j,x}^{-1} - \gamma_{j,y}^{-1}] T^{j-1}(a_{k}).$$
 (3.4)

Let $x, y \in S_n \cap H$ such that $||x - y||_p < c_0 c_1^{-1}$. As T is linear, $T^j(x) = T^j(y) + T^j(x - y)$, $j \in \mathbb{N}$. For $1 \le j \le m - 1$, as $||T^j(x - y)||_p \le c_1 ||x - y||_p < c_0$ and $||T^j(y)||_p \ge c_0$, we get that $\beta_{j,x} = ||T^j(x)||_p = ||T^j(y)||_p = \beta_{j,y}$, and hence $\gamma_{j,x} = \gamma_{j,y}$. Therefore,

$$\|\overline{T}_{a}^{km}(x) - \overline{T}_{a}^{km}(y)\|_{p} = \|S^{k}(x) - S^{k}(y)\|_{p} = \|x - y\|_{p}, \quad k \in \mathbb{N}.$$

Now suppose $||x - y||_p \ge c_0 c_1^{-1}$. Observe that $|\gamma_{j,x}^{-1} - \gamma_{j,y}^{-1}|_p \le c_0^{-1}$, $||T^j(a_k)||_p \le c_1 ||a_k||_p$, $1 \le j \le m - 1$ and $a_k \in V$, $||a_k||_p < c_0^2 c_1^{-2}$. Now Equation (3.4) implies that

$$\overline{T}_a^{km}(x) - \overline{T}_a^{km}(y) \in S^k(x - y) + c_0^{-1}c_1W.$$

Since $||S^k(x-y)||_p = ||x-y||_p \ge c_0c_1^{-1}$, we get that $||\overline{T}_a^{km}(x) - \overline{T}_a^{km}(y)||_p = ||x-y||_p$. This shows that $\overline{T}_a^m|_{S_n\cap H}$ preserves the distance and is distal, and hence $\overline{T}_a|_{S_n\cap H}$ is distal, where $a \in V \cap H$.

If \overline{T} is distal, then so is \overline{T}^m , and hence its image in $GL(n, \mathbb{Q}_p)/\mathcal{D}$ generates a relatively compact group. This implies that $D = p^l \operatorname{Id}$, $H = \mathbb{Q}_p^n$, $S_n \cap H = S_n$ and $V \cap H = V$. Therefore, (I) holds.

Now suppose \overline{T} is not distal. Then \overline{T}^m is not distal and hence $D \neq p^l$ Id. Let $l_1 > l$ be such that $H_1 = \{x \in \mathbb{Q}_p^n \mid D(x) = p^{l_1}x\}$ is nonzero. Then H_1 is a vector subspace and is invariant under D, S and T. Let $a \in V \cap H \setminus \{0\}$ as above. It is easy to see that $\overline{T}_a(S_n \cap (H \oplus H_1)) = S_n \cap (H \oplus H_1)$. We show that the restriction of \overline{T}_a to $S_n \cap (H \oplus H_1)$ is not distal. This would imply that (II) holds.

Take $y = x + z \in S_n$, where $x \in S_n \cap H$ and $z \in H_1$ such that $||T^j(z)||_p < ||T^j(x)||_p$, $j \in \mathbb{N}$. It is possible to choose such a z; we can take $z \in H_1$ with the property that $||T^j(z)||_p < ||T^j(z)||_p$ for all $0 \le j \le m-1$, then as S is an isometry, $||T^{km+j}(z)||_p = p^{-kl_1}||T^j(z)||_p < p^{-kl}||T^j(x)||_p = ||T^{km+j}(x)||_p$, $k \in \mathbb{N}$. Now $||T^j(y)||_p = ||T^j(x)||_p = \beta_{j,x}$ for all $j \in \mathbb{N}$. Here,

$$\overline{T}^{km}(y) - \overline{T}^{km}(x) = p^{-kl} [S^k(p^{kl}x + p^{kl_1}z)] - S^k(x) = p^{k(l_1 - l)} S^k(z) \to 0$$

as $k \to \infty$, since S is an isometry and since $l_1 > l$. We now show for all $k \in \mathbb{N}$ that $\overline{T}_a^{km}(y) - \overline{T}_a^{km}(x) = \overline{T}^{km}(y) - \overline{T}^{km}(x)$. (From the above, the latter is equal to $\beta_{km,x}T^{km}(z)$.) This in turn would imply that \overline{T}_a is not distal.

From Equation (3.1), it is enough to show for all $j \in \mathbb{N} \cup \{0\}$ that $\beta_{j,y} = \beta_{j,x}$ or, equivalently, $\beta_{j,y} = \|T^j(y)\|_p$ as the latter is equal to $\|T^j(x)\|_p$ which is the same as $\beta_{j,x}$. This is trivially true for j = 0. As shown earlier, for $1 \le j < m - 1$, $\beta_{j,u} = \|T^j(u)\|_p$ for all $u \in S_n$, and hence $\beta_{j,y} = \beta_{j,x}$; that is, the above statement holds for $1 \le j < m$, and we get that

$$\overline{T}_{a}^{j}(y) = \beta_{j,y}T^{j}(y) + \beta_{j,y}\sum_{i=1}^{j}\beta_{j-i,y}^{-1}T^{i-1}(a) = \overline{T}_{a}^{j}(x) + \beta_{j,x}T^{j}(z).$$
(3.5)

We prove by induction on k that $\beta_{j,y} = \beta_{j,x} = ||T^j(x)||_p$ and Equation (3.5) is satisfied for all $1 \le j < km$, $k \in \mathbb{N}$. We have already proven these for k = 1. Suppose, for some $k \in \mathbb{N}$, that these hold for all j such that $(k-1)m \le j < km$. Let $km \le j < (k+1)m$. Recall that, for all $j \in \mathbb{N}$, $\alpha_j(u) = ||T(\overline{T}_a^{j-1}(u))||_p$, $u \in S_n$, and Equation (3.2) holds for any $x \in S_n$ and $j \ge m$. As $\beta_{j,y}\beta_{j-m,y}^{-1} = \alpha_j(y) \dots \alpha_{j-m+1}(y)$, from Equation (3.2), and also Equation (3.5) which is assumed to hold for $(k-1)m \le j < km$ by the induction hypothesis, we get for x, y, z as above and $km \le j < (k+1)m$ that

$$\beta_{j,y}\beta_{j-m,y}^{-1} = \|T^{m-1}(a) + T^m(\overline{T}_a^{j-m}(y))\|_p$$

$$= \|T^m[T^{-1}(a) + \overline{T}_a^{j-m}(x) + \beta_{j-m,x}T^{j-m}(z)]\|_p.$$

Now using this, we get that

$$\beta_{j,y}\beta_{j-m,y}^{-1} = \|S[p^l(T^{-1}(a) + \overline{T}_a^{j-m}(x)) + p^{l_1}\beta_{j-m,x}T^{j-m}(z)]\|_p = p^{-l},$$

as S is an isometry, $l_1 > l$ and $\|\beta_{j-m,x}T^{j-m}(z)\|_p < 1$ (see also Equation (3.3)). Since $(k-1)m \le j-m < km$, $\beta_{j,y} = p^{-l}\beta_{j-m,y} = \|p^lT^{j-m}(x)\|_p = \|T^j(x)\|_p$. Hence Equation (3.5) holds for $km \le j < (k+1)m$. Now by induction for all $j \in \mathbb{N}$, $\beta_{j,x} = \beta_{j,y}$ and Equation (3.5) holds. Therefore, \overline{T}_a is not distal. (Note that Equation (3.5) also directly shows that $\overline{T}_a^{km}(y) - \overline{T}_a^{km}(x) = p^{k(l_1-l)}S^k(z) \to 0$ as $k \to \infty$.) Now if $U \subset V$ is a neighbourhood of 0, then $U \cap H \ne \{0\}$ and hence (II) holds.

Observe that if \overline{T} is not distal, then from Theorem 3.2(II) we get that every neighbourhood of 0 in \mathbb{Q}_p contains a nonzero a such that $\|T^{-1}(a)\|_p < 1$ and \overline{T}_a is not distal. Now the following corollary is an easy consequence of Theorem 3.2.

COROLLARY 3.3. For $T \in GL(n, \mathbb{Q}_p)$, \overline{T} is distal if and only if there exists a neighbourhood V of 0 in \mathbb{Q}_p^n such that, for every $a \in V \setminus \{0\}$, $||T^{-1}(a)||_p < 1$ and \overline{T}_a on S_n is distal.

If T is distal, then \overline{T} is also distal and Theorem 3.2(I) and Corollary 3.3 hold for T. If \overline{T} is distal, then, for some $m \in \mathbb{N}$ and $l \in \mathbb{Z}$, $p^l T^m$ is distal.

Acknowledgements

R. Shah would like to thank S. G. Dani and C. R. E. Raja for discussions on *p*-adic algebraic groups. We thank the referee for valuable comments and suggestions.

References

- [1] J. F. Berglund, H. D. Junghenn and P. Milnes, *Analysis on Semigroups: Function Spaces, Compactifications, Representations*, Canadian Mathematical Society Series of Monographs and Advanced Texts (John Wiley & Sons, New York, 1989).
- [2] A. Borel and J. Tits, 'Groupes réductifs', Publ. Math. Inst. Hautes Études Sci. 27 (1965), 55-151.
- [3] R. Ellis, 'Distal transformation groups', Pacific J. Math. 8 (1958), 401–405.
- [4] H. Furstenberg, 'The structure of distal flows', Amer. J. Math. 85 (1963), 477–515.
- [5] Y. Guivarc'h and C. R. E. Raja, 'Recurrence and ergodicity of random walks on linear groups and on homogeneous spaces', *Ergodic Theory Dynam. Systems* 32 (2012), 1313–1349.
- [6] K. H. Hofmann and P. S. Mostert, *Elements of Compact Semigroups* (Charles E. Merrill Books, Columbus, OH, 1966).
- [7] N. Koblitz, *p-Adic Numbers, p-Adic Analysis, and Zeta-Functions*, Graduate Texts in Mathematics, 58 (Springer, New York, 1984).
- [8] C. C. Moore, 'Distal affine transformation groups', Amer. J. Math. 90 (1968), 733–751.
- [9] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139 (Academic Press, Boston, 1994). Translated from the 1991 Russian original by Rachel Rowen.
- [10] C. R. E. Raja and R. Shah, 'Distal actions and shifted convolution property', *Israel J. Math.* 177 (2010), 301–318.
- [11] C. R. E. Raja and R. Shah, 'Some properties of distal actions on locally compact groups', Ergodic Theory Dynam. Systems 39 (2019), 1340–1360.
- [12] R. Shah, 'Orbits of distal actions on locally compact groups', J. Lie Theory 22 (2010), 586–599.

- [13] R. Shah and A. K. Yadav, 'Dynamics of distal actions on unit spheres', *Real Anal. Exchange*, to appear.
- [14] J. S. P. Wang, 'The Mautner phenomenon on p-adic Lie groups', Math. Z. **185** (1984), 403–411.

RIDDHI SHAH, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India e-mail: riddhi.kausti@gmail.com, rshah@jnu.ac.in

ALOK KUMAR YADAV, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India e-mail: alokmath1729@gmail.com