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Abstract

An example is given to show that a class of finite soluble groups that is both a Fitting class and a
Schunck class need not be a formation. The novel feature of this class is that it is defined by
imposing conditions on complemented chief factors of groups in it: this technique usually does not
give rise to Fitting classes that are not formations.
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The behaviour of Fitting classes of finite soluble groups under additional closure
properties has been extensively studied in recent years. Those Fitting classes that
are also Schunck classes seem to have escaped attention so far, and our aim here
is to give an example to show that such a class need not be a formation. The
example is given, as Schunck classes often are, by imposing restrictions on the
complemented chief factors of groups in the class. (All groups considered in this
paper will be finite and soluble.) It is the fact that the prescription leads to a
Fitting class which is not a formation that makes this class novel: the prescrip-
tion is just another variation on an idea of Hawkes (1970). That a class of
metanilpotent groups which is both a Fitting class and a Schunck class is a
formation is a consequence of Theorem 4.1 of Bryce and Cossey (1974); the
groups of nilpotent length three in the example below also form a Fitting class
that is a Schunck class but not a formation.

Since much of the detail below is similar to that of section 2 of Hawkes
(1970), we assume familiarity with that paper, and adopt the notations and
conventions therein. Moreover, we suppress details that do not differ signifi-
cantly from those of Hawkes (1970).
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The class is defined in the following way. Let p be a fixed prime, Z, the field
of p elements, k the algebraic closure of Zp. For a group G, and a Z,[G]-module
U, we have that k ®z, U is the direct sum of irreducible k[ G}-modules, all of
the same dimension (Curtis and Reiner (1962) Theorem 70.15): we call this
dimension the absolute degree of U. We then define ¢,(G) to be the least
common multiple of the absolute degrees of the complemented p chief factors of
G. The classes of all p-groups and all p’-groups are denoted by S, and S,
respectively, and X = S S, S, is the usual class product. We set

Y = {G € X: ¢,(G) is coprime to p }.

That Y is a Schunck class is clear from its definition; we show that it is a Fitting
class, but not a formation.

To see that Y is Ny-closed, it is enough, by a standard argument, to prove that
if G = N|N,, with each N; a maximal normal subgroup of G and in Y, then G is
in Y. Since G is then clearly in X, it is enough to show that each complemented p
chief factor has p’ absolute degree. By Theorem 1 of Barnes (1972), it will be
enough to check this on the complemented chief factors in a fixed chief series:
we choose a chief series G IN, <Ny NN, =M, < --- dM, =1. Since
G/N, and N,/N; n N, are cyclic, we need only consider complemented chief
factors M;/M,,, with M, < N, 0 N,. Then, noting that if M,/M,,, is a
complemented chief factor of G, it is a direct product of complemented chief
factors of N, j = 1, 2, the arguments of Hawkes (1970) apply to complete the
proof.

For S,-closure, it is enough to show that if G is in Y, and N is a maximal
normal subgroup of G, then N is in Y. Again, N is in X, and so it will be enough
to show that the complemented p-chief factors of N have p’ absolute degree. By
the definition of X, it will be enough to consider complemented chief factors in
O,(N). Since O,(N) = N N O,(G), there are two cases to consider: O,(N) =
0,(G), and O,(N) < 0,(G).

For the first case, put P = O,(G), and let Q be the Frattini subgroup of P.
Then Q < ¢N, and again by Theorem 1 of Barnes (1972) it will be enough to
consider complemented chief factors of N between P and Q. Since comple-
mented chief factors of G between P and Q correspond to maximal submodules
of P/Q, regarded as a Z,[G]-module, and since G/C;(P/Q) is a p-nilpotent
group, we can conclude from Lemma 6.1 of Srinivasan (1960) that all the chief
factors of G between P and Q have p’ absolute degree. The arguments of
Hawkes (1970) then give that all the chief factors of N between P and Q have p’
absolute degree, finishing the proof in this case.

Now suppose O,(N) < O,(G). Setting P = O,(G), R = O,(N), we have P/R
cyclic of order p, and a central chief factor of G. Again, put Q¢ = @P, and also
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S =¢R. Then P >R > Q > S, and we want to show that the complemented
chief factors of N between R and S have p’ absolute degree: again this is
equivalent to all chief factors of N between R and S having p’ absolute degree.
Since G €Y, all the chief factors of G between Q and R have p’ absolute
degree. If we set H = P/ S, then H < Q/S, H’ is elementary abelian, and as a
Z,[G}-module it is a homomorphic image of (P/Q) ®, (P/R). But P/R is
trivial as a Z,[G]-module, and so H’ is a homomorphic image of P/ Q. Since pth
powering is a G-homomorphism on H/H’, we deduce that every chief factor of
G between R and S is isomorphic (as Z,[ G }-module) to one between P and Q.
Again the arguments of Hawkes (1970) finish the proof.

We have now established that Y is a Fitting class. To see that Y is not a
formation we observe that if it were, the groups of nilpotent length three in it
would form a subgroup closed class (by Theorem 2 of Bryce and Cossey (1972)).
Let g be a prime such that p divides ¢ — 1 (that such g exist follows from
Dirichlet’s Theorem) and let U be a faithful irreducible Z [C]-module, where C
is a cyclic group of order p. Let U* be the contragredient of U (see Curtis and
Reiner (1962) Definition 43.7), and let 4 be the group constructed from U and
U* as in Huppert (1967) Hilfssatz 6.7.22. Then A is extraspecial, and the
semidirect product AC has a faithful irreducible module M over Z, whose
absolute degree is q. But M, has an irreducible component of absolute degree
P, and so MAC € Y but MUC € Y, giving the result.

We finish with some observations. Firstly, X could have been replaced by
S,S,S,S,: the proof becomes a bit more cumbersome, but is essentially the
same. Secondly, we could use the Fitting formations of Berger and Cossey
(1978) as our model to obtain a slightly different example.

The work for this paper was done during a brief but rewarding stay at Mainz
University.
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