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Abstract

We study a service facility modeled as a queueing system with finite or infinite capacity.
Arriving customers enter if there is room in the facility and if they are willing to pay the
price posted by the service provider. Customers belong to one of a finite number of classes
that have different willingnesses-to-pay. Moreover, there is a penalty for congestion in
the facility in the form of state-dependent holding costs. The service provider may
advertise class-specific prices that may fluctuate over time. We show the existence of a
unique optimal stationary pricing policy in a continuous and unbounded action space that
maximizes the long-run average profit per unit time. We determine an expression for this
policy under certain conditions. We also analyze the structure and the properties of this
policy.
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1. Introduction

A decision maker wishes to quote prices at the most profitable level. When a customer
arrives, the customer decides whether to pay the quoted price and enter the service system or to
depart without obtaining service. Rather than being restricted to a single price that is offered to
all customers, the decision maker has a great deal of flexibility in setting prices. The decision
maker is allowed to use two pieces of information when making a quotation. The decision
maker knows the number of customers currently in the service system, which is a measure of
the congestion in the system. Allowing the price to depend upon the level of congestion will
be called congestion-dependent pricing. In addition, the decision maker is able to classify the
customers into different types, and the decision maker knows the probability of a customer of
a particular type accepting a particular price. Allowing the price to depend upon information
about a customer will be referred to as precision pricing. Thus, the decision maker can use
a congestion dependent, precision pricing strategy. If all customers are classified as the same
type then the decision maker uses only congestion-dependent pricing. If the decision maker is
not allowed to use information about the current level of congestion when setting prices then
the decision maker will be using static pricing.
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We assume that the probability of a particular type of customer accepting a price does not
increase as the price increases, and we refer to this conditional distribution function as the
willingness-to-pay distribution. Already the decision maker faces a trade-off. If prices are
high, each customer pays a lot, but few customers pay; if prices are low, each customer pays a
little, but many pay.

If there is no limit on the number of customers that can be in the service system simultaneously
and the decision maker has no reason to keep the number of customers in the system at a low
level, then the most profitable prices could easily result in a large average number of customers
in the system. In most applications this would be unacceptable. To give the decision maker an
incentive to reduce congestion, we assume that the decision maker incurs a cost at rate hs when
there are s customers in the service system. These costs will be nonnegative and nondecreasing
in s.

The service system will be modeled as a queueing system. The maximum number of
customers that can simultaneously be in the service system is N ≤ ∞. The particular
assumptions on the queueing system will be given in Section 3, but they will be designed
so that the number of customers in the service system is Markovian. By ‘most profitable’ we
mean maximizing the long-run average profit per unit time.

Under certain assumptions, we will be able to show that there is a unique, optimal pricing
strategy, and we characterize the optimal prices. In addition, we will be able to determine
structural and ordering properties of the optimal prices. For example, under some mild
conditions, we show that the optimal price is nondecreasing in the congestion level. Under
other conditions, we show that the optimal static price is a compromise lying between the
highest and lowest congestion-dependent prices.

Several technical aspects of the paper may be of interest. First, we have an unbounded,
continuous action space. When N < ∞, we are able to use the results of [8, Section 5.2] to
analyze our problem. Our problem is more complicated when N = ∞ since the state space
is uncountable. Under certain conditions, we can extend our results for N < ∞ to N = ∞
through the use of a fixed point argument.

In the following section we briefly review the literature related to our paper. In Section 3
we describe our model. Then we decompose our analysis into two parts. Section 4 focuses on
finite capacity systems, and Section 5 focuses on infinite capacity systems. In Section 6 we
conclude our work.

2. Literature review

Although our work directly considers the issue of dynamic pricing in queueing systems, it
is inspired by a series of papers on the more general topic of congestion control in queueing
systems. We can group them into two categories, depending on whether the control is static or
dynamic.

The paper by Naor [13] is considered as the precursor in combining the issues of pricing and
congestion control in queues. Naor’s work and many papers extending it (such as [6] and [18])
analyze systems where customers make a decision to enter a service facility based on its current
queue length. Entering customers obtain a fixed reward and are charged a holding cost function
of their time spent in the system. In order to maximize their utility, they decide to join or
balk (join-balk rule). The service provider then imposes an entrance fee to induce an optimal
customer admission rate. Larsen [7] and Hassin [5] evaluated the effect of releasing the expected
queue length to potential customers as opposed to the current queue length. Mendelson and
Whang [12] considered customers who make their decision to enter the system based both on
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price and delay. Mendelson and Whang [12] also included different customer classes that have
different demand functions and delay costs. Prices were then used by the decision maker as
an incentive to induce optimal customer arrival rates and execution priorities. In all the papers
mentioned above, the system controls are static; that is, the controls are independent of the
congestion level.

In the second set of papers, controls are allowed to depend on the congestion level (dynamic
control). Stidham [16] developed a dynamic admission control model to optimize an infinite-
horizon discounted reward with convex holding costs for single server queues. Stidham’s
decision variable is defined by whether to accept or reject an incoming job. Each accepted job
yields a fixed deterministic reward. He showed the existence of a monotonic optimal stationary
policy. He also extended his results to simple networks of queues. Conversely, George and
Harrison [4] allowed the service provider to dynamically control the service rate instead of the
arrival rate. There was a penalty that depended on the chosen service rate and the objective was
to minimize the long-run average cost in systems with holding costs.

Combining the problems of setting admission rates and service rates, Ata and Shneorson [2]
considered a dynamic control model, where the service provider sets state-dependent admission
rates and service rates in an M/M/1 queue with holding costs. There was a reward associated
with the chosen admission rates and a cost corresponding to the chosen service rates. After
explicitly solving this problem, they analyzed a decentralized model, where only service rates
and prices were decision variables. The service provider must set them so that the optimal
admission rates are induced by customers maximizing their own utility.

Low [9], [10] considered dynamic pricing in M/M/s queues with finite or infinite capacity,
but with a finite action space. Low did not use a willingness-to-pay distribution, but each
price in the action space corresponded to a given positive arrival rate. Low also considered
state-dependent holding costs incurred as a lump sum as a customer arrives. He made the
extra assumption that holding costs are bounded and that the facility has multiple identical
servers. He showed that optimal prices are nondecreasing as the system becomes congested
and developed an algorithm to solve the Markov decision process formulation of the problem.
Aktaran and Ayhan [1], as well as Çil et al. [3], further investigated the sensitivity of the optimal
prices to system parameters. Paschalidis and Tsitsiklis [14] focused on models with multiple
classes of customers that have different resource requirements without holding costs.

In this paper we extend Low’s work by introducing general state-dependent holding costs and
service rates, and by considering a continuous unbounded action space and multiple customer
classes. Note that we analyze the same model in a related paper [11], where the service provider
does not have the flexibility to adjust prices in time and must implement a static pricing policy.

3. Model description

We model the service facility as a queueing system of capacity N ≤ ∞; that is, no more
than N customers are allowed in the system at any time. There are I classes of customers
and customers from class i = 1, . . . , I arrive according to a Poisson process with parameter
�i > 0. The arrival processes from customer classes are independent of each other. Note
that this formulation is equivalent to having arriving customers randomly assigned to a specific
class, independent of everything else.

The maximum amounts that successive class i = 1, . . . , I customers are willing to pay are
independent, identically distributed random variables with distribution Fi . The amount a class
i = 1, . . . , I customer is willing to pay is independent of the amount a class j = 1, . . . , I

customer is willing to pay for i �= j . For all i = 1, . . . , I , we assume that the cumulative
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distribution function Fi(·) is absolutely continuous with density fi(·), support (αi, βi), and
finite mean. Let ri(·) denote the hazard rate function of Fi(·); that is,

ri(z) = fi(z)

1 − Fi(z)
for αi < z < βi.

In the following we assume that Fi has IGHR (increasing generalized hazard rate); that is,
zri(z) is strictly increasing for all z in [αi, βi]. Note that we can interpret −zri(z) as the price
elasticity of the demand function for class-i customers. The service provider can advertise
different prices to different classes. Without loss of generality, only prices in [αi, βi] can be
advertised to class-i customers.

We define the state of the system, X(t), as the number of customers in the system at time t .
Let z ∈ [α1, β1]N × · · · × [αI , βI ]N be a pricing (decision) rule, where price zi,s is advertised
to class-i customers when the system is in state s. Since there is a one-to-one relationship
between decision rules and stationary policies, in an abuse of notation, we also denote by z the
stationary pricing policy corresponding to the pricing rule z; that is, z also denotes the policy of
using pricing rule z at every decision epoch (see [15, p. 20] for further details). Customers enter
the system if it is not full and if they are willing to pay the price posted by the service provider
upon arrival. Hence, the customer admission process under the stationary pricing policy z is
a conditional (doubly stochastic) Poisson process with rate 1X(t)<N

∑I
i=1 λi(zi,X(t)), where

λi(z) = �i(1 − Fi(z)). In the same fashion, the service process is a conditional Poisson
process with rate µX(t) 1X(t)>0, such that {µs} are positive real numbers that are nondecreasing
in s. Under the stationary policy z, the queueing system behaves as a Markovian birth–death
process with birth rates

∑I
i=1 λi(zi,s) and death rates µs .

Furthermore, the service provider must pay a holding cost hs per unit time spent in state s,
where 0 = h0 ≤ h1 ≤ · · · ≤ hN as it becomes more expensive to accommodate a larger
number of customers. We assume that h1/µ1 < max βi , so that we have an attainable positive
reward.

We let g∗
N denote the optimal dynamic average profit per unit time under capacity N over the

set of all history-dependent randomized policies; see [15, pp. 35–36]. Under the stationary
pricing policy z, we denote the objective function by R(z) and the stationary probability
distribution by {πs(z)}. We show that there exists a unique optimal stationary pricing policy
z∗ that maximizes the long-run average profit per unit time; that is, R(z) = g∗

N if and only
if z = z∗.

We separate systems with finite capacity from systems with infinite capacity in our work.
Indeed, we make extra assumptions, and we use results from finite capacity systems in order
to analyze systems of infinite capacity. In the following section we focus on service facilities
with finite capacity.

4. Finite capacity queues

4.1. Characterization of an optimal stationary policy

In this section we restrict ourselves to systems with finite capacity. We use a Markov decision
process (MDP) approach to exhibit an optimal stationary policy. Note that the MDP associated
with our system behaves as a birth–death process. Since the death rates are strictly positive,
the MDP is unichain for any stationary policy. We set up the system of average-cost optimality
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equations (ACOE) as detailed in Theorem 5.2.2 of [8]:

l(−1) = 0,

l(s) = sup
z0,...,zI

{∑I
i=1 λi(zi)(zi + l(s + 1)) + µsl(s − 1) − g − hs∑I

i=1 λi(zi) + µs

}
, 0 ≤ s ≤ N − 1,

l(N) = l(N − 1) − g + hN

µN

,

where g is the gain and l(·) is the bias vector. Since the value of µ0 does not matter as long
as it is positive, we will consider µ0 = µ1 without loss of generality. In this system we are
solving for g and l(·). We can transform these equations into a simpler equivalent form by
letting G(−1) = 0 and G(s) = l(s) − l(s + 1) for s = 0, . . . , N − 1. Then

G(−1) = 0, (4.1)

g + hs − µsG(s − 1) =
I∑

i=1

sup
z

{(z − G(s))λi(z)} if s = 0, . . . , N − 1, (4.2)

G(N − 1) = g + hN

µN

. (4.3)

If a solution (g, G(·), z) to the system of ACOE exists, we call it a canonical triplet, where z

are prices that achieve the suprema in (4.2). Precisely, for s = 0, . . . , N − 1 and i = 1, . . . , I ,
the component zi,s of z satisfies zi,s = arg sup{(z − G(s))λi(z)}.

In the following theorem we explicitly characterize a unique optimal stationary policy.

Theorem 4.1. There exists a canonical triplet (g, G(·), z) for the system of ACOE (4.1)–(4.3).
Moreover, the optimal long-run average reward is g∗

N = g, and z∗ = z is a unique optimal
stationary policy, where, for s = 0, . . . , N − 1 and i = 1, . . . , I ,

z∗
i,s = inf{z : ri(z)(z − G(s)) ≥ 1}.

Before proving this theorem, we need the following two lemmas. Let G(s, g) be the solution
of (4.2) and (4.3) for an arbitrary g ≥ 0.

Lemma 4.1. For all s = −1, . . . , N − 1, G(s, ·) is nondecreasing and continuous. Moreover,
there exists g ≥ 0 such that G(−1, g) = 0.

Proof. Note that G(N − 1, g) = (g + hN)/µN is continuous and nondecreasing in g.
Suppose that G(s, g) is nondecreasing and continuous in g for some state s between 0 and
N − 1. As sup{λi(z)(z − G(s, g))} is the supremum of a bounded continuous function of z,
we can claim that

µsG(s − 1, g) = g −
I∑

i=1

sup{λi(z)(z − G(s, g))}

is continuous and nondecreasing in g. By induction, for all s = −1, . . . , N − 1, G(s, ·) is
nondecreasing and continuous.

To complete the proof, we will show that G(−1, 0) ≤ 0 and that there exists gb > 0 such
that G(−1, gb) ≥ 0. Hence, by continuity, there exists g ∈ [0, gb] such that G(−1, g) = 0.
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We know that −µ0G(−1, 0) = ∑I
i=1 sup{λi(z)(z −G(0, 0))} ≥ 0. Therefore, G(−1, 0) ≤ 0.

Now consider gb = ∑I
i=1 sup{λi(z)z}. Note that G(N−1, gb) = (gb+hN)/µN ≥ 0. Suppose

that G(s, gb) ≥ 0 for some s = 0, . . . , N − 1, then

gb + hs − µsG(s − 1, gb) =
I∑

i=1

sup{λi(z)(z − G(s, gb))} ≤
I∑

i=1

sup{λi(z)z}.

Therefore, µsG(s − 1, gb) ≥ gb +hs −∑I
i=1 sup{λi(z)z} ≥ 0. By induction, G(−1, gb) ≥ 0.

Lemma 4.2. Let (g, G(·), z) be a canonical triplet. Then, for all s = −1, . . . , N − 1,
0 ≤ G(s) ≤ (g + hs+1)/µs+1.

Proof. For all s = 0, . . . , N −1, sup{(z−G(s))λi(z)} ≥ 0. Therefore, we have G(s −1) ≤
(g + hs)/µs from (4.2). Using (4.1) and (4.3) as well, G(s) ≤ (g + hs+1)/µs+1 for all
s = −1, . . . , N − 1.

Now suppose that there exists s = 0, . . . , N − 1 such that G(s) < 0. Since G(−1) ≥ 0,
there exists s such that G(s) < 0 and G(s − 1) ≥ 0. Hence, µs+1G(s) < µsG(s − 1). But,
we have

I∑
i=1

λi(zi,s+1)G(s + 1) =
I∑

i=1

λi(zi,s+1)zi,s+1 − g − hs+1 + µs+1G(s)

=
I∑

i=1

λi(zi,s+1)(zi,s+1 − G(s)) + λi(zi,s+1)G(s)

+ µs+1G(s) − g − hs+1

<

I∑
i=1

λi(zi,s+1)(zi,s+1 − G(s)) + λi(zi,s+1)G(s)

+ µsG(s − 1) − g − hs

<

I∑
i=1

λi(zi,s+1)G(s).

If
∑I

i=1 λi(zi,s+1) = 0 then G(s) = (g + hs+1)/µs+1 ≥ 0, which is impossible. Therefore,
G(s + 1) < G(s) < 0. Since µs+2 ≥ µs+1, we have µs+2G(s + 1) < µs+1G(s) < 0.
Consequently, we can repeat the argument above until we reach state N − 1, for which
G(N − 1) < 0. But G(N − 1) = (g + hN)/µN ≥ 0, which yields a contradiction. Therefore,
for all s = −1, . . . , N − 1, 0 ≤ G(s) ≤ (g + hs+1)/µs+1.

Proof of Theorem 4.1. The existence of a canonical triplet (g, G(·), z) to (4.1)–(4.3) is a di-
rect consequence of Lemma 4.1. Since the state space is finite, we can refer to Equation (5.2.12)
of [8] to prove that the canonical triplet (g, G(·), z) is an optimal solution. Therefore, g∗

N = g

and z∗ = z.
It remains to show that z∗

i,s = inf{z : ri(z)(z − G(s)) ≥ 1} and that it is the unique optimal
stationary policy. For s = 0, . . . , N − 1 and i = 1, . . . , I , let

vi,s(z) = λi(z)(z − G(s)),

v′
i,s(z) = (1 − Fi(z)) − fi(z)(z − G(s)) almost everywhere (a.e.) on [αi, βi].
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Also note that v′
i,s(z) > 0 is equivalent to ri(z)(z − G(s)) < 1 and v′

i,s(z) < 0 is equivalent
to ri(z)(z − G(s)) > 1. The IGHR assumption implies that ri(z)(z − G(s)) ≥ 1 a.e. on
(inf{z : ri(z)(z−G(s)) ≥ 1}, βi). Therefore, v′

i,s(·) > 0 a.e. on (αi, inf{z : ri(z)(z−G(s)) ≥
1}) and v′

i,s(·) < 0 a.e. on (inf{z : ri(z)(z − G(s)) ≥ 1}, βi). Thus, vi,s(·) is strictly unimodal
and z∗

i,s = inf{z : ri(z)(z − G(s)) ≥ 1} is its unique maximizer on [αi, βi].
We still need to show that z∗ is the unique optimal stationary policy. Under IGHR, z∗

i,s is
the unique maximizer of sup{λi(z)(z − G(s))}. So,

g∗
N >

I∑
i=1

λi(zi)(zi − G(s)) + µsG(s − 1) − hs for all zi �= z∗
i,s .

Since we have a unichain model, we can refer to Proposition 8.5.10 of [15] to prove the
uniqueness of the optimal stationary policy, z∗.

We are now able to characterize an optimal stationary policy explicitly. Note that it might
be possible that z∗

i,s = βi for some state s. In this case it is optimal for the service provider
not to accept customers of class i when in state s. However, this can only occur if the class-i
customers’ willingness-to-pay distribution has finite support. Indeed, if Fi has infinite support
then, for all s = 0, . . . , N − 1, sup{λi(z)(z − G(s))} > 0 and z∗

i,s < ∞ = βi . Moreover, note
that

z∗
i,s = inf{z : (z − G(s))ri(z) ≥ 1} ≥ inf{z : zri(z) ≥ 1}.

Since inf{z : zri (z) ≥ 1} is the optimal price to charge when the demand function is 1 − Fi(z),
we observe that holding costs and capacity limitations force the service provider to charge
higher prices than she normally would if she had no constraints. Therefore, one can understand
G(s) as a price premium charged by the service provider to account for the additional congestion
created by a customer’s admission into state s.

4.2. Structure of optimal policies

We will now exhibit structural properties of the derived optimal stationary policy. More
specifically, we are interested in the monotonicity of the optimal stationary policy. In Proposi-
tion 4.1, below, we demonstrate that the optimal prices to be charged are nondecreasing in the
state index.

Proposition 4.1. Suppose that {µs}Ns=0 and {hs}Ns=0 are such that there exists an integer q

between 0 and N , where µ0 ≤ µ1 ≤ · · · ≤ µq = µq+1 = · · · = µN and 0 = h0 = h1 =
· · · = hq ≤ hq+1 ≤ · · · ≤ hN . Then z∗

i,s is nondecreasing in s.

To prove this result, we need the following lemma.

Lemma 4.3. Suppose that {µs}Ns=0 and {hs}Ns=0 are such that there exists an integer q between
0 and N , where µ0 ≤ µ1 ≤ · · · ≤ µq = µq+1 = · · · = µN and 0 = h0 = h1 = · · · = hq ≤
hq+1 ≤ · · · ≤ hN . Then G(·) is nondecreasing.

Proof. We decompose our proof into two parts. We will first prove, by induction, that
G(s) is nondecreasing for states s = 0, . . . , q − 1. Then we will show the same for states
s = q − 1, . . . , N − 1.
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First, note that G(−1) ≤ G(0). Now suppose that G(s − 1) ≤ G(s) for some state
s ∈ {0, . . . , q − 2}. Then µsG(s − 1) ≤ µs+1G(s) and

I∑
i=1

sup{λi(z)(z − G(s + 1))} = g∗
N − µs+1G(s)

≤ g∗
N − µsG(s − 1)

≤
I∑

i=1

sup{λi(z)(z − G(s))}.

Hence,
∑I

i=1 λi(z
∗
i,s)G(s + 1) ≥ ∑I

i=1 λi(z
∗
i,s)G(s). Therefore, we either have

I∑
i=1

λi(z
∗
i,s) = 0 or G(s) ≤ G(s + 1).

We show that
∑I

i=1 λi(z
∗
i,s) = 0 is impossible.

Assume that
∑I

i=1 λi(z
∗
i,s) = 0. It implies that

G(s − 1) = G(s) = g∗
N

µs

= g∗
N

µs+1
and

I∑
i=1

sup{λi(z)(z − G(s − 1))} =
I∑

i=1

sup{λi(z)(z − G(s))} = 0.

Therefore,

G(s − 2) = g∗
N

µs−1
≥ g∗

N

µs

= G(s − 1) and

I∑
i=1

sup{λi(z)(z − G(s − 2))} ≤
I∑

i=1

sup{λi(z)(z − G(s − 1))} = 0.

We can repeat this argument until we reach the contradiction G(−1) ≥ g∗
N/µ1. Therefore,

G(s) ≤ G(s + 1). By induction, G(s − 1) ≤ G(s) holds for all s = 0, . . . , q − 1.
If q = N , the proof is complete. Otherwise, it remains to show, by induction, that G(s−1) ≤

G(s) for states s = q, . . . , N − 1. Recall that G(N − 1) = (g∗
N + hN)/µN and G(N − 2) ≤

(g∗
N + hN−1)/µN−1. Therefore,

G(N − 2) ≤ g∗
N + hN

µN

= G(N − 1).

Now suppose that G(s) ≥ G(s − 1) for some state s ∈ {q + 1, . . . , N − 1}. Then

g∗
N + hs − µNG(s − 1) =

I∑
i=1

sup{λi(z)(z − G(s))}

≤
I∑

i=1

sup{λi(z)(z − G(s − 1))}

≤ g∗
N + hs−1 − µNG(s − 2).
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Hence, µN(G(s − 1) − G(s − 2)) ≥ hs − hs−1 ≥ 0. Therefore, G(s − 1) ≥ G(s − 2). By
induction, G(s) ≥ G(s − 1) for s = q, . . . , N − 1 and the proof is complete.

Proof of Proposition 4.1. Recall that z∗
i,s = inf{z : ri(z)(z − G(s)) ≥ 1}. Since G(s) is

nondecreasing in s, so is z∗
i,s .

Therefore, in queues with the holding cost and service rate structure described above (such as
multiple-server systems), the service provider charges more as the system becomes congested.
As a consequence, the admission rates are nonincreasing with respect to the number of people
in the system. Hence, the optimal policy performs a congestion control that prevents high
holding costs. Moreover, in the proof of Lemma 4.3 we showed that

∑I
i=1 λi(z

∗
i,s) > 0 for all

s < q − 1. This property is quite intuitive since states 0 through q do not incur any holding
cost, so that it is not profitable for the service provider to refuse entrance to customers in those
states.

We are now interested in how the system reacts to an increase in capacity. A larger buffer
size affects the holding costs as well as the revenue by welcoming more customers. As capacity
increases, we show that the optimal prices decrease state by state whereas the optimal reward
increases. In the following, subscripts 1 and 2 identify parameters for systems 1 and 2,
respectively.

Proposition 4.2. Consider two systems, 1 and 2, where system 1 has capacity N and system 2
has capacity N + 1. Then g∗

N+1 ≥ g∗
N . If, for all s = 0, . . . , N − 1, there exists i = 1, . . . , I

such that z∗
i,s,1 < βi , then z∗

i,s,2 ≤ z∗
i,s,1.

Proof. It is straightforward to show that g∗
N+1 ≥ g∗

N , since the action space for system 2
includes the action space for system 1.

Suppose that G2(s) > G1(s) for some state s = 0, . . . , N − 1. Therefore,

I∑
i=1

sup{λi(z)(z − G2(s))} <

I∑
i=1

sup{λi(z)(z − G1(s))},

or
I∑

i=1

sup{λi(z)(z − G2(s))} =
I∑

i=1

sup{λi(z)(z − G1(s))} = 0.

The latter case is impossible since it implies that z∗
i,s,1 = z∗

i,s,2 = βi for all i. So,

µsG2(s − 1) = g∗
N+1 −

I∑
i=1

sup{λi(z)(z − G2(s))}

> g∗
N −

I∑
i=1

sup{λi(z)(z − G1(s))}

> µsG1(s − 1).

By induction, 0 = G2(−1) > G1(−1) = 0, which yields a contradiction. Therefore, for all
s = 0, . . . , N − 1, G2(s) ≤ G1(s) and, consequently, z∗

i,s,2 ≤ z∗
i,s,1.

We analyze how the optimal reward varies as other parameters change. As earlier, subscripts
1 and 2 refer to systems 1 and 2, respectively. In Proposition 4.3, below, we characterize the
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sensitivity of the optimal reward to the willingness-to-pay distribution as well as other system
parameters.

Proposition 4.3. Consider two systems, 1 and 2, that satisfy all of the following:

1. �i,1 ≥ �i,2 for i = 1, . . . , I ,

2. Fi,1 ≤ Fi,2 for i = 1, . . . , I ,

3. hs,1 ≤ hs,2 for s = 0, . . . , N ,

4. µs,1 ≥ µs,2 for s = 1, . . . , N .

Then g∗
N,1 ≥ g∗

N,2.

Proof. We will prove the result by contradiction. Suppose that conditions 1, 2, 3, and 4
hold, and g∗

N,1 < g∗
N,2. Therefore,

G1(N − 1) = g∗
N,1 + hN,1

µN,1
<

g∗
N,2 + hN,2

µN,2
= G2(N − 1).

Suppose that G1(s) < G2(s) for some s = 0, . . . , N − 1. Then

g∗
N,2 + hs,2 − µs,2G2(s − 1) =

I∑
i=1

sup{λi,2(z)(z − G2(s))}

≤
I∑

i=1

sup{λi,1(z)(z − G1(s))}

≤ g∗
N,1 + hs,1 − µs,1G1(s − 1).

So, G1(s − 1) < G2(s − 1). By induction, 0 = G1(−1) < G2(−1) = 0, exhibiting a
contradiction. Thus, g∗

N,1 ≥ g∗
N,2.

We now compare our optimal policy with the optimal static price derived in [11]. Now
suppose that µs = µ and hs = κs for some constant κ ≥ 0 and for all s = 0, . . . , N . Also
suppose that I = 1, as in [11]. It is clear that dynamic pricing achieves a better optimal profit.
Moreover, there is an ordering relationship between our optimal static price and our optimal
stationary policy. Since I = 1, we will omit the class subscript in the remainder of this section.
For instance, we will write r(·), λ(y), and z∗

s instead of r1(·), λ1(y), and z∗
1,s . As in [11], let

πn(ρ, N) denote the stationary probability of n customers in the system under static pricing
when traffic intensity is ρ. In the same fashion, let L(ρ, N) denote the long-run expected
number of customers in the system under static pricing and traffic intensity ρ. In the following
proofs we also use the quantity ρ(y) that is defined as ρ(y) = λ(y)/µ, which is simply the
traffic intensity under static price y.

Proposition 4.4. Let I = 1, and let y∗
N denote the optimal static price for a system of

capacity N . Then, for all s = 1, . . . , N , z∗
0 ≤ y∗

N ≤ z∗
N−1.

In order to prove Proposition 4.4, we need the following lemmas, whose proofs are given in
Appendix A.
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Lemma 4.4. Let I = 1. For s = 0, . . . , N − 1, if g∗
N + hs > µsG(s − 1) then

z∗
s = sup{z : (g∗

N + hs − µsG(s − 1))r(z) ≤ λ(z)},
otherwise, z∗

s = β.

Lemma 4.5. Consider an M/M/1/N queue under traffic intensity ρ ≥ 0. Then,

1. γN(ρ) ≥ π0(ρ, N),

2. 1 − πN(ρ, N) ≥ γN(ρ),

3. N − L(ρ, N) ≥ π0(ρ, N)ϕN(ρ),

4. ρϕN(ρ)(1 − πN(ρ, N)) ≥ L(ρ, N),

where

ϕN(ρ) = − ∂L(ρ, N)/∂ρ

∂π0(ρ, N)/∂y

=

⎧⎪⎨
⎪⎩

1 − (N + 1)2ρN(1 + ρ2) + 2N(N + 2)ρN+1 + ρ2N+2

(1 − ρ)2(1 − (N + 1)ρN + NρN+1)
if ρ �= 1,

1
6N2 + 1

2N + 1
3 if ρ = 1,

and

γN(ρ) =

⎧⎪⎨
⎪⎩

1 + NρN+1 − (N + 1)ρN

(1 − ρN+1)(1 − ρN)
if ρ �= 1,

1
2 if ρ(y) = 1.

Proof of Proposition 4.4. From [11] recall that

z∗
N−1 = inf

{
y : r(y)

(
y − g∗ + Nκ

µ

)
≥ 1

}
and

y∗
N = inf

{
y : r(y)γN(ρ(y))

(
y − κ

µ
ϕN(ρ(y))

)
≥ 1

}
.

To prove that y∗
N ≤ z∗

N−1, we will show that, for all y ≥ 0 such that r(y)(y − (g∗
N +

Nκ)/µ) ≥ 1, we have r(y)γN(ρ(y))(y − (κ/µ)ϕN(ρ(y))) ≥ 1. Consider y ≥ 0 such that
r(y)(y − (g∗

N + Nκ)/µ) ≥ 1. Since g∗
N ≥ µy(1 − π0(ρ(y), N)) − hκL(ρ(y), N), we can

claim, by Lemma 4.5, that

y − g∗
N + Nκ

µ
≤ yπ0(ρ(y), N) − κ

µ
(N − L(ρ(y), N))

≤ π0(ρ(y), N)

(
y − κ

µ
ϕN(ρ(y))

)

≤ γN(ρ(y))

(
y − κ

µ
ϕN(ρ(y))

)
.

Hence, we have r(y)γN(ρ(y))(y − (κ/µ)ϕN(ρ(y))) ≥ 1, proving that y∗
N ≤ z∗

N−1.
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To prove that z∗
0 ≤ y∗

N , we proceed by contradiction. Recall the alternate expression of
z∗

0 from Lemma 4.4, which is z∗
0 = sup{y : g∗

Nr(y) ≤ λ(y)}. If z∗
0 = β then g∗

N = 0,
which is impossible. Suppose that β > z∗

0 > y∗
N , so that there exists y in (y∗

N, z∗
0) such that

g∗
Nr(y) ≤ λ(y) and r(y)γN(ρ(y))(y − (κ/µ)ϕN(ρ(y))) > 1. Using inequalities 2 and 4 from

Lemma 4.5, we have

λ(y)γN(ρ(y))

(
y − κ

µ
ϕN(ρ(y))

)
≤ λ(y)(1 − πN(ρ(y), N))

(
y − κ

µ
ϕN(ρ(y))

)

≤ λ(y)y(1 − πN(ρ(y), N))

− κρ(y)ϕN(ρ(y))(1 − πN(ρ(y), N))

≤ λ(y)y(1 − πN(ρ(y), N)) − κL(ρ(y), N)

≤ g∗
N.

Therefore, g∗
Nr(y) ≥ λ(y)r(y)γN(ρ(y))(y − (κ/µ)ϕN(ρ(y))) > λ(y), exhibiting a contra-

diction. Thus, we have proved that z∗
0 ≤ y∗

N .

Therefore, y∗
N is a convex combination of z∗

0 and z∗
N−1. We can interpret the optimal static

price as a ‘compromise’ between z∗
0 and z∗

N−1. On the one hand, when the system is empty, the
service provider is willing to discount prices to attract customers. On the other hand, when the
system is almost full, the service provider charges a premium for high congestion costs. Under
a static pricing scheme, the service provider does not have the possibility to differentiate states
when pricing service. Hence, it is intuitive that the optimal price to be charged in this case lies
between the optimal dynamic prices charged in extremal states.

5. Infinite capacity queues

In this section we impose no limitation on the system capacity. This introduces some
difficulties since the system of ACOE now has infinitely many equations and solution triplets.
Moreover, unlike in the finite capacity case, a canonical triplet does not always translate into an
optimal stationary policy. Nevertheless, under certain holding cost and service rate structures,
we are able to find an optimal stationary policy that maximizes the long-term average profit per
unit time.

5.1. Uniform asymptotic holding cost and service rate

Let us assume that hs and µs are constant past a certain state N , that is, µs = µN and
hs = hN for all s ≥ N . We call this assumption the uniform asymptotic holding cost and
service rate. In this case we can reduce the ACOE to only a finite number of equations and
prove that the corresponding canonical triplet is optimal. To ensure stability, we also assume
that

∑I
i=1 �i < µN .

Consider the mapping � : R × R
+ → R defined as

�(V, g) = g + hN − ∑I
i=1 sup{λi(z)(z − V )}

µN

.

Some properties of � are stated in the following lemma, whose proof is given in Appendix A.

Lemma 5.1. For all g > 0, �(·, g) is a continuous, nondecreasing contraction mapping from
R to (−∞, (g + hN)/µN ] and has a unique fixed point denoted by FP(g). Moreover, FP(·) is
increasing and continuous on [0, ∞).
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If we can find a triplet (g, G(·), z) satisfying

G(−1) = 0, (5.1)

g + hs − µsG(s − 1) =
I∑

i=1

sup{λi(z)(z − G(s))}, s = 0, . . . , N − 1, (5.2)

G(N − 1) = FP(g), (5.3)

we have exhibited a canonical triplet that satisfies the infinitely many ACOE. Indeed, the
equation corresponding to state s ≥ N is g+hN −µNG(s −1) = ∑I

i=1 sup{(z−G(s))λi(z)},
which is G(s − 1) = �(G(s), g). It is clear that it is satisfied by G(s) = G(s − 1) = FP(g).
We now show that such a canonical triplet exists and that it corresponds to an optimal stationary
policy.

Theorem 5.1. There exists a canonical triplet (g, G(·), z) for the system of ACOE (5.1)–(5.3).
Moreover, z = z∗ and g = g∗∞, where z∗

s,i = inf{z : ri(z)(z − G(s)) ≥ 1} for all s ≥ 0.

Proof. First, we prove the existence of a canonical triplet (g, G(·), z) to the ACOE (5.1)–
(5.3). Note that

�

(
0,

I∑
i=1

sup{λi(z)z}
)

= hN

µN

≥ 0,

and, consequently, FP(
∑I

i=1 sup{λi(z)z}) ≥ 0. Therefore, the proof is exactly the same as the
proof of Lemma 4.1, except that G(N − 1, g) = FP(g) is the starting point of the induction.

We now show that (g, G(·), z) corresponds to an optimal stationary policy. According to
Equation (5.2.12) of [8], we need to show that

lim
t→∞ inf

d∈�RH

Ed
s0

[l(X(t))]
t

= 0,

where �RH is the set of all history-dependent randomized policies and s0 is the starting state
at time t = 0. If this is the case, the canonical triplet corresponds to an optimal stationary
policy. Recall that l(s) − l(s + 1) = G(s) for all s = 0, . . . , N − 1. Therefore, l(s) =
l(N) − (s − N)FP(g) for all s ≥ N . Hence,

Ed
s0

[l(X(t))] = Ed
s0

[l(X(t)) | X(t) < N ] P(X(t) < N)

+ (l(N) − (Ed
s0

[X(t) | X(t) ≥ N ] − N)FP(g)) P(X(t) ≥ N).

Note that, for all d ∈ �RH ,

| Ed
s0

[l(X(t)) | X(t) < N ] P(X(t) < N)| ≤ max
s≤N−1

|l(s)|.

Therefore, we have

lim
t→∞ inf

d∈�RH

| Ed
s0

[l(X(t)) | X(t) < N ] P(X(t) < N)|
t

= 0.

It remains to show that

lim
t→∞ sup

d∈�RH

Ed
s0

[X(t) | X(t) ≥ N ] P(X(t) ≥ N)

t
= 0.
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First, note that

sup
d∈�RH

Ed
s0

[X(t) | X(t) ≥ N ] P(X(t) ≥ N) ≤ sup
d∈�RH

Ed
s0

[X(t)]

and that the supremum, supd∈�RH Ed
s0

[X(t)], is attained for policy ẑ, where ẑ denotes the
stationary policy of charging price 0 to all customers in all states (ẑi,s = 0 for i = 1, . . . , I and
s = 0, . . . ,∞). We have

lim
t→∞ sup

d∈�RH
Ed

s0
[X(t)] ≤ lim

t→∞ Eẑ
s0

[X(t)] ≤
∑I

i=1 �i

µN − ∑I
i=1 �i

.

Therefore,

lim
t→∞ inf

d∈�RH

Ed
s0

[l(X(t))]
t

= 0,

and we can apply Theorem 5.2.4 of [8] and claim that z = z∗ and g = g∗∞.

This theorem enables us to explicitly characterize an optimal stationary policy. Note that
the service provider charges the same price z∗

i,N−1 = inf{z : ri(z)(z − FP(g∗∞)) ≥ 1} to class-i
customers for all states s ≥ N − 1. This property is quite surprising since there is no apparent
symmetry in the transition structure to justify it.

We now derive structural properties of our solution in states s < N . In Proposition 5.1, below,
we extend Proposition 4.1 to infinite capacity systems under certain conditions on the system
parameters. We demonstrate that the optimal prices to be charged in states s = 0, . . . , N − 1
are nondecreasing in s.

Proposition 5.1. Suppose that {µs}Ns=0 and {hs}Ns=0 are such that there exists an integer q

between 0 and N , where µ0 ≤ µ1 ≤ · · · ≤ µq = µq+1 = · · · = µN and 0 = h0 = h1 =
· · · = hq ≤ hq+1 ≤ · · · ≤ hN . Then z∗

i,s is nondecreasing in s.

To prove this result, we need the following lemma.

Lemma 5.2. Suppose that {µs}Ns=0 and {hs}Ns=0 are such that there exists an integer q between
0 and N , where µ0 ≤ µ1 ≤ · · · ≤ µq = µq+1 = · · · = µN and 0 = h0 = h1 = · · · = hq ≤
hq+1 ≤ · · · ≤ hN . Then G(s) is a nondecreasing function of s.

Proof. Proving that the result holds for states s = 0, . . . , q is the same as in the proof of
Lemma 4.3.

If q = N , the proof is complete. Otherwise, recall that G(N − 1) = FP(g∗∞). Therefore,

G(N − 2) = g∗∞ + hN−1 − ∑I
i=1 sup{λi(z)(z − FP(g∗∞))}

µN

≤ g∗∞ + hN − ∑I
i=1 sup{λi(z)(z − FP(g∗∞))}

µN

= FP(g∗∞)

= G(N − 1).

We prove, by induction, that G(s) ≥ G(s − 1) holds for states s = q, . . . , N − 1 in the same
fashion as in the proof of Lemma 4.3.
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Proof of Proposition 5.1. Recall that z∗
i,s = inf{z : ri(z)(z − G(s)) ≥ 1}. Since G(s) is

nondecreasing with respect to s, so is z∗
i,s .

As in the finite capacity case, the service provider charges more when the system is congested,
keeping higher states less attractive to customers in order to control holding costs. Let us now
consider the particular case where there is no holding cost (h = 0).

Proposition 5.2. If hs = 0 and µs = µ for all s = 1, . . . , ∞ then the optimal dynamic policy
is the same as the optimal static policy.

Proof. We just need to check that

g∗∞ =
I∑

i=1

sup{λi(z)z}, G(s) = 0,

and
z∗
i,s = inf{z : zri(z) ≥ 1},

for s = 0, . . . ,∞ satisfy the ACOE, where FP(g∗∞) = 0. This is easily verified and the rest of
the proof is omitted.

In this case the service manager treats all states as identical. This is quite intuitive since the
absence of holding costs enables us to consider only the arrival process to optimize revenue.
The queueing process becomes irrelevant in computing the long-term average reward since no
customer ever leaves due to capacity restrictions and no holding cost is incurred.

5.2. Linear holding cost

Under uniform asymptotic holding cost and service rate, we are able to derive an optimal
stationary pricing policy explicitly. The assumption that µs = µN for s ≥ N for some N is
often encountered as servers become saturated. However, we might have each customer incur
the same holding cost κ while in the system. Then hs = κs and the uniform asymptotic holding
cost cannot hold simultaneously. In this section we investigate systems where holding costs
and service rates are of the form hs = κs and µs+1 = µ for s ≥ 0. To ensure the stability of
the system, we impose the condition

∑I
i=1 �i < µ. Although we are only considering linear

holding costs and a single server here, Proposition 5.3, Proposition 5.4, and Theorem 5.2 hold
in a stable q-server setting with hs monotonically increasing to ∞ and integrable with respect to
{(∑I

i=1 �i)
s/µ(1 ∧q) · · · µ(s ∧q)}. We show the existence of an optimal stationary policy by

approximating the system with a finite capacity system. First, let us consider willingness-to-pay
distributions with finite support (βi < ∞ for all i = 1, . . . , I ). In this case we demonstrate, in
the next proposition, that we can restrict our analysis to finite capacity systems when βi < ∞
for all i = 1, . . . , I .

Proposition 5.3. If βi < ∞ for all i = 1, . . . , I then g∗∞ = g∗
M , where M = 
max βiµ/κ�.

Proof. To prove this proposition, we show that for any stationary policy of the infinite
capacity system, we can find a stationary policy of the truncated M-capacity system that
performs as well. Let z be a stationary pricing policy for the infinite capacity system such that
R(z) > 0. This policy exists since the assumption that max βi > κ/µ ensures the existence of
a positive reward. Now consider the M-capacity stationary pricing policy z|M, which is defined
as the truncation of z up to state M − 1 included. More precisely, z|M

i,s = zi,s for all s < M and
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i = 1, . . . , I . We have

R(z) =
∞∑

s=0

( I∑
i=1

λi(zi,s)zi,s − κs

)
πs(z)

=
∞∑

s=0

( I∑
i=1

λi(zi,s)

(
zi,s − κ

µ
(s + 1)

))
πs(z)

=
∞∑

s=0

asπs(z)

and

R(z|M) =
M−1∑
s=0

asπs(z
|M),

where as = ∑I
i=1 λi(zi,s)(zi,s − (κ/µ)(s + 1)). Clearly, the definition of M as M =


max βiµ/κ� implies that as ≤ 0 for s ≥ M . It is straightforward to show that, for all
s ≤ M ,

πs(z
|M) = πs(z)∑M

s=0 πs(z)
.

Hence, R(z|M) − R(z) has the same sign as

M−1∑
s=0

asπs(z) −
∞∑

s=0

asπs(z)

M∑
s=0

πs(z),

and we have

M−1∑
s=0

asπs(z) −
∞∑

s=0

asπs(z)

M∑
s=0

πs(z) ≥
M−1∑
s=0

asπs(z) −
M−1∑
s=0

asπs(z)

M∑
s=0

πs(z)

≥
M−1∑
s=0

asπs(z)

(
1 −

M∑
s=0

πs(z)

)
.

Recall that R(z) > 0 and

M−1∑
s=0

asπs(z) ≥
M−1∑
s=0

asπs(z) +
∞∑

s=M

asπs(z) ≥ R(z) > 0.

Therefore,
M−1∑
s=0

asπs(z) −
∞∑

s=0

asπs(z)

M∑
s=0

πs(z) ≥ 0

and R(z|M) ≥ R(z), proving the result.

Without loss of generality, we now assume that at least one of the willingness-to-pay
distributions F1, . . . , FI has infinite support in the rest of this section. To prove the existence
of an optimal stationary policy, we approximate the infinite capacity system by a finite capacity
model of large size and show the following two convergence results. Note that Weber and
Stidham [17] provided an existence proof in the case of a compact action space.
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Proposition 5.4. If
∑I

i=1 �i < µ then g∗
N converges to g∗∞ as N goes to ∞.

Theorem 5.2. Let (g∗
N, G(·), zN) be the canonical triplet associated with a truncated system

with capacity N . Then, under the stability condition
∑I

i=1 �i < µ, there exists z such that
zN
i,s ↓ zi,s for all i, s as N → ∞. Moreover, z = z∗ is optimal for the infinite capacity model.

We need the following lemma to prove Proposition 5.4 and Theorem 5.2.

Lemma 5.3. Let z be a stationary pricing policy and z|N be the truncation of z up to state
N − 1. Under the stability condition

∑I
i=1 �i < µ, R(z|N) → R(z) as N goes to ∞.

Proof. Consider

R(z) =
∞∑

s=0

πs(z)

I∑
i=1

λi(zi,s)zi,s − κ(s + 1)πs+1(z)

= π0(z)

∞∑
s=0

∑
i λi(zi,0) · · · ∑i λi(zi,s−1)

µs

( I∑
i=1

λi(zi,s)

(
zi,s − κ(s + 1)

µ

))
.

Moreover,

R(z|N) =
N−1∑
s=0

πs(z
|N)

I∑
i=1

λi(zi,s)zi,s − κ(s + 1)πs+1(z
|N)

= π0(z
|N)

N−1∑
s=0

∑
i λi(zi,0) · · · ∑i λi(zi,s−1)

µs

( I∑
i=1

λi(zi,s)

(
zi,s − κ(s + 1)

µ

))
.

Since

(π0(z
|N))−1 = 1 +

N−1∑
s=0

∑
i λi(zi,0) · · · ∑i λi(zi,s)

µs+1

as N goes to ∞, π0(z
|N) → π0(z). Therefore, R(z|N) → R(z), which proves the desired

result.

Proof of Proposition 5.4. We will prove this proposition by contradiction. From Proposi-
tion 4.2 we know that g∗

N is nondecreasing in N and that limN g∗
N exists and is less than or

equal to g∗∞. Now suppose that limN g∗
N < g∗∞. Then, according to Lemma 5.3, there exists

an N -capacity stationary policy zN such that limN g∗
N < R(zN) < g∗∞. As limN g∗

N ≥ g∗
N , we

have a contradiction and the proof is complete.

Proof of Theorem 5.2. We already proved, in Propositions 4.2 and 5.4, that g∗
N converges to

g∗∞ and that zN
i,s is a nonincreasing sequence in N . Therefore, limN zN

i,s = zi,s exists.
We will show that |R(z) − g∗

N | → 0. Since g∗
N → g∗∞, it will imply that R(z) = g∗∞ and

that z is optimal.
To do so, we will first prove that, for any s, πs(z

N) → πs(z) as N goes to ∞. Since

πs(z
N) = π0(z

N)

∑
i λi(z

N
i,0) · · · ∑i λi(z

N
i,s−1)

µs
,
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we only need to prove that π0(z
N) → π0(z). We have

π0(z
N)−1 − π0(z)

−1 =
N∑

s=1

∑
i λi(z

N
i,0) · · · ∑i λi(z

N
i,s−1)

µs

−
∞∑

s=1

∑
i λi(zi,0) · · · ∑i λi(zi,s−1)

µs
.

Let M be an arbitrary integer smaller than N ,

π0(z
N)−1 − π0(z)

−1 =
M∑

s=1

∑
i λi(z

N
i,0) · · · ∑i λi(z

N
i,s−1)

µs
−

∑
i λi(zi,0) · · · ∑i λi(zi,s−1)

µs

+
N∑

s=M

∑
i λi(z

N
i,0) · · · ∑i λi(z

N
i,s−1)

µs

−
∞∑

s=M

∑
i λi(zi,0) · · · ∑i λi(zi,s−1)

µs
.

Hence,

|π0(z
N)−1 − π0(z)

−1| ≤
M∑

s=1

∣∣∣∣
∑

i λi(z
N
i,0) · · · ∑i λi(z

N
i,s−1)

µs
−

∑
i λi(zi,0) · · · ∑i λi(zi,s−1)

µs

∣∣∣∣

+ 2
∞∑

s=M

(
∑

i �i)
s

µs
.

First, let N go to ∞ and then let M go to ∞. We have πs(z
N) → πs(z) for all s ≥ 0 as N goes

to ∞.
Now consider

R(z) − g∗
N =

∞∑
s=0

I∑
i=1

zi,sλi(zi,s)πs(z) −
N−1∑
s=0

I∑
i=1

zN
i,sλi(z

N
i,s)πs(z

N)

− κ

∞∑
s=1

sπs(z) + κ

N∑
s=1

sπs(z
N).

So,

|R(z) − g∗
N | ≤

M∑
s=0

∣∣∣∣
I∑

i=1

zi,sλi(zi,s)πs(z) − zN
i,sλi(z

N
i,s)πs(z

N)

∣∣∣∣ + κ

M∑
s=1

s|πs(z) − πs(z
N)|

+ 2 sup
i,z

{zλi(z)}
∞∑

s=M

(max �i)
s

µs
+ 2κ

∞∑
s=M

s
(max �i)

s

µs
.

Letting N go to ∞ yields

lim
N→∞ |R(z) − g∗

N | ≤ 2 sup
i,z

{zλi(z)}
∞∑

s=M

(max �i)
s

µs
+ 2κ

∞∑
s=M

s
(max �i)

s

µs
,
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and letting M go to ∞ implies that limN g∗
N = R(z). Therefore, z = z∗, and the proof is

complete.

The key element of this result is that the stationary probability of being in higher states is
negligible under any stationary policy. Thus, an infinite capacity system can be approximated
by a system of large finite capacity. The optimal stationary policy exists and is the limit of
finite-capacity optimal policies, which enables us to state the following proposition.

Proposition 5.5. Under the stability condition
∑I

i=1 �i < µ, z∗
i,s is nondecreasing in s.

Proof. From Theorem 5.2 we know that z∗
i,s = limN zN

i,s , where zN
i,s is the optimal price

at state s for the truncated N -capacity system. By Proposition 4.1, zN
i,s is nondecreasing in s.

Hence, the same holds for z∗
i,s .

Although we do not characterize the optimal stationary policy explicitly in this case, we
can still derive some insights. Not surprisingly, the structures of the infinite and finite capacity
optimal policies are the same. High prices are posted for congested states in order to minimize
holding costs.

Moreover, it can be shown that G(s) > s(κ/µ) and z∗
i,s ≥ G(s). Therefore, z∗

i,s > s(κ/µ).
This inequality is quite intuitive since the service provider has to charge at least enough to cover
the expected holding cost of a customer admitted in state s, which is greater than κ times the
expected service time of the s customers in front of her. A direct consequence of this result is
that when N = ∞, z∗

i,s → ∞ as s goes to ∞. Since zλi(z) converges to 0 as z goes to ∞,
very little profit will be generated from congested states. Thus, profit will remain very close to
optimal if the service provider decides to limit the system size to a large capacity.

6. Concluding remarks

We characterized optimal pricing policies that maximize the long-run average profit per
unit time. In systems with finite capacity and in systems with infinite capacity under uniform
asymptotic holding cost and service rate, we found an exact solution to the ACOE that cor-
responds to an optimal stationary pricing policy. In systems with infinite capacity and more
general holding cost and service rate structure, we showed that an optimal stationary pricing
policy exists as the limiting pricing solution for finite capacity systems whose size grows to ∞.

Moreover, we proved that the optimal stationary prices are nondecreasing with the state
index and perform a congestion control that prevents high holding costs in congested states.

In all the above, we did not consider capacity N as a decision variable. However, the service
provider has indirect control on N . If the ACOE canonical triplet yields z∗

i,s = βi for some state
s, then it is optimal not to let anyone from class i enter the facility in state s. The service manager
limits the size of the buffer to min{s : z∗

i,s = βi for all i}. Note that when the willingness-to-pay
distribution Fi has infinite support, z∗

i,s < ∞ for all states s, s = 0, . . . , N − 1, so that the
service provider never denies entry to customers at optimality.

Appendix A.

Proof of Lemma 4.4. Since I = 1, we omit the class subscript in this proof. All derivatives in
this proof are with respect to ρ. In Theorem 4.1 we proved that z∗

s = inf{z : r(z)(z−G(s)) ≥ 1}.
Now suppose that g∗

N + hs > µsG(s − 1). Therefore, z∗
s < β. It is straightforward to show
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that sup{λ(z)(z − G(s)) − g∗
N − hs + µsG(s − 1)} = 0 is equivalent to

sup

{
z − G(s) − g∗

N + hs − µsG(s − 1)

λ(z)

}
= 0,

where z∗
s is the unique price that attains the supremum. Let

ts(z) = z − G(s) − g∗
N + hs − µsG(s − 1)

λ(z)
,

t ′s(z) = 1 − (g∗
N + hs − µsG(s − 1))

r(z)

λ(z)
a.e. on [α, β].

Under IGHR, Proposition 5.1 of [19] shows that t ′s(·) is strictly decreasing a.e on (inf{z : zr(z) ≥
1}, β), which includes (z∗

s , β). Hence, t ′s(·) < 0 a.e. on (z∗
s , β). Therefore,

z∗
s = sup{z : t ′s(z) ≥ 0} = sup{z : (g∗

N + hs − µsG(s − 1))r(z) ≤ λ(z)}.
Suppose that g∗

N +hs ≥ µsG(s −1). Since we always have g∗
N +hs ≤ µsG(s −1), we can

claim that g∗
N + hs = µsG(s − 1) and sup{(z − G(s))λ(z)} = 0. We have two possibilities:

z∗
s = β or z∗

s = G(s) < β. The latter is impossible since there must exist ε > 0 such that
G(s) + ε < β and ελ(G(s) + ε) > 0. Therefore, z∗

s = β.

Proof of Lemma 4.5. For clarity, we will omit the arguments of the quantities we use in this
proof. For instance, we will write π0 instead of π0(ρ, N).

1. We prove first that γN ≥ π0. When ρ = 1, π0 = 1/(N + 1) and γN = 1
2 , which agrees with

our claim. Otherwise, recall that π0 = (1 − ρ)/(1 − ρN+1). Therefore,

π0

γN

= (1 − ρ)(1 − ρN)

1 + NρN+1 − (N + 1)ρN

= (1 − ρ)2 ∑N−1
k=0 ρk

(1 − ρ)(
∑N−1

k=0 ρk − NρN)

= (1 − ρ)
∑N−1

k=0 ρk

−∑N−1
k=0 (1 − ρk) + N(1 − ρN)

=
∑N−1

k=0 ρk

−∑N−1
k=0

∑k−1
s=0 ρs + N

∑N−1
s=0 ρs

=
∑N−1

k=0 ρk

−∑N−2
s=0 ρs(N − s − 1) + N

∑N−1
s=0 ρs

=
∑N−1

k=0 ρk

∑N−2
s=0 ρs(s + 1) + NρN−1

=
∑N−1

k=0 ρk

∑N−1
s=0 ρs + ∑N−2

s=0 sρs + (N − 1)ρN−1

≤ 1.
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2. Let us prove now that 1 −πN ≥ γN , which is easily verified when ρ = 1. Now suppose that
ρ �= 1. Since 1 − πN = (1 − ρN)/(1 − ρN+1), we have

1 − πN

γN

− 1 = (1 − ρN)2

1 + NρN+1 − (N + 1)ρN
− 1

= 1 − 2ρN + ρ2N − 1 − NρN+1 + (N + 1)ρN

1 + NρN+1 − (N + 1)ρN

= ρN(ρN − Nρ + (N − 1))

1 + NρN+1 − (N + 1)ρN
.

We know, from [20], that
1 + NρN+1 − (N + 1)ρN ≥ 0

and

ρN − Nρ + (N − 1) = (ρN − 1) − N(ρ − 1)

= (ρ − 1)

N−1∑
k=0

(ρk − 1)

≥ 0.

Therefore, 1 − πN ≥ γN .

3. We need to show that N − L ≥ π0ϕN . When ρ = 1, we have

N − L = N

2
, π0 = 1

N + 1
, and ϕN = 1

6
N2 + 1

2
N + 1

3
.

So,
N − L

π0
= 1

2
N2 + 1

2
N ≥ ϕN.

Now suppose that ρ �= 1. We have L = π0
∑N

n=0 nρn = π0F, where F = ∑N
n=0 nρn. Recall,

from [11], that ϕN = −L′/π ′
0. Using the fact that π ′

0 = −π2
0 (F/ρ),

π0ϕN = π0
π ′

0F + π0F
′

−π ′
0

= −L − π2
0

π ′
0
F ′

= −L + F ′ρ
F

= −L +
∑N

k=0 k2ρk

F

≤ N − L.

4. It remains to prove that ρϕN(1 − πN) ≥ L. When ρ = 1, we have

ρϕN(1 − πN) = N

N + 1

(
1

6
N2 + 1

2
N + 1

3

)
≥ N

2
= L.
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Now suppose that ρ �= 1. In the same fashion, ϕN = −F − (π0/π
′
0)F

′. Moreover, note that
ρ(1 − πN) = 1 − π0. So,

ρϕN(1 − πN) − L = ϕN(1 − π0) − L,

=
(

−F − π0

π ′
0
F ′

)
(1 − π0) − L

= −F − π0

π ′
0
F ′(1 − π0)

= −F + ρ2 F ′

F

1 − ρN

1 − ρ

= −F + ρ2 F ′

F

N−1∑
k=0

ρk.

Note that this quantity has the same sign as −F 2 + ρ2F ′ ∑N−1
k=0 ρk and that

−F 2 + ρ2F ′
N−1∑
k=0

ρk = −
( N∑

k=1

kρk

)2

+
N∑

k=1

k2ρk
N∑

k=1

ρk

=
2N∑
k=2

ρk

min(N,k)∑
n=max(0,k−N)

n(n − k) + n2

=
2N∑
k=2

ρk

min(N,k)∑
n=max(0,k−N)

n(2n − k)

=
2N∑
k=2

ρk

min(N,k)−k/2∑
n=k/2−min(N,k)

(
k

2
+ n

)
2n.

Let bn,k = (k/2 + n)2n for k/2 − min(N, k) ≤ n ≤ min(N, k) − k/2. For 0 ≤ n ≤
min(N, k) − k/2, we have

bn,k =
(

k

2
+ n

)
2n ≥

(
k

2
− n

)
2n = −b−n,k.

Therefore,

min(N,k)−k/2∑
n=k/2−min(N,k)

bn,k =
min(N,k)−k/2∑

n=k/2−min(N,k)

(
k

2
+ n

)
2n ≥ 0.

Hence, we can claim that ρϕN(1 − πN) ≥ L and the proof is complete.

Proof of Lemma 5.1. It is clear that �(V, g) is nondecreasing in V and continuity can be
proven as �(V, g) depends on V through the supremum of a bounded continuous function of z.
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We will now prove that �(·, g) is a contraction. Suppose that V1 ≤ V2. Then,

µN(�(V2, g) − �(V1, g)) =
I∑

i=1

sup{λi(z)(z − V1)} −
I∑

i=1

sup{λi(z)(z − V2)}

≤
I∑

i=1

λi(zi(V1))(zi(V1) − V1) − λi(zi(V1))(zi(V1) − V2),

≤ (V2 − V1)

I∑
i=1

�i,

where zi(V ) is the unique maximizer in [αi, βi] of λi(z)(z − V ). Therefore,

�(V2, g) − �(V1, g) ≤
∑I

i=1 �i

µN

(V2 − V1),

which proves that �(·, g) is a contraction mapping and has a unique fixed point.
It remains to show that FP(·) is increasing and continuous. Let 0 ≤ g1 < g2. Therefore,

�(FP(g2), g1) < �(FP(g2), g2) = FP(g2), so FP(g1) < FP(g2), proving that FP(·) is
increasing. As �(·, g) ≤ (g + hN)/µN , we also have FP(g) ≤ (g + hN)/µN .

To prove that FP(·) is continuous, we show, by contradiction, that it is both left-continuous
and right-continuous. Let gn ↑ g such that gn ≥ 0 for all n. Therefore, FP(gn) has a
limit limn FP(gn) ≤ FP(g). Suppose that limn FP(gn) < FP(g). Hence, limn FP(gn) <

�(limn FP(gn), g). But limn FP(gn) ≥ FP(gm) for all m ≥ 0, so limn FP(gn) > �(limn

FP(gn), gm). As m goes to ∞, we have limn FP(gn) ≥ �(limn FP(gn), g), yielding a contra-
diction. Hence, FP(·) is left-continuous.

In the same fashion, let gn ↓ g, such that gn ≥ 0 for all n. Therefore, FP(gn) has a
limit limn FP(gn) ≥ FP(g). Suppose that limn FP(gn) > FP(g). Hence, limn FP(gn) >

�(limn FP(gn), g). However, we note that limn FP(gn) ≤ FP(gm) for all m ≥ 0, which
implies that limn FP(gn) < �(limn FP(gn), gm). Letting m go to ∞, limn FP(gn) ≤ �(limn

FP(gn), g), yielding a contradiction. Therefore, FP(·) is continuous on [0, ∞).
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