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Abstract

The aim of this note is to investigate the structure of general surjectivity problem for a continuous
linear map between locally convex spaces. We shall do so by using the method introduced in
Yamamuro (1980). Its basic notion is that of calibrations which has been introduced in Yamamuro
(1975), studied in detail in Yamamuro (1979) and appliced to several problems in Yamamuro (1978)
and Yamamuro (1979a).

1980 Mathematics subject classification (Amer. Math. Soc.): 46 A 05.

We shall start this note with a few words about the calibrations.
Let E and F be Hausdorff locally convex linear spaces. A semi-norm map on

(E, F) is a map/? whose valuespE a.ndpF are continuous semi-norms on E and
E respectively. Let F be a set of semi-norm maps on {E, F) and set

TE = {pE:p&T} and TF = {pF:p G F}.

A calibration for (E, F) is a set F of semi-norm maps on (E, F) such that TE and
TF induce the topologies of E and F respectively.

When F is a calibration for (E, F), a linear map u: E—>F is said to be
T-continuous if, for each/) S F,

/>(") = P(E,F){") = sup {pF[u(x)]:pE(x) < 1} < +oo.

The set of all F-continuous linear maps of E into F is denoted by L^E, F).
It was shown in Yamamuro (1979), page 11, that, for any continuous linear

map u: E -» F, there exists a calibration F for (E, F) such that u e Lj^E, F).
Naturally, it is desirable to choose such a calibration which reflects the full
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188 Sadayuki Yamamuro 12]

nature of the given map. It will then amount to characterizing the map in terms
of calibrations. We find various results of such nature in Treves (1967), where
Treves successfully generalized some theorems in the theory of partial differen-
tial equations to those for linear maps on locally convex spaces.

In a series of papers, R. Mennicken and B. Sagraloff have generalized some
results of Treves (see, for example, Mennicken and Sagraloff (1980)).

We shall start with very basic facts about the F-completions of a locally
convex space with respect to a calibration F. When F is a calibration for (E, F),
we shall have two families {£[/>]: p £ F} and {F[p\. p G F} of Banach spaces,
and a continuous linear map u: E -» F will be extended to a continuous linear
map up: E[p] -»F[p] for every /> G F. The first step of our study is to
characterize the surjectivity of u by the properties of these maps between
Banach spaces. We shall then reduce this general criterion to more convenient
forms and conclude this note with a generalization of a theorem of M. Eidelheit,
which will then lead us to the Colombeau's version of a theorem of E. Borel.

1. F-completions of locally convex spaces

Let E be a vector space and p be a semi-norm on E. A sequence (x,) in £ is
said to bep-Cauchy if/»(x, — xJ)-*0 as i,j-*ao. Two/?-Cauchy sequences (x,)
and (>>,-) are said to be equivalent if p(xf — y() -* 0 as / —> oo.

Let (JC,-) be a/>-Cauchy sequence and a be the set of all/7-Cauchy sequences in
E which are equivalent to (x,). Such a set a is called a.p-class on E. Obviously, if
two/»-classes have a common element, they must be identical.

The set of all /^-classes on E will be denoted by E[p] and it will be called the
p-completion of E. It is a vector space when aa -I- /8b is defined to be the/»-class
which contains the sequence (ax, + /Jy,) for some (*,) G a and (y,) G b. The
zero element of E[p] is, therefore, the/J-class which contains a/>-null sequence.

For a G E[p], we define

p{&) = lim p{x,) for (*,) G a.
I—»00

Then, the value p(n) does not depend on the choice of (x,) from a. It is obvious
that/> is a norm on E[p] and, with this norm, E[p] is a Banach space.

For each x G F, let Sp{x) be the element of E[p] which contains the
/»-Cauchy sequence all of whose terms are identical to x. Then, we have

/?[^,(x)] = p(x) for every JC G E.
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[ 3) The surjectivity of linear maps 189

For a G E[p] and (*,.) G a, we have

lim p[S(x,) - a ] =0,
i->oo J

which shows that Sp(E) is dense in E[p\.
We shall use the following notations:

UE(P> a) = {x G E: p(x) < a], BE(p, a) = {x G £: />(*) < a},

UE[p, a] = {a G £[/>]:/>(•) < «}' BB[p, a] - {a e £[>]:/>(«) < a}.

We also denote the corresponding unit spheres by UE{p), BE(p), UE[p] and
BE[p] respectively.

Let £ be a locally convex space and F be a calibration for E. Then, for each
p G F, we have the /^-completion E[p] of E. The family {E[p\. p G F} of
Banach spaces will be called the T-completion of E.

Thus, we have a projective system:

Sp:E-+E[p] for all/? GF.

It is easy to see that the projective topology on E defined by this system
coincides with the topology of E.

When/j > q, that is,p{x) > q(x) for all x G E, we have a natural embedding:

which maps every a 6 £ [ ; ] to the ^-class which contains elements of a.
Obviously, this map is linear,

q[ TM(»)] < /»(«) for every *eE[p]

and

Tp,q • S, = Sr

Furthermore, it is evident that Tpq(E[p]) is dense in E[q\.

(1.1). E is complete if and only if the following condition is satisfied: if
ap G E[p]for allp G F and

Tpq(sip) = a, whenever p > q,

then there exists x G E such that Sp(x) = s^ for allp G F.
For the proof, see Kothe (1967), page 231 and page 232.

We shall have occasion to use the notion of gauged calibrations introduced in
Yamamuro (1980), page 434. A calibration F for a locally convex space E is said
to be gauged if F is directed and there exists a net y: T -* R (the reals) such that
y(p) -» 0. This function y is called a gauge of F.
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2. A general surjection theorem

Let F be a calibration for (E, F). For each u E ^{E, F), we have a continu-
ous extension

where E[p] = E[pE] and F[p] = F[pF], and the following diagram commutes:

UP
E(p) -F(p)

A linear map u G Lr(E, F) is said to be S-resonant (with respect to F) if the
following condition is satisfied: if y £ F and there exist ap £ E[p] such that
wp(ap) = Sp(y) for all/? £ T, then there exists x E is such that^ = u(x).

A linear map u G i ^ i s , F) is said to be p-resonant for some /> G T if the
following condition is satisfied: if (M(JC(.)) is a/»F-Cauchy sequence, there exists a
/>£.-Cauchy sequence (z,) such thatp^M^,) - w(z()] -* 0.

If u is/»-resonant for every/) G T, it is said to be T-resonant.
All these definitions have been given in Yamamuro (1980).

(2.1). For u G Lr(E, F), the following two conditions are equivalent.
(1) u is surjective and T-resonant;

(2) every up is surjective and u is S-resonant.

This is implied by the following four statements.

(2.2). If up is surjective, then u is p-resonant.

PROOF. Assume that (u(x,)) is />F-Cauchy and let b e F[p] be the pjrdass
which contains it. Then, i^,(a) = b for some a £ E[p] and, for any (z,) G a, we
have Pf[u(x,) — «(z,)] -> 0 as i —» oo.

(2.3). If every ^ is surjective and u is S-resonant, u is surjective.

PROOF. For any y G F, since Sp(y) e F[p] and up is surjective, there exists
8p G E[p] for every p G T such that up(^) = 5^(7). Hence, by the S-resonance,
y — u(x) for some x G is.
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(2.4). If u is surjective, u is S-resonant.

The proof is trivial.

(2.5). If u(E) is dense in F and u is p-resonant, up is surjective.

PROOF. The/>-resonance is equivalent to

up(E[p])D Sp(u(E)).

Hence,

F[p] = Sp(F) = Sp(u(E)) = Sp(u(E)) c up{E[p]).

EXAMPLE 1. Let E be a locally convex space equipped with a calibration TE

and let M be a closed linear subspace of E. We consider the quotient

For each/?£ E TE, we set

Then, {pE/M: /i£ £ r £ ) defines the quotient topology on E/M. The calibration

r = {p = (PE,PE/M):PE e TE)

is called the quotient calibration for (E, E/M) defined from TE. Then, <j> G
LpiE, E/M), <#> is obviously surjective and it is easy to show that <j> is T-
resonant.

EXAMPLE 2. Let E be a locally convex space equipped with a calibration F£

and let E be the completion of E. Hence, there exists an embedding

such that >//(E) is dense in E. For each pE G r £ , its extension pE over £ is
defined and ( f t : /i£ £ T£) defines the locally convex topology on E. The
calibration

r = {/> = {PETPEYPE e r £ }

is called the completion calibration for (E, E). Since

/£(«//(JC)) = PE(X) f°r every x G £ and /? G F,
i// is F-resonant. Hence, every \pp is surjective.

EXAMPLE 3. Let £ be a complete locally convex space equipped with a
calibration TE and assume that there exists a closed linear subspace M of E such
that E/M is not complete. Let F be the completion of E/M. For each/>£ G F£,
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we form the quotient semi-norm pE/u as in Example 1 and, then, extend it as in
Example 2 to a semi-norm pF on F. Then, we have a calibration

for (E, F). Then, the map

\\i o </>: E ^ F

between complete spaces belongs to L^E, F). Every (\p ° <f)p is surjective, but

\p ° <j> is not surjective.
When a pair (E, F) is equipped with a gauged calibration, we have the

converse to (2.5) as follows.

(2.6). Assume that T is a calibration for (E, F) and u G L^E, F). If TF is
gauged, the following two conditions are equivalent:

(1) every up is surjective;
(2) u(E) is dense in F and u is Y-resonant.

PROOF. In view of (2.2) and (2.5), we only need to show that (1) implies
u(E) = F. Assume that every Up is surjective and.y G F. Then, for each/? G T,
there exists a/?£-Cauchy sequence (xpi) such that

u(xp,i)) - » ° as / -» oo.

Hence, there exists (ip) such that

pF(y - u(xp^)) < •»(/>)>

where yF is a gauge of TF. Then, we have u(xpj) —>y.

EXAMPLE 4. To show that (2.6) does not necessarily hold when TF is not
gauged, we consider the case when E is a Banach space equipped with the weak
topology. Let E' be its dual and, for a non-zero element a! G E', we set

Tw = {\x'\:x'eE',\x'\>\a'\},

where | JC'| is a semi-norm defined by

\x'\(x) = \x'(x)\ for every x G E.

Let F be the space E equipped with the calibration Tw and let F be a calibration
for {E, F) defined by

r-{(iHi,M):|*'|Grw}.
Let a G £ b e such that a'{a) ¥" 0 and we define u: E -» F by

u(x) = a'(x)a for every x G F.
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Then, for/> = (|| • ||, |x'|),

pF(u(x)) = \x'\(a'(x)a) = \a'(x)x'(a)\

< |x'(a)| • ||a'|| -pE{x),

which shows that u E L^iE, F). Now, for p = (|| • ||, |x'|) e T, assume that
b £ F[p] and (>>,) £ b; then (_y,) is |x'|-Cauchy and, hence, (•*'(.)'.)) converges to
a number i). By the definition of Tw, we have x'(a) ¥= 0. Hence, we can choose
x G E such that

a'(*)x'(a) = i),

which shows

ill -» 0 as / ̂  oo.

Thus, we have ^(^^(x)) = b, or, every up is surjective. However, u(E) is a
one-dimensional subspace of £.

A similar proof as that of (2.6) gives the following fact.

(2.7). Assume that T is a calibration for (E, F) and u G L^E, F). If TF is
gauged and u(E) is closed, then u is S-resonant.

When E and F are Banach spaces and T consists of a single norm map whose
values are norms of these spaces, any continuous linear map of E into F is
S-resonant. Therefore, the S-resonance does not always imply that u(E) is
closed even if TF is gauged. Furthermore, for the map u in Example 4, we see
that «(£•) is closed and u is not S-resonant. Therefore, (2.7) is not always true if
TF is not gauged.

3. Compatibility with completions

Let F be a calibration for (E, F) and u G LT(E, F). We start with another
criterion for the S-resonance.

(3.1). Assume that E is complete. If every Up is infective, then u is S-resonant.

PROOF. Let a, e E[p] for all/) G T and.y G F such that

up(*p) = Sp(y) for all/) £ T.

Then, if p > q,

«,(•,) = Sq(y) = TM o Sp(y) = TM
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Since uq is injective, we have
a , = Tp,q(*P) wheneverp > q,

and, by (1.1), there exists x G E such that Sp(x) = ap for every p G T, which

implies y = M(X).

In this section, we shall be concerned with the relation between the injectivity
of u and that of î ,. It is evident that, if every î , is injective, u is injective, but the
converse is not true.

As in Example 1, we shall consider the quotient

4>: E ->• E = E/M,

where M = ker(«). Each/7 £ T defines

/*(*(*)) = mf {pE(z): u(x) = u{z)},

and F can be regarded as a calibration for the family {E, E, F), wherepg = pE

for every p E T. The linear map u defines an injective linear map u: E-* F
defined by u = w ° <j> and it is obvious that u G L^E, F). Furthermore, for the
spaces E, E and F, there are F-completions [E[p]}, [E[p]} and [F[p]}. Then,
the following diagram commutes:

E(p)/ker(up)

We shall say that u is p-compatible if the following condition is satisfied: if
* 0 and (xt) is a /?£-Cauchy sequence, then there exists (z,) such that

(3.2). For u G Lf(E, F) and p G F, the following conditions are equivalent:
(1) M is p-compatible;
(2) ker(W;,) =^ (ke r (« ) ) ;

(3) ker(Mp)
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(4) up: E[p] -» F[p] is injective;

(5) PE(<KX)) = Ptoi^piSpix))) for every x e E, where p^ is the quotient norm
defined by p on E[p]/ker(up);

(6) the map

K,: E[p] -> E[p]/kcr(up): (</>(*,)) -* (<S>P ° Sp(Xi))

is an isomorphic surjection.

PROOF. TO prove that (1) implies (2), assume that (*,) 6 a £ ker(up). Then,
Pfiu^xJ) -> 0 and (x,) is a /?£-Cauchy sequence. Hence, there exists (z,) such that
u(x() = M(Z,) and/7£(z,) -H> 0. Then, x, - z,. G ker(w) andpE(Sp(Xj — z,) - a) -» 0.

To prove that (2) implies (3), assume that a G ker(wp). Then, there exist
JC, G ker(tt) such that Sp(xt) -> a in the space E[p]. Hence, in the space E[p],

<^(a) = lim <t>p(Sp(Xi)) = lim Sp(<.(x,.)) = 0.
;->oo i-»oo

To prove that (3) implies (4), assume that up(k) = 0 for some a G E[p]. As
was stated in Example 1, <j>p is surjective. Hence, a = ^ ( a ) for some a G E[p]
and i^,(a) = i^,(a) = 0, which implies </>p(a) = 0.

To prove that (4) implies (5), assume that a >p^>p ° Sp(x)). Then, by the
definition of the quotient norm, there exists a G E[p] such that pE(a) < a and
Up(» — Sp(x)) = 0. Since up = up ° <j>p and up is injective, we have <J>p(a) =
<t>p(Sp(x)). Therefore,

a .

To prove that (5) implies (6), we first note that Kp is surjective because
<t>p = Kj, ° <t>p. Furthermore, (5) impliespE(a) = /^(/^(a)) for every a G E[p].

To prove that (6) implies (1), assume that/>f(u(x1)) —» 0 and (*,-) G a G E[p],
which means that up(jn) = 0. Then, since up = up ° Kp ° <f>p and up is injective, we
have Kp ° <f>p(n) = 0 and, by (6), <f>p(a) — 0, which is equivalent to pE($(x>)) -* 0.

Thus, the F-compatibility ensures that the injective map u: E -^> F has
injective extensions up: E[p] -» F[p] for all/) G F.

(3.3). Assume that E is complete. Then, if u is T-compatible, u is S-resonant.

PROOF. Since all up are injective, (3.1) implies that u is S-resonant, which is
equivalent to that u is S-resonant.

When F is a Frechet calibration for (E, F), E is complete and F £ is obviously
gauged. Hence, in this case, the F-compatibility implies the S-resonance. It is an
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open question whether every quotient space of a complete locally convex space
with a gauged calibration by a closed linear subspace is again complete.

The maps considered in Examples 1, 2, 3 and 4 are all T-compatible and those
in Examples 2, 3 and 4 are not S-resonant. The S-resonance does not imply the
P-compatibility in general. If u: E —> F is surjective, then it is S-resonant with
respect to any calibration T such that u G L^iE, F), whereas the Incompatibility
depends on a particular choice of calibration.

REMARK. The treatment of the Whitney's extension theorem by Malgrange
(1966) illustrates a meaning of the above statement (3.3). Let $2 be an open
subset of Rm and E = C°°(B) be the set of all real-valued C°°-functions on fi.
For a sequence (A^) of compact subsets such that Kn c K°+x (the interior of
Kn+l) and fi = U Kn, we define semi-norms:

qkjx) = sup {|*<°(/)|: 0 < i < k, t G K°n+l).

Then, E is a Frechet space with the calibration {qkn: k, n > 0}, and it is easy to
see that qk^-completion E[qkn] of E is the space Ck{K°+l) of all C*-functions
on K£+l. Let F be the space of all Whitney functions {xj: i > 0} of class C00

defined on a fixed compact subset K of fl. For the definition of these functions,
see Malgrange (1966), page 3. This is also a Frechet space with a calibration
consisting of, using his notation at page 4,

r ( r \ — II Y - I I *rk\x) — \\x\\k>

and the rk-completion F[rk] of F is the space of all Whitney functions of class
Ck defined on K. Now, let u: E —»F be a linear map defined by

«(JC)'(O = JC(O(0 for / = 0, 1, 2, . . . and t G K.

Then, for the calibration

and ukn = upt , the fact that all extensions

are surjective is exactly the Whitney's extension theorem. Lemma 4.3 of
Malgrange (1966), page 11, states that

for the imbedding Skn = SPk , which means that u is F-compatible. Hence, by
(3.3), every Whitney function of class C ° ° o n ^ can be extended to a C "-func-
tion on fi.

A well-known corollary of this theorem, a theorem of E. Borel, will be proved
in a different manner in Section 6.
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4. r-open maps

Let F be a calibration for (E, F) and p G F. A continuous linear map u:
E -> F is said to be p-open if the following condition is satisfied: if/)F(M(X1)) -» 0,
then there exist z, G £ such that w(JC,-) = H(Z() and /^(z,) -» 0. If u is />-open for
every/? G F, w is said to be F-open.

The above definition is equivalent to that, if Pp(u{x^) -» 0, then />£(<K*i)) -* 0,
where 4>: E —> E = E/ker(u) is the canonical map. Hence, u is p-open if and
only if u: E —* F is/»-open.

We recall that a subset X of £ is said to be />-open for /» e F if it is an open
subset of the semi-normed space (E,pE). See Yamamuro (1979), page 18, for this
definition and the related topics.

(4.1). Let T be a calibration for (E, F) and p e F. For a continuous linear map
u: E -» F, the following conditions are equivalent:

(1) u isp-open;
(2) there exists a constant o^ > 0 such that

PE(<t>(x)) < °<PPF(U(X)) f°r eve/y x G E;

(3) there exists a constant o^ > 0 such that

u(E)n UF(p) C u(UE(p, 00);

(4) for every p-open subset X of E, M(A') is a p-open subset of u(E).

PROOF. TO prove that (1) implies (2), assume that u is/>-open and

inf {Pf(«(x))/Pi(<Kx)Y-Pito(x)) ^ 0} = 0.
Then, there exist xn G E such that

/>*•("(*#.)) < "~!Pi(«K->0)>
and, for o^ = pE(4>(,xH)), we have Pfia~lu(xn)) -> 0. Hence, there exist zn G E
such that w(zn) = u(a~lxn) and/»£(zn) -» 0. Then,

1 = /»i(a;V*, .)) = /»i(*(^)) < /»«(^) -» 0,
a contradiction.

To prove that (2) implies (3), assume that (2) holds and u(x) G Up(p). Then,
pE(<t>(x)) < Oj,, which means that there exists z G E such that u(x) = w(z) and
p(z) < Oj,. Hence, u(x) G u(UE(p, a,,)).

To prove that (3) implies (4), assume that (3) holds and X is a/»-open subset of
E. Then, there exists a > 0 such that UE(p, a) c A", and, hence,

« ( £ ) n UF(p, a/cxp) C «(I / £ (^ , «)) C u(X),

which shows that u(X) is a/>-open subset of u(E).
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To prove that (4) implies (1), assume that (4) holds a.ndpF(u{x$) -> 0. Suppose
that pE($(x$) > a or some a > 0. It is obvious that UE(p, a) is p-open and,
hence, u(UE(p, a)) is/>-open. Therefore, M(X,) G u(UE(p, a)), a contradiction.

We recall that a linear map u: E—> F is said to be open if, for any
neighborhood U of zero in E, u( U) is a neighborhood of zero in the subspace
u(E). It is easy to see that a continuous linear map u: E -» /" is open if and only
if K: E —» /" is open.

(4.2). /f «: E ^> F is open, there exists a directed calibration F for (E, F) such
that u e L^E, F) and u is T-open. If u: E —» F is T-open for some calibration F
for (E, F), u is open.

PROOF. Let u be open and F' be a calibration for (E, F) such that u £
LTiE, F). Then, for each/>' G F', u(UE(p')) is an absolutely convex neighbor-
hood of zero in the space u(E). Hence, the Minkowski functional /y of
M( UE(p')) is a continuous semi-norm on u(E) and

There exists a continuous extension of ^ over F, which we shall denote by the
same /y. (Kothe (1967), Section 19, 4(2).) We define a new calibration F for
(E, F) by

T = {p = (pE,p'FU fy):p'er}.

Since F' could be chosen to be directed, this is also directed. Now, since

u(UE(p'))= UA^nuiE),

PE(X) < 1 implies J^,(M(A:)) < 1, which means that there exists <y > 0 such that

/y(K(x)) < <y/?^(x) for every x G £.

Hence, for each/? G F, there exists ĉ , > 0 such that

PF("(X)) = m a x {/)>(«(J[:)).
for every * G £, that is, u G Lr(£, F).

M is F-open for this F, because

u(E) n uF(P) c u(E) n
for every/? G F.

Conversely, if u is F-open for a calibration F for (£, F), by considering w and
the quotient calibration f if necessary, we may suppose that u is mjective. For a
neighborhood U of zero in E, there are/?, G F and a > 0 such that

^(/>i> «) n • • • D f/£(/?B, a) c £/.
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Since u is injective,

V i--
H UE(Pi,a))= D u{UE(Pi,a)),

/
and, since u is F-open, there exists (i > 0 such that

u(E) n UF(pd C u{UE{Pi, P)) if 1 < i < n.

Hence,

n

«(£) n PI tfp(fl. «0~') C u(U),
1 - 1

which shows that w(£/) is a neighborhood of zero in u(E).

It is obvious that p-open maps are p compatible. The precise relation between
these two properties is given by the following statement.

(4.3). Let T be a calibration for (E, F),p G T and u G ^(E, F). The following
two conditions are equivalent:

(1) u isp-open;
(2) u is p-compatible and up is open.

PROOF. TO prove that (1) implies (2), assume that u is/>-open. We only need to
show that Up is open. By (4.1)(2), there exists ĉ , > 0 such that

PEM*)) < <*PPF(U(X))
 f o r e v e r v x e E.

By extending this inequality over the/?-completion, we have

PE{4>P(*)) < "pPfi"/>(»)) for every a G E[p].

Hence, by (3.2X6), we have

PE(<t>p(a)) < ty>F(^(a)) for every a G E[p],

which means that up is open.
The converse can be proved by tracing the above proof in reverse order.

Let r be a calibration for (E, F) and p G T. A continuous linear map u:
E -» F is said to be almost p-open if there exists â , > 0 such that

u(E) n «,-(/>) C u(BE(p, a,,)) .

If u is almost /(-open for every p G T, u is said to be a/mour T-open. Obviously,
p-open maps are almost p-open for every p G T.
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We recall that a continuous linear map u: E -» F is said to be almost open (or,
nearly open in Kothe (1979), page 24) if, for any neighborhood U of zero in E,
u(U) is a neighborhood of zero in the subspace u(E) of F. Obviously, open
maps are almost open.

By exactly the same method as in (4.2), we can prove the following fact.

(4.4). If u: E -» F is almost open, there exists a directed calibration T for (E, F)
such that u is almost T-open. If u: E —» F is almost I'-open for some calibration F
for (E, F), u is almost open.

A pair (E, F) of locally convex spaces is said to be compatible if the following
condition is satisfied: if a continuous linear map u: E -» F is almost F-open for
some calibration F for (E, F), then u is Incompatible.

We recall that a locally convex space E is called a Ptdk space if, for any
locally convex space F, every almost open continuous linear map of E into F is
open.

(4.5). If E is a Ptdk space and F is a locally convex space, the pair (E, F) is
compatible.

PROOF. Assume that a continuous linear map u: E —» F is almost F-open for
some calibration F for (E, F). Then, for each p G T, there exists o^ > 0 such
that

u(E) n BF(p) c u(B£(p, a,)) .

By (4.4), u is almost open and, hence, it is open. Therefore, there exists a
continuous semi-norm qp on F such that

u(E)n UF{qp) = u{UE{p,apj).

Now, assume that u(x) e UF(p). Then, there exists a > 0 such that Pfiu(x)) <
a < 1, and there exist xx G UE(p, aotj,) such that u(xx) —* u(x). Since u(xx) e
u(UE(p, aotp)), qp(u(xj) < a and, hence, qp(u{x)) < 1. Thus, Up{p) C UF{qp),
which implies

u(E)n UF{p) C u(UE(p, a,)).

Therefore, u is F-open and, hence, u is F-compatible.

(4.5) implies, in particular, the pair (E[p], F[p\) is a compatible pair. We use
this fact in the proof of the following statement.
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(4.6). Assume that T is a calibration for (E, F) and p G F. T/1 H G Lj(E, F) is
almost p-open, every up: E[p] —» F[p] is open.

PROOF. By the assumption, there exists otj, > 0 such that

~ujEJ n BF{p) c u(BE(p, <g) .

Assume that

b s up(E[P])n uF[P\,
then, since

up(E[p]) = up(Sp(E)) ,

there exist x, G E such that

lim up(Sp(Xi)) = b.

We may suppose that /v( "(*,)) < 1. Then, since u(xt) G u(E) n Bp(p), there
exist z, e 5£(/>, Op) such that Pfi^x,) — M(Z,)) —» 0, which implies

up(Sp(Zi))^b and i^

Hence, b 6 ^ , ( ^ [ ; , o ,̂]). This means that up is almost open and, since
(E[p], F[p]) is a compatible pair, up is open.

We now have the exact relation between the almost ^-openness and the
/^-openness, which follows from (4.3) and (4.6).

(4.7). Let T be a calibration for (E, F), p G T and u G L^E, F). Then u is
p-open if and only if u is almost p-open andp-compatible.

Thus, we have the following statement which is the converse to (4.5).

(4.8). Let E be a locally convex space and the pair (E, F) be compatible for any
locally convex space F. Then, E is a Ptdk space.

PROOF. Assume that a continuous linear map u: E-* F is almost open. By
(4.4), there exists a calibration F for (E, F) such that u G ZT(£, F) and u is
almost F-open. Since (E, F) is a compatible pair, u is F-compatible. By (4.7), u is
F-open and, by (4.2), u is open. Hence, £ is a Ptak space.

We are now in a position to introduce a wider class of locally convex spaces
that is of essential importance to the theory of Treves calibration which will be
developed in the next section. A locally convex space E is said to be fully
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compatible if the following condition is satisfied: for any locally convex space F,
if a continuous linear map u: E -» F is almost open, then u(E) is a closed subset
of F.

(4.9). Every Ptdk space is fully compatible.

PROOF. Let E be a Ptak space and F be a locally convex space. When u:
E —» F is an almost open continuous linear map, it is open and, since E/ker(u)
is complete, u(E) is closed (Kothe (1979), page 7).

As in Example 2 in Section 2, we denote the completion of E by E and let ty:
E -> E be the canonical embedding.

(4.10). FM//K compatible spaces are complete.

PROOF. Let E be fully compatible. Since $: E —» E is an open map, «K^) is

closed. Since it is dense, *1>(E) = E and, hence, £ is complete.

Let E and F be locally convex spaces and M be a closed linear subspace of £.
Let T be a calibration for (E, F) and F be a directed calibration for (£ /M, F).
Then, for each p G F, since / £ , the semi-norm on is/A/ defined by pE as in
Example 1 in Section 2, is continuous, there exists p' G F and a > 0 such that
PE ^ a(P')i- Then, forpF = pF \J (p')F, we have a calibration

for (£/A/, F) such that

^ i (^ ) 3 B^p', a"1) and B^(/) c BF{p').

Therefore, if a continuous linear map v: E/M—> F is almost F'-open, then it is
almost f-open, and f is a calibration for (E/M, F) such that (F)£/A/ is defined
from TE by taking the quotients.

(4.11). If E is a fully compatible space and M is a closed linear subspace of E,
the quotient space E/M is fully compatible.

PROOF. Let v: E/M^> F be a continuous linear map which is almost open.
There exists a directed calibration f for (E/M, F) such that v is almost f-open.
We may suppose that there exists a calibration F for (E, F) such that (p)F = pF

and

( P ) B M < K X ) ) = i n f {pE(z): x-zGM),
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where </>:£-» E/M is the canonical map. Then, the continuous linear map u:
E -* F defined by u = t> ° <f> is almost F-open, because

v{BE{p)) = u(BE(p)).

Therefore, v(E) = u(E) is closed.

Finally, either (2.6) or (2.7) implies the following fact.

(4.12). Let E be a fully compatible space and F be a locally convex space. Let T
be a calibration for (E, F) such that TF is gauged and u: E —» F be a continuous
linear map which is almost T-open. Then, if every up: E[p] —* F[p] is surjective, u
is surjective.

5. Treves calibrations

We use the Treves' notation Spec(is) to denote the set of all continuous
semi-norms of a locally convex space E. When F is another locally convex
space, a continuous linear map u: E —» F defines a map:

M#: Spec(F) -> Spec(£): q\-+ q ° u.

Treves (1967) called a pair (E, F) u-convex if, for each/> G Specif), there exists
q G Spec(F) such that ker(^) c ker(r) whenever umr < p. He also called a
continuous linear map u: E -» F semiglobalfy surjective if, for each q G Spec(F)
and y E F, there exists x £ E such that q(y — u(x)) = 0. The so-called Treves
surjectivity theorem states that, if E and F are Frechet spaces, (E, F) is u-convex
and u is semiglobalfy surjective, then u is surjective. This generalizes an existence
theorem for some partial differential equations. In the proof of this theorem,
Treves noted that, in general, if (E, F) is w-convex and u is semiglobally
surjective,

sup {r(y): u^r < p, r G Spec(ir)} < +oo

for every p G Spec(is) and y G E, and, when F is barrelled, the following
condition is satisfied: for each p G Spec(Zf) there exists q G Spec(F) such that
r < q whenever umr < p and r G Spec(F). We use this fact to define the Treves
calibration for (E, F).

A calibration T for (E, F) is called a Treves calibration for (E, F) defined by u

if the following condition is satisfied: if q G Spec(F) and u^q < pE, then

1 <PF-
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By the Hahn-Banach theorem, the above condition is equivalent to the
following: if y' G F' (the dual of F) and w J / | < pE, then \y'\ < pF, where

\y'\(y) = \y\y)\ f°r everyy G F.
It is obvious that the quotient calibration in Example 1 in Section 2 is a

Treves calibration for (E, E) defined by $ and the completion calibration in
Example 2 there is a Treves calibration for (E, E) defined by \p.

(5.1). A calibration T for (E, F) is a Treves calibration defined by u if and only
if Bf{p) Cu(BE(p)) for every p G T.

PROOF. Assume that F is a Treves calibration for (E, F) defined by u and
y G Bfjp). If y does not belong to the absolutely convex closed subset
u{BE(p)), there exists/ G F' such that \y'\(y) > 1 and \y'\ < 1 on u(BE(p)),
but the latter implies w j / | < pE, which should lead to \y'\ < pF, a contradic-
tion.

Conversely, assume that Bp{p) Cu(BE(p)) for all p G T and umr < pE for
some r G Spec(F). Then, u(BE(p)) c B^r), which implies Bf(p) c Bf(r) and,
hence, r < pF.

It is now clear from (4.4) that a continuous linear map u: E —» F defines a
Treves calibration for (if, F) if and only if u is almost open and u(E) = F.

(5.2). Lef E be a locally convex space. Then, every continuous linear map u of E
into arbitrary locally convex space F which defines a Treves calibration for (E, F)
is surjective if and only if E is fully compatible.

PROOF. Assume that u: E —* F is a continuous linear map which is almost
open. Then, by (4.4), there exists a calibration T for (E, F) such that, for each
p G T, there exists ĉ , > 0 such that

~ujE) n BF(p) C u(BE(p, a,)) .

Now, set

PE
 =

 PE
 a n d PF = °^XPF/ U(E) ( t n e restriction to u(E) ).

Then, T = {(pE,pF)' p G T) is a Treves calibration for (£, U{E)). Therefore,
by the assumption, «: £ —»w(£') must be surjective, which means that u(E) is
closed. The converse is obvious.

We shall add a few facts about the case when E is not necessarily fully
compatible.
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(5.3). If a continuous linear map u: E —» F defines a Treves calibration T for
(E, F) and u E. LY(E, F), then every up: E[p] -» F[p] is surjective. In fact,

UF[p] C up(UE[p]) for everyp G T.

PROOF. It follows from the assumption that the calibration Tp which consists
of a single norm map p — (pE,pF) is a Treves calibration for (E[p], F[p])
defined by Up. It is obvious that Up is Tp-compatible. Hence, by (4.7), up is

, which, in conjunction with (5.2), implies the required result.

Hence, the following fact is implies by (2.1).

(5.4). Let F be a Treves calibration for {E, F) defined by u and u G Lj^E, F).
Then, u is surjective if and only u is S-resonant.

The map u = \p ° <j> considered in Example 3 in Section 2 defines a Treves
calibration and is not surjective. This fact shows that a complete space which
has a non-complete quotient space by a closed linear subspace is not fully
compatible.

6. Theorems of M. Eidelheit and E. Borel

Let TE be a calibration for a locally convex space E. We consider an index set
A, a family {Fx: X £ A} of Banach spaces and a family {ux: X G A} of
continuous linear maps of E into Fx. Then, we have a map

u:E^F:x^{ux{x))

of E into the product space F = UFX.
A theorem of Eidelheit (Kothe (1979), page 126) states that, when E is a

Frechet space with a calibration (pk) and M, e E' {the dual of E), the system of
equations:

Uj(x) = 7),., / = 1, 2, . . . ,

has a solution x for every sequence (TJ() of real numbers if and only if the following
two conditions are satisfied:

(E.I) ut are linearly independent;
(E.2) for eachpk there exists a constant nk such that, if

n

2 T),M, G (E, pk)' and i\n =£ 0,

then n < nk, where (E,pk)' is the dual of the semi-normed space (E,pk).
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In other words, this theorem states that, when E is a Frechet space, A is a
countable set and Fx = R, the map w is surjective if and only if the conditions
(E.I) and (E.2) are satisfied. We shall prove that these conditions are in fact
equivalent to the existence of a Treves calibration for (E, F) defined by u. As a
preparation, we shall express these conditions in a more convenient form, which,
in the following statement (6.1), will be written in the form applicable to the
general case described in the beginning of this section, where i)x are continuous
linear functional on the Banach spaces FK, whose norms will be denoted by

(6.1). When E is a Frechet space with a calibration TE = {pk: k = 1, 2, . . . }
and w, £ £ " ( / = 1 , 2 , . . . ) , the conditions (E.I) and (E.2) together is equivalent to
the following condition:

(T)for eachp G TE there exists a finite set Ap of positive integers and a positive
constant ô , such that, if

then \ G Ap and \\fj\_\\x.

< p and 7)̂  ¥= 0

, for all i between 1 and n.

PROOF. Assume that the conditions (E.I) and (E.2) hold, pk E TE and let
A* = Kpk be the set of integers between 1 and nk. Then, since {«,: 1 < i < nk) is
linearly independent, we can find ek i; e E such that

«/(**,.•) = l a n d ui(ekj) = ° i f ' *h 1 < i

We set

ak = max {pk{ekj)\ l< i < nk}.

Now, assume that

nk.

1 = 1

< pk{x) for every x G E

and 7)n ?*= 0. Then, by (E.2), n e Ak and

/'*(«*,/) < «*

for all / between 1 and n. Hence, the condition (T) is satisfied.
Conversely, assume that the condition (T) is satisfied. To show that (E.I) is

satisfied, assume that

2 Wi = 0.
1 = 1
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Then, for each k, since

< pk(x) for all £ > 0 and x G E,

207

we have |£TJ,| < ak for all £ > 0, or, ij, = 0.
To show that (E.2) is satisfied, let

nk = max [n: n G Ak).

Then, if
n

2 V , e (£,/>*)' and u,#0,

there exists a > 0 such that
n

< pk and cnjn ^ 0,

which implies n < nk.

Now, we are ready to consider the general case.

(6.2). Let E be a locally convex space, Fx be Banach spaces, ux: E —» Fx be
continuous linear maps and

Then, there exists a Treves calibration for (E, F) defined by u if and only if the
condition (T) holds for some calibration for E.

PROOF. Assume that T is a Treves calibration for (E, F) defined by u. Then,
for each p e F, since pF is a continuous semi-norm on the product space
F = HFX, there exist a finite set Â  and a positive constant ap such that

0.

Now, assume that, for some TĴ  G F^, we have

; pE and

Let 7' be the continuous linear functional on F defined by

y'(y) = 2 %&,) fory = (^) G F.
1 = 1

Then, the above inequality is equivalent to ujy'\ < pE. Hence, we should have
\y'\ < pF. Therefore, \ , G Â , and ||TJ^|| < 0^ for all 1 between 1 and n.
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Conversely, assume that the condition (T) is satisfied for a calibration TB for
E. Then, for each/>£ E TE, we set

k: * G A,} for, = fo) e F,

and let

Since, for each X G A, there exists />£ G TE such that A6A p and

where £(X) is the element of F whose single non-zero coordinate is | x , T is a
calibration for (E, F). To prove that this is a Treves calibration defined by u,
assume that y' G F'. Since F' is the locally convex direct sum of F{, it has only
finite number of non-zero coordinates; let A(.y') be the set of such coordinates.
Then, y' is in the form of

y'(y) = 2 M£x): *
Therefore, nj.y'| < /»£ is equivalent to

|2{% o uA: A G A(>-')}l < ^ and i,A =̂ 0 for X G A( / ) .
Hence, by the condition (T), we have A( / ) c Â  and ||TJX||X < fp if X E A(/) .
Then, for^ = (£A) G F,

& ) : X G A ( / ) } | < S{aj,||{x||x: A G A( / )} < pF(y).

Thus, the following proposition is an immediate consequence of (5.2).

(6.3). Let E be fully compatible, Fx be Banach spaces and ux: E—* Fx be
continuous lienar maps. Then, if the condition (T) is satisfied, the system of
equations uK(x) = | A has a solution for every (£A) G F.

We use this theorem to prove a generalized form of a theroem of E. Borel. Let
X and Y be Banach spaces. When /: X-+ Y is a C^-map on X, the «-th
derivative f(n\x) o f / a t x e l belongs to the Banach space LS"(X, Y) of all
symmetric n-linear continuous maps of X into Y equipped with the norm

IM| - sup{ | | o (x , . . . , * ) | | : | | x | | < 1}.
Let C^(X, Y) be the space of all C^-maps f.X^Y which satisfy the

following condition:

Pk,nU) = SUP {ll/°(*)l|: 0 < 1 < k, \\x\\ < « } < + « >

for all k > 0 and n > 1. Then, C^(X, Y) is a Frechet space with (pkn) as its
calibration.
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We consider a sequence (w,) of maps defined by

«,: C?(X, Y)

for every i > 0. Then, since

every «, is a continuous linear map. Then, for E = C^{X, Y), Ft = L'S(X, Y)
and F = 11/), we define a map:

The theorem of E. Borel states that u is surjective when X is a finite-dimensional
Euclidean space and Y is that of complex numbers. Treves (1967), page 58, gave
a proof of this theorem as an application of his surjectivity theorem. Dieudonne
(1969), page 192, has a version of the thoerem when X = R and Y is a Banach
space. Colombeau (1979) has proved that the map u is surjective when X is a
locally convex space with some additional assumptions and Y is a Frechet space.
The essential part of his proof is the fact that the theorem holds when A' is a
pre-Hilbert space and Y is a Banach space.

A Banach space X is said to be Cjf-normal (Yamamuro (1974), page 106) if,
for arbitrary disjoint closed subsets A and B, there exists h G C^(X, R) such
that 0 < / i < \, h = 0 on A and h = 1 on B. The following lemma is essentially
due to Colombeau (1979), page 98.

(6.4). Let X be a C£ -normal Banach space and Y be a Banach space. Let pkn

be a semi-norm on C^(X, Y) as defined above. Assume that f G Cj?(X, Y) and
/ 0(0) = 0 ifO < i < k. Then, for any e > 0, there exists g G C^"(X, Y) such that
g = 0 in a neighborhood of zero and pkn{f — g) < e.

Combining (6.3) and (6.4), we have the following fact which again due
essentially to Colombeau (1979), page 100.

(6.5). When X is a C^-normal Banach space and Y is a Banach space, the map
u is surjective.

PROOF. Since E = C^(X, Y) is a Frechet space and Ft = VX(X, Y) are
Banach spaces, we only need to show that the condition (T) is satisfied. Assume
that, for some/?* „, there exist non-zero TJ, e F[ such that

m

2 Vi °«, < pk,n-
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Let vm be an arbitrary element of Fm such that ijm(om) =£ 0 and consider the

polynomial Pm defined by vm:

P m ( X ) = V m ( x > • • • , * ) •

Then,

P$(0) = 0 if i * m and P<?>(0) = m\vm.

Therefore, if m > k, the map gm determined by (6.4) with e < m\\rjm(vm)\, we set

fm = pm~ 8m and we obtain

WiUm)
i - 0

< Pk,n(fm)>

or, m!|i7m(t5m)| < e, a contradiction. Hence, m < k. Furthermore, it is easy to see

that

Ik-ll < ak,n if 0 < / < W,

where

akn = max [nk, knk~x, . . . , k\).
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