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ON THE GENERATORS OF 5-UNIT GROUPS
IN ALGEBRAIC NUMBER FIELDS

B. BRINDZA

Given a finitely generated multiplicative subgroup Us in a number field, we employ
a simple argument from the geometry of numbers and an inequality on multiplica-
tive dependence in number fields to obtain a minimal set of generators consisting
of elements of relatively small height.

1. INTRODUCTION

Let K be an algebraic number of degree n over Q, with discriminant D, regulator
R and class number h. Let r denote the rank of its group of units.

Denote by 5 a finite set of absolute values of K including all its archimedean
(infinite) values; let a be its cardinality. An element a of K is called an 5-unit
if \a\v = 1 for every absolute value not in S. It is a well known generalisation of
Dirichlet's unit theorem that the 5-units of K form a finitely generated subgroup Us
of rank s — 1 in Kx .

It turns out that wide classes of diophantine problems can be reduced to additive
relations on 5-units. It is therefore of interest to find effective bounds for the generators
of groups Us- Of course, it is a simple matter to construct s — 1 multiplicatively
independent elements by using the prime ideals corresponding to the nonarchimedean
values in 5. That yields a subgroup of finite index in Us (see, for example [3], Lemma
4). However, the best known bounds for the "size" of the representatives of the quotient
group is exponential in n and R.

In this note we construct a set of generators 71̂ , . . . , 7r,_i for the non-torsion
subgroup of Us (so that its quotient with Us is just the cyclic group of roots of unity
in K).
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2. T H E MAIN RESULT

As usual we denote by h( ) the absolute logarithmic height

of elements of K (with the product running over the values v of K, so normalised that
one has the product formula and that rational integers h have h(/i) = logh). Further-
more, let pi, . . . , pt be the prime ideals of K corresponding to the nonarchimedean
(finite) values of S and set P = max; (2, Norm pj).

THEOREM. There are S-units iti, . . . , ir,-\ satisfying

h(n1)--h(w.-i)<B\(c\D\logP)',

where c is a Reid constant
c = (6ns/logn)n,

so that each a G Us can be written as a product

with p a root of unity and the rational integers k{ satisfying

max \ki\ < (a\)
2c2'(\D\logPYh(a).

i^t^#—i

The proof relies on a simple argument from the geometry of numbers and a result
of Loxton and van der Poorten [5] on multiplicative relations in number fields.

3. PRELIMINARY RESULTS

A real-valued function / on Rm is said to be a convex distance function if it
satisfies

/(x) ^ 0 for all x € Rm,

/(Ax) = |A| /(x) for all A £ R and x G Rm,

/ (x + y) < /(x) + /(y) for all x, y G Rro.

LEMMA 1 . Let L be a full lattice in Rm and let f be a convex distance function
on Rm . Suppose Xi, . . . , x m are hnearly independent elements of L. Then there is a
basis { b i , . . . , b m } for L so that for i — 1, ..., m

f(ht) < max

PROOF: See, for example, Lemma 8, p.235 of Cassels [1]. D
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REMARK. Since we may assume, without loss of generality, that / ( x i ) < • • • ^ / ( x r o ) ,
we obtain for t = 1, . . . , m that

Denote by u the number of roots of unity in K. If <j> is Euler's totient function then
4>(w) | [K : Q] and it follows that w(K) < 4nloglog6n. Further let A(n) be a positive
number with the property that h(a) < A(n)/n and a have degree at most n; then a
is zero or a root of unity. Then, from a result of Dobrowolski [2], it follows readily that
we may choose A(n) as log n/6ns.

LEMMA 2 . Let ati, . . . , a* be nonzero elements o/K with the property that there
are rational integers mj, . . . , mi not all zero, so that

a™1 •••<*?* = 1 .

TJien there are rational integers qi, ..., qk, not all zero such that

a j l • • • a « * = l

and fol ^ {k-l)lwH(nh(aj)/X(n)) for I = 1, . . . , k.

PROOF: See Loxton and van der Poorten [5]. D

4. PROOF OF THE THEOREM

Given a G Us, denote by v(a) the a-tuple (log|a|1))T(e5. This yields a corre-
spondence between Us and a full lattice in R*-1, with just the roots of unity in K
corresponding to the zero vector.

Now, for each t = 1, . . . , i — t let t?< be the generator of the principal ideal p£
satisfying

log |Norm * | " 1 / n l*ii}|| < \cr R for j = 1, . . . . j = n,

where the fly' denote the field conjugates over Q of #<. Further, let {ei, . . . , er}
denote a multiplicatively independent set of (ordinary) units of K satisfying

For the propriety of the claims inherent in these definitions, see [4].
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Given an j-tuple x = ( n , . . . , x.) we set / (x) = (l/2n)(|a;i| H h |z , | ) . Then
/ is a convex distance function and, for a € S, the product formula in K yields

/(v(«)) = ̂  E ilo8 K I = IE ma*(°' lo« H. )
v€S veS

The elements ei, . . . , e r , i?i, . . . , i?t are multiplicatively independent, and s — 1 =
r + <, so their corresponding vectors are linearly independent. Then, by Lemma 1, we
see that there is a set {ir\, ..., it,-\} of generators of Us with

which establishes the first part of the theorem.

But the relation

asserts that 1 = a—*"

so by Lemma 2 we have rational integers qo , qi, ..., q,-i not all zero, such that

and |9{| < (« - l)!«h(a) JJ(nh(ir,-)/A(n)).

Of course q0 ^ 0 since the TT,- are multiplicatively independent.

Moreover, the equation

yields 1 = T » ... w f

whence *ig0 + gi = • • • = fc»-i9o + 9«-i = 0.

Hence |fc<| < g< for i = 1, . . . , « — 1 which completes the proof. D
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5. CONCLUDING REMARKS

The usual regulator argument (for example [6], p.103), already alluded to, does not

yield an upper bound for the fc;- because the elements ni, . . . , ir,-\ do not necessarily

generate relatively prime ideals. Thus there does not seem to be an obvious way to use

such p-adic relations as

ordp a = 2_.ordp "»•
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