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RESIDUE INTEGRALS AND THEIR MELLIN TRANSFORMS 

MIKAEL PASSARE AND AUGUST TSIKH 

ABSTRACT. Given an almost arbitrary holomorphic map we study the structure of 
the associated residue integral and its Mellin transform, and the relation between these 
two objects. More precisely, we relate the limit behaviour of the residue integral to 
the polar structure of the Mellin transform. We consider also ideals connected to non­
isolated singularities. 

The following notation will be used in this note. We write N, Z and R+ for the sets 
of natural, integer and positive real numbers respectively, and we consider them all as 
subsets of C, the set of complex numbers. The letter X denotes a connected complex 
manifold of complex dimension n a n d / is a holomorphic map X —> £P with p < n. 
Given vectors a and b in CP we write (a, b) for the bilinear pairing £ afy. 

For any smooth compactly supported («, n—p) form </? on X and for any e in R£ we 
consider the residue integral 

(1) Tf(e)=[ - - t - , Tf(e) = {zeX;\fl(z)\=el,...,\fp(?)\ = ep}, 
J JTA£)J\ • • -Jp 

with the orientation of the tube Tf(e) depending in an alternating fashion on the ordering 
of the functions fj. For suitable A in (7 we shall also be dealing with the function 

which admits the alternative representation 

r/(A) = i£ ' '"'---£^ ( e ) a ? £-
We shall call Tf the Mellin transform of If. 

Of particular interest to us are the possible limits of the residue integral If as e tends 
to zero, and the connection between these limits and the singularity at the origin of the 
Mellin transform Yf. Given s in R£ we shall use the notation 

(3) R*(s) = \imff(èSl,... 96
s>), 8 G ffi,, 

provided the limit exists. We shall call Rf the residue function associated to If. The 
following theorem was proved in [6]. 
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1038 M. PASSARE AND A. TSIKH 

THEOREM 1. There is a finite number of non-zero vectors bj in Zp, depending only 
onf and the support of(p, such that the residue function Rf given by (1) and (3) is well 
defined on the complement in R+ of the hyperplanes (s, bj) = 0. // is locally constant, i.e. 
constant in each connected cone defined by the given family of hyperplanes. 

The proof of Theorem 1 which is given in [6] relies on the resolution of singularities. 
It turns out that it is then essentially enough to consider maps/ of the type 

(4) fj(z) = Uj(zyj, l<j<p, 

where the aj are vectors in N" and the Uj are non-vanishing holomorphic functions. There 
is a duality between the vectors bj in Theorem 1 and the column vectors ak in Theorem 2 
below. In order to render this duality more transparent we are going to indicate the proof 
of the following more special but also more exact version of Theorem 1, which should 
be compared to Proposition 2. 

PROPOSITION 1. Let X be the unit poly disc Dn in Cn and suppose thatf is given by 
(4). Let also u\ — • • • = ur = 1, where r is the rank of the (p x n) matrix A whose 
rows are the vectors aj. Then the residue function Rf defined by (1) and (3) is zero on the 
complement in R+ of the closed convex cone spanned by the column vectors ax,... ,an of 
the matrix A. Ifr — p and (p is given by 

where the coefficient (p(z) is a smooth compactly supported function Dn —-> C, then Rf 

cp = (f(z) dzp+i A • • • A dzn A dz\ A • • • A dzn, 

ypi 

vanishes outside the closed convex cone spanned by a1,..., ap and in the interior of this 
cone it takes on a constant value which we denote by Rs(A). 

Notice that, unless r — p with a1,..., aP linearly independent, the cone occurring in 
Proposition 1 does not have any interior points. 

PROOF. Fix s in R£. If there is a <50 G R+ such that the tube Tf(6
s) CD" is empty for 

6 < So, then certainly the limit Rf(s) is equal to zero. Assume now that this is not the 
case. Then to each N e NWQ can find SN < e~N and z(N) G Dn in the tube Tf(6s

N). Notice 
that, unless ak — 0, we must have z^ ^ 0. We can also choose c G U+ such that 

e c < max \UJ(Z)\ < ec, 1 <j <p, 

the maximum being taken over the support of (p. Keeping in mind how the tube Tf is 
defined, we get by a straight-forward computation that 

max 
i</<p 

X>;/f>-J<-^, with 4^ = log 14^1/log**>o. 
k=\ N' 

In other words, we have found a sequence of vectors £ akt^ in the cone spanned by 
a1,..., an, which converges to s. The first part of the proposition is thereby proved. 
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Let us consider the case r — p with all the uj identically equal to 1. Writing \ak\ = 
a\ + • • • + ctp and using multi-index notation, we then have 

(5) W ) = / z-Wytà1 Kdz, 

where dz" = dzp+\ A • • • A dzn. 
We are going to use the fact that, given any smooth function (p: €n —* C and any 

a £ Nn, one can always find a decomposition of the type 

(6) <P(Z) = £ E <pi
ke(^j+ E vat?)**, 

j=\k+e<(Xj K+L=a 

where all the coefficient functions are smooth and the y?u are independent of the variable 
Zj. To prove (6) one can use induction with respect to the dimension n. For n = 1 it suffices 
to take the Taylor development up to order a\ of <p with respect to z\. Then, if (6) has 
been obtained for n = m — 1 it also holds forn = m with am = 0, and to complete 
the induction it is enough to consider a Taylor development of the last sum in (6) with 
respect to zm, see [2, p. 65]. 

Let us take a = (\al\ — l , . . . , |aw | — 1) and substitute the decomposition (6) of the 
function cp into the equation (5). Notice that we may assume that all the |o*| are positive. 
Indeed, if some \ak\ is zero then so is the exponent of z* in (5). But then we can safely 
perform the integration with respect to this variable and obtain a similar integral over 
U1'1 instead. Introducing polar coordinates Zj = rjel9j we first observe that the terms 
with coefficients ^ki will give rise to inner integrals of the form 

(7) £* eK-W+M-W dOj and J^' ^ - l ^ - O * dOj, 

which are all equal to zero, since k— I <k+£ < \a?\ — 1 < \a!\. We are therefore left 
with 

$(r)</r", V<n = l J[Q,\]nn{r"=6s} 

with dr" = drp±\ A- • Adrn and 

(8) 
n-p 

O(r) = 2n-pin YJ [ e^-^'^-^tpKLire^de, l7 = ( 1 , . . . , 1,0,... ,0), 
K+L=\a\-\ J[0air]" 

which is a smooth function on [0, l]w. Since the rank of A is maximal, the set {r* = 8s} is 
a smooth graph with respect top of the variables. However, if the first p x p minor Ap is 
not invertible then one can find a linear combination of the vectors aj of the form (0, b), 
with b G Nn~p non zero. So then the differential form dr" vanishes on {r° = ès}. Taking 
into account the alternating dependence with respect to the ordering of the vectors aj and 
reasoning as in [6, p. 50], we finally get 

nv>( \ — I ItfiA) if ^ is in the image of R£ under the linear map Ap, 
f JO if s is not in the closure of this set, 
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where 

(9) RJ{A) = sgn detAp J ^ 0(0, r") dr". 

This completes the proof of the proposition. 

THEOREM 2. The Mellin transform Vf defined by (2) is holomorphic for Re A in R£ 
and it has a meromorphic continuation to all ofCP. There is a finite number of non-zero 
vectors ak in W, depending only onf and the support of(p, such that the poles ofFf, 
which are all simple, are contained in the hyperplanes (ak, A) = —m, m G N. Moreover, 
near the origin one has 

7W = E (kl ,,CK, k ix + 2(A), 

where the CK are constants and Q is a finite sum of functions with simple poles along 
fewer than p hyperplanes. 

PROOF. An application of a partition of unity to the test form (p shows that the the­
orem is local, so there is no loss of generality in assuming that there is a resolution 
TT:X—•* Xof the singularities of the product/i • • -fp, see [4]. Here X is another complex 
manifold of the same dimension and IT is a proper holomorphic surjective map, which is 
biholomorphic outside the zero set off • • -fp, and such that the preimage of this zero set 
is given, in suitable local coordinates o n J , by z\ • • • zk = 0, for some k < n. It follows 
that the pull-backs to X of the functions fj, which we again denote simply b y / , locally 
are of the form (4). 

Let A be the (p x n) matrix which has the vectors aj for its rows, and assume that 
the rank of A is equal to r. We then claim that the local coordinates on X may in fact be 
chosen in such a way that r of the functions Uj are identically equal to 1. Indeed, after a 
preliminary relabelling of the coordinates we can assume that the first columns a1 , . . . , ar 

of A are linearly independent. We can then choose a permutation a of { 1 , . . . ,p} such 
that the first (r x r) minor of the corresponding matrix Aa becomes invertible. Let (afk

l ) 
denote the inverse of this minor, pick a branch of each logarithm log uj and put 

r 

z(z) = (vi(z)zi,..., vr(z)zr,ZH-i,... ,z„), with log v, = ^ ajk
x \oguo{k). 

The Jacobian of the map z equals vi (0) • • • vr(0) ^ 0 at the origin so we can take the com­
ponents Zj as new local coordinates. It is now an easy matter to check that the composed 
functions fj (z(z)) are again of the form (4) with respect to z, and that the new w^fz) are 
identically equal to 1 for 1 < j < r. 

A second partition of unity, applied this time to the pull-back to X of the form <p, then 
shows that it suffices to prove the theorem in the case where X is a neighborhood of the 
origin and / is given by (4) with r of the Uj being constant. Since a reordering of the f 
merely corresponds to a multiplication by ± 1 , we may in fact assume that u\ — • • • = 
ur = 1. Considering each term of the form (p separately and once again relabelling the 
coordinates, which also affects only the sign of Tf, we can now deduce the theorem from 
the following proposition. 
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PROPOSITION 2. Let X be the unit polydisc Dn in Cn and suppose thatf is given by 
(4). Let also u\ — • • • = ur = 1, where r is the rank of the (p x n) matrix A whose rows 
are the vectors aj. Finally let <p be given by 

(p — (f(z) dzp+\ A • • • A dzn A dz\ A • • • A dzm 

where the coefficient y>(z) is a smooth compactly supported function U1 —» C. Then the 
Mellin transform Yf defined by (2) is holomorphic for Re A in IR+ and it has a mero-
morphic continuation to all ofU>. Its poles, which are all simple, are contained in the 
hyperplanes (ak, A) = —m, 1 < k < n, m E N, where the ak denote the column vectors 
of A. Moreover, near the origin one has 

the functions gK and h being holomorphic. Ifr = p then gx is of the form 

\te\Ap\Rj(A) + Y.(a\X)Gk{\\ 

where the Gk are holomorphic functions, Ap is the first (p x p) minor of A andRÏ(A) is 
the same constant that occurs in Proposition 1. 

PROOF. Taking into account the relations d\f}\Xj jf = \j\fj\xJ~2dfj/2 and the particu­
lar form of the functions fj, we obtain the following expression for the Mellin transform: 

T/(A) = I* j ^ 1/,|A'"2 • • • \fp\^~2dfx A • • • A dfp A v 

0 0 ) = 2-pi \^{X'-2) • • • %\^X'-2\K \uj(zt>-2d(ûj(zyi)) A V 

If we expand the exterior product and use multi-index notation we can rewrite (10) as 

(11) TJ(A) = 2-P j \z\^X)-2^z^-l'if(z,X)dz Adz, 

where (p is now a smooth function D" x £P —»• C, compactly supported in z and holo­
morphic in A. In case r — p, so that all the Uj are = 1, we have 

(12) <p(z,\) = dQtAp<p(z). 

In fact, if the rank of Ap is equal to q < p then (11) may be written as a finite sum of 
similar integrals, but with 1 ' replaced by vectors with 1 only in q places and 0 elsewhere. 
Notice further that, just as in the proof of Proposition 1, we may assume that all the \ak\ 
are positive. If not, we integrate with respect to zk in (10) which gives us a similar integral 
overD" -1 instead. 

Now, given any smooth function (p: Cn x £P —-> C and any a G N" one can find a 
decomposition of the type 

(13) 0(z,A) = E £ ^(z,A)zfz/+ £ m ( z , A ) z ^ , 
y=l k+e<(Xj K+L=a 
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where, just as in (6), the ̂ ki are independent of the variable z,, all the coefficient functions 
being smooth. They may also be taken holomorphic in A or independent of À if the given 
function (p has that property. The proof of (13) is identical to that of (6), one just has to 
verify that all Taylor coefficients and remainder terms are holomorphic in A. 

Let us insert the decomposition (13) of the function (p, with a = (\al | — 1, . . . , \an \ — 1 ), 
into the integral (11). Introducing polar coordinates z, = rjewJ we observe that the terms 
with coefficients <p?u produce inner integrals of the form (7), which all vanish for the 
same reason as before. So all that remains of (11) is 

(14) Tj(X) = j^/"^'<S>(r,\)dr 

where <3> is given by (8) with ipiaire19) replaced by (piaire19, A). This function is smooth 
in r and holomorphic in A. 

From the expression (14) it is now evident that Tf is holomorphic for Re A in R£. To 
obtain a meromorphic continuation to all of £P one can use elementary integration by 
parts. One then sees that the poles are indeed simple and contained in the union of the 
hyperplanes (ak, A) = — m for 1 < k < n and any natural number m. It follows from 
what we have already observed that, if the rank of Ap is less than p, then (14) can be 
decomposed into a finite sum of integrals of the same form, but with fewer than/? of the 
exponents being subtracted by 1. Hence, for each such term, fewer than p integrations 
by parts will suffice to achieve meromorphic extension past the origin. 

The only remaining case to consider is when Ap is invertible. Since the vectors 
a?*1,..., an are then linear combinations of the vectors a1,..., aP it follows that Tf is in 
fact a function of the variables (a1, A),. . . , (cf, A). All that we need to check is therefore 
that 

(15) (^1 ,A).-.(^,A)r;(A)|A=0 = \tetAp\Rf(A)9 

with R?(A) given by (9). In view of (12) the decompositions (13) and (6) are then iden­
tical, except for the non-zero factor d e t ^ . Hence the function O in (14) is equal to the 
function O in (8) multiplied by d e t ^ . Integration by parts in (14) gives the explicit 
formula 
(16) 

( a ' , A ) . . . ( ^ A ) r ; ( A ) = X ; ( - l / £ j ^^{\,...,rh...A,r")dndr", 

where 
r(a,X) _ „(a'i,A) Ja'i,X) (cf+\X) (a\X) 
rl - rix ' ' rie Vp+\ '"rn 

and 1, . . . , r / , . . . , 1 means ri} in the place /) for 1 <j<£ with 1 in the other places. 
Elementary integration now shows that for A = 0 the right hand side in (16) is equal to 

f ®(0,r")dr", 
J[0,\]"-P 

and (15) follows. 
Our next theorem establishes a relation between the singularity at the origin of the 

Mellin transform of the residue integral (1) and the different limits (3). 

https://doi.org/10.4153/CJM-1995-055-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-055-4


RESIDUE INTEGRALS AND THEIR MELLIN TRANSFORMS 1043 

THEOREM 3. For any a in R£ the restriction of the function \\ • • • A^H^A) to the 
complex line {ta ; / G C} is holomorphic in a half plane containing the origin. Its 
value at the origin is equal to the mean value of the residue function RÏ over the simplex 
{*eR£; ( j ,< r )= l} . 

PROOF. From Theorem 2 it follows that the function 

(17) t^ax-'-cTpfrJitcj) 

is meromorphic in all of C with poles in a discrete set of negative real numbers. 
From the proof of Theorem 2 it follows that it is enough to consider maps / 
of the form (4). By Proposition 2 the value of (17) at the origin is equal to 
(j\--(jp\ det Ap\Rf (A)/(a1, a) • • • (cf\ a) if the matrix Ap is invertible, and zero other­
wise. 

On the other hand, it follows from Proposition 1 that the residue function Rf is also 
zero almost everywhere on the simplex {s G R£ ; (s, a) — 1} unless the matrix Ap 

is invertible. What remains to be shown is that the volume of the simplex spanned by 
a1/(a1, c r ) , . . . , ^ / ^ , a) divided by the volume ofthe whole simplex (s,a) = 1 is equal 
to a\ • • • ap\ det Ap\/(a

1, o) • • • (aP, a). To see this it suffices to consider the linear map 
L: W —> W determined by the conditions 

ejlaj\-+c/ l(c/9o\ 

where e\,..., ep are the usual basis vectors in W. The absolute value ofthe Jacobian of 
L is indeed equal to o\ • • • crp\ de t^ l /(a1, a) • • • (cP, a), and the proof is complete. 

It follows from Theorem 3 that the function a \—» fFf (ta)\t==o is essentially equal to 
the Radon transform ofthe residue function Rr(s). Since the Radon transform is injective 
on the space of homogeneous functions in R£ this means in particular that it is possible 
to recover Rs(s) from the Mellin transform Vf. For/? = 2 we have a particularly simple 
inversion formula. 

THEOREM 4. Letp = 2 and take s G R£ such that (s, bj) ^ 0 where the bj are as in 
Theorem 1. Then for small enough è G R+ one has 

Rf^=7Tv ( , , , , , r/(A,,A2)t/A1 Ad\2. 

PROOF. AS before it suffices to consider maps/ ofthe form (4). There is no contribu­
tions unless Ai is invertible, so we can assume this to be the case. The Mellin transform 
is then equal to | dz\Aj\Rt(A)j(a\\\ + a\\i)(a\ \\ + a\\i) and if we introduce the new 
coordinates A = Ai / A2, \i — A2, we get 

1 r 

v Z 7 r ^ \s2\2H 

l_ f \àetA2\Rf(A) d{i 
(18) " M* H'ÏH («\^«\M^4)dX A7 

= s g n d ^ , ( » _ 1 W w r f A > 
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whereof = a\ja\ and/3 = a\/a\. It is now obvious that (18) is equal to sgndet^ 2 ^ (A) 
xïsi/s\ is between a and /3, and zero otherwise. But this is precisely the value of Rj(s), 
so the theorem follows. 

The case when/ is a complete intersection map, that is dim/_1(0) = n —p, is quite 
special. The residue function is then constant and the following theorem, first obtained 
by Berenstein and Yger, shows that the Mellin transform has also a relatively simple 
structure. 

THEOREM 5. Let p = 2 and assume that f is a complete intersection map. The 
function 

(Ai,A2)^A1A2r;(A1 ,A2) 

is then holomorphic at the origin. 

PROOF. Here we consider only the case n = 2, a proof of the general case may be 
found in [1, proof of Theorem 3.18], and we can therefore assume that the origin is the 
only common zero of/ and / . First we note that, in view of the representation 

the theorem follows at once if <p happens to be holomorphic near the origin, for If is 
constant for small e then. Just as in the proof of Theorem 2 we have a desingularization 
map 7T giving us finitely many local models of the form (4), with one or both of the 
functions Uj being identically equal to 1 depending on whether the rank of A is one or 
two. We are thus dealing with a finite sum of integrals of the form 

(19) A,A2^0i]2^l-A>-1^2-A)-1O(r,A)rfr> 

with O obtained as in the proof of Proposition 2. 
Now we claim that if the original test function cp vanishes to sufficiently high order at 

the origin, then (19) is holomorphic for À near the origin. Indeed, we have only to bother 
with those vectors ak which have both components different from zero, for only those 
can give rise to poles that are not parallel to the axes. But if both components of ak are 
non-zero then the pullback of ip will vanish to high order along zk = 0, and hence O will 
contain rk as a factor, and this compensates the exponent —1 in (19). 

It now remains to consider ip which are non-holomorphic monomials. Again it suffices 
to consider vectors ak with both components different from zero. Since IT then maps the 
axis zjç = 0 to the origin, it follows that the pullback of a non-holomorphic monomial 
necessarily contains zk as a factor. Recalling the proof of Proposition 2, we find that the 
exponent of zk in (11) can be taken equal to \ak\ instead of \ak\ — 1, and consequently, 
that the exponent of rk in (19) may in fact be reduced to (ak, A). This finishes the proof. 

Our next theorem generalizes results from [8], Let/? = n and consider the local ring O 
at the origin in C". Let us also assume that / , . . . , /„ G O are such that/ ' = ( / } , . . . , / _ 1 ) 
is a complete intersection map. Given g G O w e then write 

(20) Rj{g) = K{e), 
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with the right hand side given by (1) with <p = g(z)dz and e\ — • • • = en-\ <C e„. Let 
finally 

f-\0) = KUL, with /wU = 0 , / „ k ^ 0 a . e . , 

and consider the corresponding decomposition k D I of the ideal if'). That is, we let k 
denote the intersection of all primary components of the ideal (f1) which vanish on K, 
and I denotes the intersection of those primary components that vanish on L. 

THEOREM 6. Assume that k and t given above are regular ideals. The residue Rf 
given by (20) is then non-degenerate in the following sense: 

a) given h E t one has thatRfQig) = Ofor all g G O if and only if h G (/*', £fn), 
b) given h G O one has that R/(hg) = Ofor all g G t if and only if h G (k,fn), 
c) ift = rad t then I D If) and given h G t one has that R/(hg) — Ofor all g G t 

if and only if h G (f). 

PROOF. Let us first choose the coordinates so that the projection of the zero set 
{ff = 0} onto the zn axis is a branched analytic covering and so thatfn(0,zn) is not 
identically equal to zero. 

Now we claim that the cycle Tf{e) which occurs in (1) and (20) is homotopic, in the 
complement of {f\ • • -fn = 0}, to the fibered cycle 

TK= U T»> w h e r e lK = {z£K;\zn\=6}, 
weiK 

and Tw is a local tube around the zero z' = w' of the map ff(z\ wn). 
Indeed, since fn vanishes on L, the real curve 7 = {z G K ; \fn(z)\ = en} may be 

written as 

7 = {/i = • • • =fn-i = 0, \fn\ = en}. 

Representing the function^ as cmz™ + x(z), where 

X(z)= £ cazj + xi(z), xi(0,z„) = 0, 

we find that an explicit homotopy, between the curves IK and 7 in K \ {0}, is provided 
by 

l t = {z G K ; |cwz? + /x(z)| = £„}, t G [0,1], 

if we just put 6 = \en/cm\l/m. In view of the continuity of the functions f it now follows 
that the family of tubes 

{*E C/; | / i | = ••• = |£- i | = eM^zJ+Zx^)! = ^ > e'}9 te [0,1], 

where (7 is an open set containing all the curves lt, 0 < t < 1, but not intersecting the 
zero set of/̂ , constitutes a homotopy between TK and Tf(e) outside the set {/i • • -fn = 0}. 
This proves our claim. 
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Next, we define a similar cycle TL this time fibered over the curve 7L = {z G L ; 
\zn\ = 5} instead. It is clear that TK + TL = 7", where 

r = {\fi\ = '~ = \fn-i\=e'9\zn\=8}9 

and since none of the cycles TV, TL, T' or Tf(e) intersect the set {/i • • -fn-\ = 0}, and 
furthermore Tf(s) ~ TK, we find that Tf(e) ~ T' — Ti in the complement of {/i • • -f„-\ — 
0}. In order to prove the sufficiency of the conditions in a), b) and c) we may certainly 
assume that the product hg belongs to the ideal k U (tfn). If it actually happens to be 
in k then in the integral defining R/(hg) we can use the cycle TK, and using its fibered 
structure together with the local duality for the regular sequence/'^', ww), see [3, p. 659], 
we conclude that the integral vanishes. If instead the product hg is contained in (lf„)9 then 
we can use the cycle V — TL to define Rf(hg), and by a similar argument we again find 
that the residue is zero. Thus the sufficiency is proved in a), b) and c). 

Let us now prove the necessity. Given h G Owe denote by cfK the quotient h/fn.We 
propose tô find a function (fi € O satisfying the equation 

(21) Rf(hg)+[ - ^ ^ = 0, 
JTLJ\ " 'Jn-\ 

for every germ g € O. To achieve this, we pick generators £\,..., ln-\ of the ideal I and 
decompose our original functions as 

n-\ 

fi= Ylaijtj> *'= 1 , . . . , " - L 

Let À be the determinant of the matrix (a,y), and notice that it is non-zero on L \ {0}. 
For all w in K \ {0} this determinant belongs to the ideal generated byfi,... ,f„-\ in the 
corresponding local ring 0W9 see [3]. The map g \—> R/(hg) is a linear functional on the 
local algebra 0/(£, A), and hence by the duality theorem it can be realized by a residue 
reS(̂ A)(</?z/)- That is, there is a function cpi G O with the property that 

Rfihg)+[ vxf* = o, 

where T(£', A) is a tube corresponding to the map (l\,..., ln-\, A). Considering again a 
homologous fibered cycle we can re-write this as 

(22) W + i„H, E ™ ^ > ( ^ ) = 0 , 

where ir denotes the projection onto the last coordinate. According to the transformation 
law, see [3, p. 657], we have in fact 

f (fLg\ 
r e s , / ^ ) ^ — J = TQsfVyZn)((fLg), 
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and therefore, from (22) we get (21). Consider now the function 

+ E L VL(CZnW{Cz\ 
ir-l(zn)eLJ1«-hzn)V> 

where 

W(C',Z) = (27rO-"//(C',z)< / YlfAt'Zn), 
7=1 

with //((', z) denoting the Hefer determinant corresponding to the decomposition 

j ! ( a ) - ^ ^ ) = & - # ^ ^ 4 / = l , . . . , n - l. 
7=1 

Recalling how the cycles TK and TL were defined, we deduce the formula 

j^toK**-^ m...M0
 +JTL /,(0---/„-I(0 ' G 

Now the first integral on the right hand side is equal to the residue RfQiHz^) and hence, 
by formula (21), we see that the function </>(z', zn) is orthogonal to all monomials zj on the 
circle \zn\ = 8. But an integral representation of <j> shows, see [9, Proposition on p. 56], 
that it is also holomorphic outside the hyperplanez„ = 0. It follows that <j> is holomorphic 
near the origin in C". 

Now we apply the Weil integral formula, according to which any function *F which 
is holomorphic on a compact polyhedron IÏ = {|/i | < n,..., \fn\ < rn} may be repre­
sented as 

(2*0» k\=rj (/i(o -/,(*)) • • • (fi(o - m ) ' 
for all z in the open polyhedron IT. Decomposing the fraction (f\(Q — /i(z)) 

(fn(Q —fn(zj) into a geometric progression 

i E my, 
we find that 

™ = (âSy/1(0 ^M) + d e m e n t S " t h e l d e a l { f u - > a 

Since the function <j> was defined as a sum of integrals over distinguished boundaries of 
polyhedra containing K and L we now obtain the relations 

(23) <t> = <PK mod(ff) in Ow, for w G K \ {0}, 
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and 

(24) </> = ipL mod(f') in Ow, for w G L \ {0}. 

Under the condition a), when R/(hg) = 0 for ail g G 0, we can take tpL = 0 in (21). 
From (24) we then deduce that <j> G t. Moreover, since LpK — h/fn, it follows from (23) 
that h = (j>fn mod(ff) in Ow for w G ^ \ {0}. But since both h and </> belong to t this 
last equivalence holds also for w G L \ {0}, and hence h G (/*', £/„) as desired. A similar 
argument proves the necessity in b). Finally, if £ is a radical ideal, then/ G L The same 
reasoning, using (23), again gives that h — <t>fnE (ff) and we are done. 

We observe now that the residue (20) remains unchanged if in the definition of the 
tube Tf{e) we replace the condition 

£! = ••• = en-\ <C en 

on the radii by the requirement that 

(25) EX < . - • < £ „ _ ! < £ „ . 

From the results in [1] it follows that under these latter conditions the limit, as e —• 0, 
of the integrals (20) exists for a general smooth function g, and that such a limit de­
fines a current supported at the origin. Following the paper by Solomin [7] we assign a 
multiplicity /io(/) t o / at the origin by means of the logarithmic residue 

(26) Mo(0 = ( 2 ^ r / T M 7 L A . - A ^ 
JTA£) J\ Jn 

where the Ej are sufficiently small and satisfy the condition (25). In our situation, when 
f is a complete intersection, it follows from the results in [7] that the multiplicity /xo(/) 
is equal to the multiplicity //o(/^U) at the origin of the function/, restricted to the holo-
morphic chain K (recall that/ /_1(0) = KUL, with/„|L = 0 and/,!* ¥ ° a e ) - W e t h u s 

find that for any holomorphic function g with the property that g\L = 0 and g\x ^ 0 a.e. 
we have the relation 

But in that case the map (/*',/, +g) is a complete intersection and according to [9, Section 
19.2] we may write 

(27) Mo(0 = Mo(T,/»+g)-^)fe|L). 

We are going to end this paper by exhibiting an algebraic interpretation of the multi­
plicity /io(/) making use of the formula (27). For comparison we would like to mention 
the well known result of Palamodov [5] to the effect that for a complete intersection/ the 
multiplicity ^o(/) coincides with the dimension of the local algebra of the corresponding 
germ at the origin: 

/io(/) = dimO/(/}. 

In our case, where/ - 1 (0) = L is a curve and/7 is a complete intersection, the following 
statement is valid. 
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THEOREM 7. If the ideal I, consisting of the intersection of those primary compo­
nents of the ideal if') that vanish on the curve f~l(0) — L, is a regular ideal, then 

,io(/) = dim{V«/V •/»)}• 

For the proof of Theorem 7 we shall need the following auxiliary result. 

LEMMA. If g G 0 is such that the ideal {f\g) is regular, then 

(28) o/<f,g)~o/(e,g)®i/(W),i-g). 

PROOF OF LEMMA. An arbitrary germ h G O may be written as 

h = c\e\ + ---+cses+h\ +q\g, h\ G l9 q\ G O, cj G C, 

where e\,...,esisa. collection of germs that constitute a basis for 0/(l,g). Furthermore, 
the element h\ can be represented, up to elements in the ideal ({/*'), I • g), as a linear 
combination of elements es+\,..., e^ which form a basis for the quotient lj ((/*), I • g). 
In this way we obtain the expression 

h = c\e\ + • • • + c^ + h2 + toi + qi)g, h2 G (/*), ?2 G O. 

This makes it evident that {ei , . . . , e^} is a set of generators for 0/(f',g). Let us show 
that they are linearly independent. Assume that there is a relation 

0 = ciei + • • • +<v^ +h2 + qg9 A2 G </*), q G O. 

Since e5+i,... ,e^ G £ and fe G if') C £ we must have ci = • • • = cs — 0. Hence 
0 = cs+\es+\ + • • • + c^e^ + h2 + qg, so if we now recall that the ideals £ and (f',g) were 
assumed to be regular, we can conclude that q belongs to I, because the ideal (£,g) is 
also regular. Consequently cs+i — • • • = c^ — 0 and the lemma is proved. 

PROOF OF THEOREM 7. In accordance with formula (27) we have the equation 

(29) ^(ft = \ls(f'jn + V)-Mù 

for any holomorphic function cp such that ip\x = 0 and (p\i ^ 0 almost everywhere. In 
view of the Nullstellensatz a sufficiently high power (pm of if will belong to the ideal k. 
Let us denote the function^ + ipm by g and apply the above lemma to the ideal (f',g). 
We first observe however, that since/, ̂  E O w e have PO(^P\L) = /̂ o(g|z,X a n d £ being 
a regular ideal, this latter multiplicity is equal to dim 0/(£9g). From (29) and (28) we 
now get 

Mo(/) = Mo(/",g)-MirU) = dim 0/(f,g}-âimO/(t,g) = dim £ / « / V •(£+</>'")). 

But since (/') = kf) t and </jm G k, we also have £ • (fm € (/"') and therefore 

which completes the proof of the theorem. 
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