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ABSTRACT. Simple models of glacier volume evolution are important in understanding features of
glacier response to climate change, due to the scarcity of data adequate for running more complex
models on a global scale. Two quantities of interest in a glacier’s response to climate changes are its
response time and its volume sensitivity to changes in the equilibrium line altitude (ELA). We derive a
simplified, computationally inexpensive model of glacier volume evolution based on a block model
with volume-area-length scaling. After analyzing its steady-state properties, we apply the model to
each mountain glacier worldwide and estimate regionally differentiated response times and sensitivities
to ELA changes. We use a statistical method from the family of global sensitivity analysis methods to
determine the glacier quantities, geometric and climatic, that most influence the model output. The
response time is dominated by the climatic setting reflected in the mass-balance gradient in the ablation
zone, followed by the surface slope, while volume sensitivity is mainly affected by glacier size, followed
by the surface slope.
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1. INTRODUCTION

Despite comprising a small fraction of the world’s total ice
volume, the majority of which is in the ice sheets of
Greenland and Antarctica, mountain glaciers and ice caps
are major contributors to ongoing sea-level rise (SLR). The
glacier contribution to SLR is projected to be in the range
0.07-0.17 m by the end of the 21st century, which is
roughly a third of the total projected SLR (Radi¢ and Hock,
2011). This can cause severe damage to small island states
and coastal and low-lying areas (Wong and others, 2014).
Routes for adaptation to climate change are highly reliant
on accurate SLR projections, and thus such estimates are of
high social importance (Lowe and Gregory, 2010). On the
regional and local scale, mountain glaciers affect water avail-
ability and retreating glaciers can cause geohazards.
Current approaches to projecting glacier mass or volume
changes on regional and global scales rely on relatively
simple models of glacier evolution (Marzeion and others,
2012; Radic and others, 2014; Clarke and others, 2015;
Huss and Hock, 2015). More sophisticated models (e.g.,
Clarke and others, 2015) are difficult to apply at a global
scale, both due to computational demands and the
absence of sufficiently detailed input data (see also Huss
and Fischer, 2016). Simple models of glacier evolution typic-
ally describe the glacier geometry using a small number of
degrees of freedom (such as glacier length or thickness at
certain locations, e.g., Roe and Baker, 2014), and reduce
their dynamics to a statement of mass balance combined
with a set of heuristic or empirical closures that reflect the
mechanics of glacier flow and feedbacks between glacier
geometry and surface mass balance. Glacier volume is the
primary output of these models and is computed from the
dynamical degrees of freedom. A key challenge for these sim-
plified glacier flow models is to represent the effects of bed
geometry, which is often poorly known for individual
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glaciers, and of surface mass balance, for which detailed
information only exists for a handful of glaciers with long-
term monitoring programs.

In fact, fewer than 1% of glaciers worldwide have long-
term mass-balance observations and detailed bedrock
elevation data. All current models of regional glacier evolu-
tion apply statistical methods to extrapolate model para-
meters or results from glaciers with detailed observations to
those without. These regional and global-scale projections,
therefore, suffer from substantial uncertainties rooted in the
statistical and/or scaling methods whose performance
cannot be adequately validated (e.g., Radic and Hock,
2014). This by itself makes the use of sophisticated three-
dimensional glacier flow models questionable, even
without accounting for the computational demands of such
models.

A simplified approach to simulating glacier response to
climate, therefore, remains useful. Using one such approach,
Harrison (2013) analyzed the most general properties of the
response of valley glaciers to climate perturbations, aiming
to improve methods for simulating glaciers with incomplete
or underresolved data. While the model was designed to
simulate glacier response to climate perturbation, the
model itself has not been applied or tested on a real
glacier. The goal of this study, therefore, is to apply an
improved version of Harrison’s model to real glaciers world-
wide in order to analyze the regional sensitivity of glaciers to
climate change. To improve the original model, we incorpor-
ate a better description of glacier flow and glacier geometry,
and of the feedback between geometry and surface mass
balance. We focus our discussion on the attribution of vari-
ability in glacier sensitivities to temperature perturbations
and their response times, aiming to distinguish factors
related to glacier and bedrock geometry from factors deter-
mined by climatic setting.
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2. MODEL

In Harrison’s original model of glacier evolution, a glacier is
simulated as a block of ice with a length L, time-independent
uniform width W and time-independent uniform height H
(Fig. 1). A mass-balance rate distribution with height, b, is
specified as a linear function of elevation, z. Integrating b
over the glacier surface gives the glacier-wide mass-
balance rate B. In this study, we extend the block model
using volume-length and volume-area scaling instead of
keeping the time-independent width and thickness. We
also use a mass-balance rate gradient for the ablation area,
g, that differs from the gradient for the accumulation
area, g,.., as opposed to a single gradient over the entire
glacier. The mass-balance profiles of many glaciers are
well approximated with piecewise-linear functions (Cuffey
and Paterson, 2010); thus, introducing the separate mass-
balance gradients in the model increases the versatility in
representing real mass-balance profiles. As we will show
later, having two different gradients also overcomes a limita-
tion of Harrison’s model, namely that the accumulation area
ratio (AAR) at equilibrium could only be 0.5.
We define the mass-balance rate profile as

b(Z) = gabl(z - Zela)e(zela - Z)g(zela - (H - ﬁL))

: (1)
+ gacc(z - Ze[a)e(z - Zela)e(H - Ze[a)7

where 6 is the Heaviside step function (0 when the argument
is negative, 1 when it is positive) and z., is the height of the
equilibrium line altitude (ELA) above the highest point on the
glacier bed (point O in Fig. 1). In the case that there is both an

ablation and accumulation area (H — L < zu, < H), b
reduces to

) _ gacc(z - Ze[a) forz > Zelas
b(Z) B {gabl(z - Zela) forz < Zela- (2)

As in Harrison’s model, we assume that the bed has a con-
stant downward slope S (note that g is the ratio of the vertical
extent of the glacier below O to L, not the angle of inclination,
which is given by tan~" B). If x is the horizontal distance down-
glacier from point O, we have z(x) = H — px along the surface.

Integrating the surface mass-balance rate b over the glacier
surface gives the total rate of change of glacier volume with
respect to time. Using dA = Wdx to compute that integral,
we get

dv L.
g;=X;M4@NWw

: o (H = zen)?
|:(gacc - gabl) TI w
. L2
+gab| ((H - Zela)WL - .BW?>:|
=19 forH—BL<z4, <H,

2
gabl ((H - Zela)WL - ﬁW%> for Zela > H’

2
gacc ((H — Zelad) WL — :BW%> for zy, < H — BL.

(3)

In Harrison’s original model, changes in net mass balance are
translated into changes in the terminus position, and thus
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L

Fig. 1. Cross-section (left) and head-on (right) view of the block
model with glacier length L, width W, height H, equilibrium line
altitude z,j, and surface slope S.

length (and volume) is the only time-dependent geometric
quantity. We add volume-length and volume-area scaling to
capture the dependencies between length, height and width:
V=qlP, V=CcA, (4)
where ¢; and ¢, are glacier-specific constants, while p and y are
the universal scaling exponents (Bahr and others, 1997).
Following Bahr and others (2015), for a linear mass-balance
profile the appropriate y value is 1.25, which we use in the
numerical results below. This value of y is within the range of
expected physically reasonable values of 7/6 <y < 3/2. In
the derivation of the equations, however, we leave y unspeci-
fied. Using p =y/(2 — y) from Bahr and others (2015), we
can now write the three dimensions in terms of the volume:

H=c/"vir-lr,

W = C:/VCI(Z*Y)/YV(}/—U/}/’ (5)
[ = CI_(2_7>/7V(2—}/)/}/.

Note that we have reduced the dynamics of the glacier to
a single ordinary differential equation for volume (obtained
by substituting Eqn (5) into (3); we omit for brevity). Our
reduction to a single degree of freedom amounts to saying
that the shape of the glacier adjusts instantaneously to
changes in length, rather than requiring a finite amount of
time as mass is redistributed along the glacier. The same
instantaneous adjustment of glacier shape occurs in models
that treat glaciers as perfectly plastic (Nye, 1951), equivalent
to taking n — oo in Glen'’s law (Cuffey and Paterson, 2010).
We will discuss the implications on the glacier response
later in the paper.
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Fig. 2. Examples of volume evolution in time for G* =0 and
different values of P*.
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Next, we render the model in dimensionless form. This has
the advantage of reducing the number of parameters in the
model to a minimum. A length scale Ly can be defined

through
—y/(6y—9
acl/rcl 0 v/(6r=9)
o= (=5 : (6)

while the natural timescale for the problem is to = 1/g,,,
(later we will show that the e-folding time is a multiple of
to). We find that typical values of L, fall between 10 and
100 m, and ty between 80 and 240 years. Using these, we
can define a dimensionless time and volume through

t=t/ty, V'=V/L. (7)

In addition, we obtain two dimensionless parameters

8abl

* ﬂ771 1/(3-2y)
P = Zaa P ngfy)/ycl(zfy)(yﬂ)/y .

G* is related to the mass-balance ratio or area-altitude
balance ratio (AABR), g.;,/8.ccr @ commonly used quantity
in paleo-glacier reconstructions (Rea, 2009), while P* is a
dimensionless ELA. With the above change of variables,
the model (Eqn (3)) becomes

)

(8)

|:% (V*(}’_])/V _ P*)zv*(7_1)/7 _ P*vﬂ/y
—_yrGn/r o \/*}

dve for —2 v+ lr < (,D* — V*W*‘)/V) <o,

de* _ |:(G* + 1)(_[)*\/*1/}/ _ V*(37}/)/7 + V*>:|

for — 2 v=@=n/r + V=07 5 P,

|:_P*V*1/y _ V*(37y)/y + V*]

for V*r=1/7 < px,

(9)

2.1. Equilibria, response times and bifurcation

Next, we analyze the model, focusing on steady states, their
stability and sensitivity to parameter changes. Focusing on
the properties of steady states means we do not capture the
detail of how general, transient glacier evolution is affected
by changes in climate forcing: the specific detail of these
transients is dependent on the detail of how (and how fast)
climatic forcing is changing compared with adjustments in
glacier geometry and leads to little generic insight.
Focusing on steady states allows us to define sensitivity to
changes in climate and response times in a robust way,
and captures the effect of low-frequency changes in
climate, for which glaciers can be treated as being in
pseudo-equilibrium (Roe, 2011).

We now find the equilibria for the non-dimensionalized
model as a function of G* and P*. Let F(V*, G*, P*) be the
right-hand side of Eqn (9). For a given set of parameters,
steady-state solutions satisfy F(V*, G*, P*) = 0; where such
solutions exist, this defines a steady-state glacier volume as
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a function of the parameters G* and P*, V* = V¥ (G*, P*).
V¢ is smooth except where of (V}, C*, P*)/oV* = 0. Non-
zero equilibria in the model only exists for G* > —1; this is
always satisfied as g,.. and g, are positive by construction.
With the procedure described in Appendix A, we can
compute the steady-state volumes V; numerically for any
given G* and P*.

Next, we will define a response time by introducing a small
perturbation to a steady-state glacier. If the glacier returnsto a
steady state after the perturbation is introduced, the steady
state is considered to be stable. Take a steady state and
perturb it slightly as V* = V7(G*, P*) + 6V*. Expanding in a
two-term Taylor expansion, dV*/dt* = F(V*,C*,P*) =
F(VZ, G P*) 4 OF OV |y o pr V" = OFJOV*|y o pn8V*, we
obtain a linear equation for 6V, with solution

SV* =6V (0)exp [;—\Z

V:‘(C*,P*),C*,P*t*:| . (10)
The steady-state solution is stable if §V* shrinks, that is, if the
partial derivative oF /o0V* is negative.

The e-folding time for the decay of §V* is a robust measure

for ‘response time’ to a given (small) perturbation. In dimen-
sional time, that response time becomes

—1
. oF
T = — _—
Sablgy - Vi (G*,P),G* P*

- <_g (7 — 1> (P* _ VS*(}’*U/Y)ZVS**W}’
4\ 7

+ ¢ (Q) (P* _ VS*(V*U/}’) Vamanlts (1)
14

2

37\ G-
N ( 7) V20
%

T et o
+;W%<’Wﬁ4) &bl

This is related to the Harrison (2013) volume response
time 7y, which can be written in our model as

. -1
! (bt g)
V=\"70
& (12)
7‘] Pp—
_ (2 ViB-2lr y prye==Dlr 1) gl

by noticing that the balance rate at the terminus b, = g,
(=BL — z4,). Equation (12) is equal to Eqn (11) when G* =
0 (8,51 = 8ace) and y = 1 (which implies a constant height).
Therefore Eqn (11) can be seen as a generalization of the
volume response time of Harrison (2013) (and is similar
tory = fH/bt as in Johannesson and others, 1989), allowing
for different mass-balance gradients in the ablation and accu-
mulation area, and accounting for volume scaling.

There is a positive feedback between glacier thickness and
mass balance, known as the altitude/mass-balance feedback
(Cuffey and Paterson, 2010): a thicker glacier leads to a
higher glacier surface, which generally leads to more
accumulation and less ablation, i.e., more positive mass
balance and vice-versa. This gives rise to a bifurcation,
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with P* the bifurcation parameter (related to the ELA through
Eqn (8)). When the ELA is located above the highest point on
the glacier bed P* =0, but lower than a critical value
P* = P, the model is bistable (Fig. 3, center). Removing
the glacier leaves a stable zero-volume solution, while for
ELAs that are not too far above the highest point on the
glacier bed, an existing glacier may still have a high
enough surface to have a sufficiently large surface mass
balance to persist stably. For ELAs below the highest point
on the glacier bed, a glacier has to exist and there is a
single stable steady state (Fig. 3, right). The bifurcation is a
robust feature of other glacier flow models (Oerlemans,
2008; Giesen, 2009), but is absent from the original
Harrison model because the latter treats ice thickness as pre-
scribed. Figure 2 shows some example model trajectories,
before and after the bifurcation point.

By setting F(V*, G*, P*) = 0, we can solve for P* in terms of
V* at steady state. Noting that at the bifurcation point (Pg, V),
dpP*/dV; = 0, this gives us the location of the bifurcation point
for general G*:

pr_ (3 - 2y> Gy —1) (r=1)/(3=27)
P2y (VG T-T)(2-y) ’

v/(3=27)
Ve = Glr—1
CL2(VGFT-1)2—7)
(13)
Vo = L3V; is the minimum stable volume for a given glacier.

2.2. Accumulation area ratio

The AAR of a glacier is defined as the ratio of the area of the
glacier with z > z,, to the area with z < z.,. AAR is often
easier to infer, for instance from satellite measurements,
than the actual mass-balance rates. Our version of
Harrison’s model predicts AAR as a simple function of the
model parameter G*; the calculation also shows why a
single mass-balance gradient g,.. = g, is inconsistent with
frequently observed AAR values.

From the model geometry, we can determine the AAR to
be

H— Zela

BL

We set Eqn (3) to zero, solve for the steady-state length, and
substitute into Eqn (14). This gives the steady-state AAR,

AAR = (14)
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According to Eqn (15), assuming a single mass-balance gra-
dient (corresponding to G* = 0) only allows for a steady-
state AAR of 0.5, inconsistent with observed AARs which
are typically ~0.6 for ‘healthy’ glaciers (Bahr and others,
1997; Mernild and others, 2013). An AAR of 0.6 corresponds
to G* = —0.56.

2.3. Sensitivity to ELA changes

The original, dimensional model (Eqn (3)) contains three
parameters characterizing climatic setting: g..., &., and
Zola- We assume that local temperature affects only z,, and
leaves the g parameters unchanged. A simple measure of
how much a change in temperature affects glaciers is the sen-
sitivity of steady-state glacier volumes to changes in tempera-
ture, or equally, to zg,.
The dimensional sensitivity of volume to ELA is

. 1/(3=2y)
dv, g ovedpr (277 Tov: (16)
dZeIa -0 ()P* dZela - ﬁC§(7_1>/y 6P* ’
where
ov;

L /o
P/ oVr

yGC* V:(ZVH)/V

20y =2)(VC + T = 1)V + (y = 1)G V2
(17)

Note that the sensitivity is only meaningful for stable V;
(V¥ > Vj; see Eqn (13)). It is easy to verify that for Vi > V;,
dVi/dP* <0, and steady-state volume decreases with
increasing z, as expected.

Applying Egn (16) to each glacier in a region, we quantify the
relative regional glacier sensitivity to ELA perturbations by
summing up all the individual glacier sensitivities per region
and then normalizing by the total equilibrium volume of the
region. The regional sensitivity for region r is thus

1 dVv;
R AP (- d.), 1o

where the sums are taken over all the glaciers in the region. The
regional sensitivity can be viewed as an estimate of the fraction
of the total equilibrium volume which would be lost if the ELA
were increased by a unit distance for all glaciers in that region.
However, the sensitivity is a derivative and thus inherently

1
AAR = — . 15
S 1 +VG 1 (15)

0.20
0.15
Vi
0.10
0.05
0.00 p========°-""

Fig. 3. Left: bifurcation diagram of V; in P* and G*. Center: bifurcation diagram for G* = 0 near the bifurcation point P{. Right: same as center
panel but for a wider range of P*. Dotted lines indicate unstable equilibria, solid lines stable.
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relevant to small perturbations, and is not able to capture the
non-linearity of the model (e.g., the effect of increasing the
ELA past the bifurcation point).

2.4. ELA distance

We define the following metric for how close glaciers in each
region r are, in an aggregate sense, to the bifurcation that
marks their ultimate disappearance. The sums are taken
over all the glaciers in the region.

Y 19
1 (19)

( 5)‘ dzea [ *
dr = Zﬁ(dpi )j(PO(Cj) _Pj)'

In the intercomparison among regions, a smaller value of d,
indicates that the glaciers in the region are closer to their
disappearance point. d, is a sum of the inverse distances of
each glacier's P parameter from its bifurcation point

P5(G;) (Eqn (13)), weighted by its fraction of the regional
volume (Vs);/ >2;(Vs);, and the extent to which a change in
P* changes the ELA, measured by (dz.,/dP*);. The latter

factor is a unit conversion (see Eqn (8)) included because
the distances P5(Gr) — P;, being non-dimensional, corres-
pond to different ELA differences for each glacier. This
metric should be interpreted with caution: as real glaciers
retreat into higher altitudes, their slopes may change consid-
erably, while our model assumes constant slope for each
glacier.

3. MODEL APPLICATION ON GLACIERS
WORLDWIDE

In this section, we apply the model to estimate the volume
sensitivity to ELA perturbations and the response times for
each glacier in the world glacier inventory dataset. Details
about the data sources and methods are outlined below.
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3.1. Glacier geometry data

We use the Randolph Glacier Inventory (RGI, version 5.0)
(Pfeffer and others, 2014), containing information on
glacier classification, location and basic geometry data.
Because thickness and volume data are not included in the
RGI, we use thickness estimates updated from Huss and
Farinotti (2012) (Matthias Huss, personal communication).
The updated data from Huss and Farinotti (2012) also
includes glacier area and length data, which differ slightly
from the RGI 5.0 values due to differences between the
DEMs used by the RGI contributors and Huss and Farinotti.
For consistency with the volume data source, therefore, we
use the volume, area and slope from Huss and Farinotti
(2012). We estimate lengths as L = (Zmax — Zmin — H)/B, as
per the block geometry (Fig. 1), where zZgax and zyin are
the maximum and minimum elevations of the glacier. The
constants ¢; and ¢, that relate glacier volume to area and
length depend on the shape of the valley occupied by the
glacier, and cannot be taken as universal (Bahr and others,
2015). We estimate the constants’ values for each glacier
individually, using the initial volume, area and length as ¢, =
V/LP and c, = V/A” and keep the constants fixed in time. For
glaciers with missing thickness values, we estimate these
using a power law obtained from performing a linear least
squares fit of log(V) to log(A) for glaciers with volumes in
Huss and Farinotti (2012). As we describe later, we
account for the uncertainties in the area, volume and thick-
ness, and propagate these uncertainties to ¢; and c,.

We exclude tidewater glaciers in our study because they
can lose mass through calving and submarine melting, pro-
cesses that are not incorporated in our model. We also
exclude all ice caps, which behave differently from mountain
glaciers in terms of volume-area/volume-length scaling and
whose flow is also not driven predominantly by a non-zero
bed slope B. Lastly, we exclude glaciers with missing
surface slope information and those which have a reported
altitude range smaller than their estimated thickness. In
total, we apply the model to 91% of glaciers from RGI 5.0,
comprising 34% of the RGI total glacier area (Table 1).

Table 1. Characteristics per RGl region: number and total area of modeled glaciers, percent of glaciers and their total area used from RGI 5.0

Region Number of glaciers Glacier area Glaciers used from RGI Area used from RGI
km? % %o
Alaska 24923 45 541 92 53
Western Canada and USA 13 692 13 848 90 95
Arctic Canada (North) 3489 25142 77 24
Arctic Canada (South) 6412 21827 86 53
Greenland (periphery) 17 525 38 751 86 30
Iceland 434 692 76 6
Svalbard and Jan Mayen 1340 13113 83 39
Scandinavia 2475 1809 93 63
Russian Arctic 484 3356 45 7
North Asia 4736 2042 92 85
Central Europe 3858 2056 97 99
Caucasus and Middle East 1349 1112 78 86
Central Asia 52 448 37054 96 75
South Asia (West) 27 624 25103 99 75
South Asia (East) 12 794 12 602 98 86
Low Latitudes 2930 2346 100 100
Southern Andes 11394 7623 71 26
New Zealand 3535 1161 100 100
Antarctic and Subantarctic 732 997 27 1
Total 192174 256177 91 34
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Without the ice caps and tidewater glaciers, the modeled gla-
ciers in some glacierized regions represent only a small frac-
tion of the regional glacier area. For instance, <10% of the
RGI glacier area is modeled for Iceland, the Russian Arctic
and the Antarctic and Subantarctic region; see Table 1.

For each of the 19 RGl regions we provide an overview of
regional estimates (mean and standard deviation) for the
input variables used in the glacier evolution model: V, B,
¢, ¢, g, and G* (Table 2). Russian Arctic, Svalbard and
Arctic Canada (North) have the largest mean volumes and
also the smallest slopes. ¢, is highly correlated to the
volume and thus the regional means of ¢; correspond in
ranking to those of the volume.

3.2. ELA and mass-balance gradients

In order to estimate the sensitivities and response times, we
need glacier-specific values for z,, and accumulation and
ablation mass-balance gradients (g,.. and g,,)). Since the
ELA is not known for the majority of glaciers in the RGlI,
various methods for ELA approximation have been proposed
(Braithwaite and Raper, 2009; Braithwaite, 2015). These
methods attempt to approximate the ‘balanced-budget’
ELA, and work well for glaciers near equilibrium. Since
these methods rely on different mass-balance assumptions
than our model (namely, a non-uniform hypsometry but a
single mass-balance gradient), we instead estimate the ELA
for each glacier as the ELA for which the glacier is in a
steady state in our model. This amounts to setting

GV vl (G T 1)

i Gx\/+r+1)/r

where V* is the non-dimensionalized given volume (P* can
be converted to a z,, value with Eqn (8)). As with the other
ELA estimation methods, this estimated ELA will generally
be lower than the transient ELA, since most glaciers world-
wide have been experiencing a negative trend in their mass
balance.
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To estimate mass-balance gradients we first calibrate a
multiple linear regression model using the glaciers with
observed mass-balance profiles, and then apply the model
to all glaciers without observations. The following local vari-
ables are included as predictors in the regression model: the
maximum and median elevation of the glacier and six cli-
matic variables — the temperature lapse rate, continentality
index (Cl), mean summer temperature, mean precipitation,
mean winter precipitation and mean cloud cover. Cl is
defined as the mean hottest monthly temperature minus the
mean coldest monthly temperature. All the means are
taken over the last 20 years of available data (1995-2014).
The climatic data were taken from the 0.5° Climate
Research Unit (CRU) grid cell containing the glacier, from
CRU TS v. 3.23 (Harris and others, 2014). The lapse rates
are derived from the NCEP/NCAR 40-year reanalysis
dataset (Kalnay and others, 1996) using monthly means of
air temperature at pressure levels throughout the tropo-
sphere, following the method in Cannon and others (2012):
the lapse rate is approximated as the negative slope of a
linear regression applied on the air temperature versus eleva-
tion data, for elevations below the stratosphere.

We estimate the empirical g, .. and g, from the observed
annual mass-balance profiles reported by the World Glacier
Monitoring Service (WGMS) (World Glacier Monitoring
Service, 2017), averaging over all years with at least four
mass-balance measurements below and above the observed
ELA and where a linear fit to the mean annual mass-balance
profile is sufficiently accurate (as measured by the normal-
ized RMSE). This leaves us with 92 glaciers for calibrating
and testing the multiple linear regression model. The calibra-
tion is performed by regressing the target values of G* and
g, (rather than regressing g,.., we instead regress C*,
since it is explicitly required in the model) against each of
the 28 = 256 possible subsets of predictors. The optimized
set of predictors (the one that gives the lowest cross-valid-
ation error) for G* consists of Cl, maximum elevation and
cloud cover, and for g, consists of Cl, mean summer tem-
perature and lapse rate.

Table 2. For each RGI region: mean + standard deviation of model inputs. V, ¢, and ¢; are in units of m*>, m'/2 and m*/3, respectively. g, is

given here in w.e. units.

Region log,, V tan~' B log,o(ca) log,o(c/) abl G*
rad mmw.e.m 'a’'

Alaska 6.9+ 0.8 0.42 +0.13 0.01 + 0.06 2.13 +0.35 8.1+22 —-0.57 £0.13
Western Canada and USA 6.9 +0.7 0.41 £0.12 0.00 + 0.09 2.14 +0.42 93 +1.8 —0.54 £0.10
Arctic Canada (North) 78+1.0 0.28 + 0.11 0.11 £0.10 2.68 + 0.50 34+14 —0.46 = 0.06
Arctic Canada (South) 7.3+0.9 0.32 +0.11 0.13 + 0.09 2.50 + 0.42 50+1.0 —0.44 +0.05
Greenland (periphery) 7.0+ 0.9 037 £0.16 0.04 £0.12 2.25+0.84 59+1.8 —0.29 = 0.09
Iceland 7.0 £ 0.8 0.34 £ 0.10 0.00 = 0.10 2.32+0.32 8.8 +£0.8 —0.36 £ 0.06
Svalbard 7.8+0.9 0.27 = 0.09 0.09 + 0.09 2.57 +0.49 6.2 +0.9 —0.33 £0.05
Scandinavia 6.9+ 0.6 0.37 £0.12 0.00 + 0.08 2.25 +0.30 8.5+1.6 —0.45 £ 0.07
Russian Arctic 8.1 £0.7 0.24 = 0.07 0.12 = 0.08 2.83 +0.48 5.1+0.7 —0.67 £0.08
North Asia 6.5+ 0.8 0.42 +0.14 0.01 +0.12 2.01 +0.31 6.2 +2.0 —-0.63 £0.17
Central Europe 6.2+ 1.0 0.48 £ 0.15 —0.07 £0.12 1.85+0.33 9.0+ 1.7 —0.48 = 0.06
Caucasus and Middle East 6.7 £ 0.8 0.50 £ 0.13 —0.03 + 0.09 2.02 +0.29 8.6 2.2 —0.65 £ 0.09
Central Asia 6.7 +0.8 0.45 +0.12 —-0.01 £0.10 2.02 +0.31 58+2.7 —-0.72 £0.10
South Asia (West) 6.7 +0.8 0.46 = 0.15 0.00 £ 0.10 2.00 + 0.33 7.6 £2.6 —-0.73 £0.12
South Asia (East) 6.9 +0.8 0.44 +0.14 —-0.01 +£0.10 2.05+0.30 8.5+3.1 —0.70 £ 0.09
Low Latitudes 6.6 +1.0 0.47 +0.14 —0.09 + 0.10 2.05 +0.40 11.9+29 —0.60 + 0.09
Southern Andes 6.5+0.9 0.43 +£0.13 —-0.02 + 0.07 2.08 + 0.41 10.1+1.9 —0.10 £0.10
New Zealand 6.1 0.8 0.55+0.13 —-0.09 + 0.10 1.82 £ 0.30 10.6 = 1.1 —0.26 £ 0.04
Antarctic and Subantarctic 6.8+ 1.0 0.40 +0.17 —-0.02 +0.14 2.23 +0.48 8.5+2.0 —0.26 £0.20
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We then use this set of predictors to estimate g, and G*
for the rest of the glaciers included in our study (Table 1). For
glaciers located in CRU grid cells with inadequate or missing
climate data (fewer than 0.2% of the glaciers used), we set
their mass-balance gradients to be the average of the 20
closest glaciers in the WGMS mass balance dataset. We
exclude glaciers for which the regression model predicts
negative mass-balance gradients (0.5% of the glaciers used;
this is already factored into Table 1).

3.3. Uncertainty quantification

While ‘uncertainty quantification’ is often used synonym-
ously to ‘sensitivity analysis’, here we refer to two distinct
procedures. With uncertainty quantification, we provide
uncertainties on the sensitivity and response time results,
based on the uncertainty in the measured and estimated
glacier quantities. We use linearized error propagation with
uncertainties on the input quantities as described in
Appendix B.

With sensitivity analysis, we refer to a statistical method
belonging to a class known as global sensitivity analysis,
used here to quantify the importance of the input variables
in affecting the model response. Specifically, we use it to
identify the factors that make glaciers more or less sensitive
to ELA perturbations or have longer or shorter response times.

3.4. Global sensitivity analysis

We aim to quantify the contribution of each variable to the
model outputs of sensitivities to ELA and response times.
With linear models, analysis of variance (ANOVA) can
assign the proportion of the total variance due to each
input variable. For nonlinear models, there are a variety of
methods for quantifying variable importance by assessing
the sensitivity of a model to variables over their entire distri-
bution (Saltelli and others, 2008). One of the more common
methods is variance-based sensitivity analysis, also known as
the Sobol’ method (Sobol’, 2001), which decomposes the
variance and can account for interaction effects (variance
due to interactions between two or more variables).
However, since this method assumes that the input variables
are independent, which is not the case here, we use an alter-
native global sensitivity analysis method described in Da
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Veiga (2015). It defines a sensitivity index, S;, for the variable
X; as:

B HSIC(X;, Y)
V/HSIC(X;, X;)HSIC(Y,Y)

i

(21)

where Y is the model output, and HSIC is the Hilbert-Schmidt
independence criterion, which measures statistical depend-
ence between random variables (larger is more dependent).
Consequently, the larger S; is, the more significant we take
X; to be in determining Y . HSIC is based on an estimate of
the cross-covariance of two variables using a nonlinear
kernel; this generalizes the linear covariance matrix to
allow for more complex dependencies between variables.
There are various estimators for computing HSIC from data
(Song and others, 2012).

A minimal set of variables for computing both the glacier
volume sensitivity to ELA perturbations (Eqn (16)) and
response times (Eqn (11)) consists of G*, g,;,;, €a, ¢, 8 and
V. We use this set of variables for the global sensitivity
analysis.

3.5. Software implementation and model output

Data processing and numerical computation were performed
mainly in Python. The pandas library (McKinney, 2010) was
used to organize and perform bulk operations on data, and
NumPy (van der Walt and others, 2011) was used for array
operations. Uncertainty propagation was done using the
uncertainties package (LEBIGOT, 2016). The HSIC variable
importance method was computed using the sensitivity
package for R (Pujol and others, 2017). The open-source
code for all of the computations in this paper, as well as
the model output, is available on GitHub at https:/github.
com/eviatarbach/glaciers.

4. RESULTS

4.1. Sensitivity to ELA and response time

Figure 4 shows the regional sensitivities %, and the mean
glacier response times. The glaciers that yielded an equilib-
rium volume of zero (i.e., where V* < V{) are excluded
from the regional sums; these are glaciers that still exist but,
according to our model, are in a transient evolution

1) Alaska
2) Western Canada and USA
3) Arctic Canada (North)

) Arctic Canada (South)

4
5) Greenland (periphery)
6) Iceland

7) Svalbard and Jan Mayen
8) Scandinavia
9) Russian Arctic
1

1

1

1

1

1

1

1

1

1

) North Asia

) Central Europe
) Caucasus and Middle East 1+
) Central Asia 1
) South Asia (West)
) South Asia (East)
) Low Latitudes

) Southern Andes

) New Zealand

) Antarctic and Subantarctic
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Regional sensitivity to ELA (m™")
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Fig. 4. Left: relative regional volume sensitivity to ELA perturbations (£,) and the uncertainty estimates (black lines). Right: mean response time

as a geometric mean e-folding time for each region.
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towards eventual disappearance even if climate variables are
not altered. The results suggest that Greenland periphery,
Scandinavia and Antarctic and Subantarctic have the
highest regional sensitivity to ELA (1.4x1072 m™', 7.6 x
10> m~" and 7.6 x 107> m™', respectively) among the 19
regions, while Alaska and South Asia (West and East)
have the lowest (1.5x 1073 m™", 2.3x 1073 m~" and 2.7 x
10> m™', respectively). Note that many glaciers are not
included in the sensitivity estimates due to the exclusion of
tidewater glaciers and ice caps (Table 1).

Using the regional ELA distance (d}; Eqn (19)), we find that
Antarctic and Subantarctic, Svalbard and Scandinavia (267,
322 and 326 m, respectively) are the most threatened by
the complete disappearance of glaciers, while Alaska,
South Asia West and Caucasus and Middle East are the
least (1645, 1250 and 1074 m, respectively).

Since the regional response time distributions appear to be
approximately log-normal, we use the geometric instead of
the arithmetic mean to summarize them. The mean global
response time of glaciers is 49 years, with the slowest
response time estimated for Arctic Canada (North and
South) and Russian Arctic (175, 117 and 145 years, respect-
ively; Fig. 4), while the fastest is calculated for New Zealand,
Low Latitudes and Caucasus and Middle East (17, 21 and 28
years, respectively).

We find that the response (e-folding) time estimates are
consistent with those of previous studies. Haeberli and
Hoelzle (1995) estimated typical response times of glaciers
larger than 0.2 km? in the European Alps as 20-40 years,
commensurate with our mean of 27 years for Central
Europe. Using the J6hannesson and others (1989) expression
for response time, Cuffey and Paterson (2010) estimated
response times between 150 and 600 years for high polar gla-
ciers with thicknesses between 150 and 300 m. The mean
response time in our model for glaciers in this thickness
range in polar regions is 179 years. In general, Eqn (11) pre-
dicts longer response times than the volume response time of
J6hannesson and others (1989); this is because our model
includes the feedback between glacier thickness change
and mass balance (Cuffey and Paterson, 2010).

Our model is ‘perfectly plastic’ (Harrison and others,
2003) or ‘one-stage’ (Roe and Baker, 2014), i.e., the glacier
area responds instantly to volume changes. The model, there-
fore, does not consider the time it takes for mass to get redis-
tributed by ice flow and for the terminus slope to steepen in
advance, or to flatten in retreat (Roe, 2011). Consequently,
when forced into an advance a real glacier will remain
shorter than what is predicted by our model, experiencing
less melt and gaining mass faster, while the opposite is true
in retreat, leading to a faster response time for volume in
reality than predicted by our model. For glacier length, on
the other hand, the omission of these processes in our
model results in shorter response times than in flowline
models and leads to different spectral properties of glacier
as filters for high-frequency climate forcing (Roe, 2011; Roe
and Baker, 2014). Previous numerical findings have shown
that a similar one-stage model responds more quickly to per-
turbations in mass balance than flowline or multiple-stage
models (Roe, 2011; Roe and Baker, 2014). However, in the
same studies, the final equilibrium values simulated across
the models closely agree, as well as the spectral properties
for low-frequency climate forcing. Our model can, therefore,
be used for approximating glacier response close to an
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equilibrium, but it may be unsuitable for projecting glacier
evolution in response to future climate scenarios from
global climate models.

The fact that our model has a uniform hypsometry (a con-
stant width along the glacier length) affects the accuracy of
the estimated response and equilibrium glacier volume. For
example, glaciers with a wide upper basin and narrow
tongue are expected to have larger equilibrium lengths
than those with a more uniform hypsometry (Oerlemans,
2008). Although most glaciers have hypsometry data in the
R, it remains a challenge to incorporate a glacier geometry
of high complexity into a low-dimensional dynamical model.

Considering that the variability in modeled glacier sensi-
tivities and response times is driven by an overall effect of
multiple geometric and climatic factors, we next investigate
whether some of this variability can be attributed to individ-
ual factors, in particular, glacier size (volume) and slope. To
get a general idea, we plot the modeled sensitivities and
response times of all glaciers in the dataset against the two
model variables (Fig. 5). There is a negative correlation
between normalized sensitivity (sensitivity divided by
steady-state volume) and volume, indicating that larger gla-
ciers generally lose a lesser percentage of their volume
when the temperature is increased (Fig. 5, top right). For com-
parison, normalized sensitivity appears to have neither a
positive nor a negative linear relationship with glacier
surface slope (Fig. 5, top left). Previous work has suggested
that steeper slopes lead to shorter response times (Haeberli
and Hoelzle, 1995), which is consistent with our results
(Fig. 5, bottom left). Although in Harrison’s original model
larger glaciers have slower response times, volume scaling
predicts that larger valley glaciers have a shorter response
time, all other variables being held constant (Bahr and
others, 1998). This relationship between response time and
volume has also been verified using finite element simula-
tions of ice flow (Pfeffer and others, 1998). When other
factors are taken into account (e.g., altitude range) there is
often a more complex relationship between response time
and size, if at all (Raper and Braithwaite, 2009). Indeed,
our results do not reveal a clear global relationship
between response time and volume (Fig. 5, bottom right).
As in Raper and Braithwaite (2009), we find that the depend-
ence of response time on size varies by region: in some
regions we find response time to have a moderate negative
correlation with volume.

Using uncertainty propagation with the input uncertain-
ties as described in Appendix B, the median absolute uncer-
tainty in the response time is 27 vyears. The median
percentage uncertainty is 45% in the sensitivity to ELA and
61% in the response time.

4.2. Effect of geometric and climatic factors

To interpret the sensitivity and response time results, we ran
HSIC sensitivity analyses on the (unnormalized) volume sen-
sitivity and response time data. Again, we exclude glaciers
with an equilibrium volume of zero, since the sensitivity
and response time cannot be meaningfully defined for
these cases. The results as S; indices for each variable are
shown in Figure 6, where a larger S; indicates a larger
dependence of the volume sensitivity (or response time) on
the given variable. For the volume sensitivity the dominant
drivers appear to be glacier volume and the constant of
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Fig. 5. Normalized sensitivity (sensitivity divided by steady-state volume) versus volume and slope (top panels) for all glaciers in the dataset.
Response time versus volume and slope (bottom panels). Lighter colors in the plot correspond to a greater number of clustered points.

proportionality in the volume-length scaling, while for the
response time the dominant drivers are the mass-balance
gradient in the ablation area and the surface slope.
However, since the sensitivity indices are calculated for
each variable individually, they do not take into account
the dependencies between variables. Table 3 quantifies the
pairwise dependencies between the variables, calculated
using the same S; indices as for the sensitivities. Because
both ¢; and c, are highly correlated with V (Table 3), the
final outcome of the analysis is that the primary driver of
interglacier differences in volume sensitivity to ELA perturba-
tions is glacier size, followed by the surface slope. Since
there are no significant dependencies between the ablation
gradient and surface slope, these variables appear as the
dominant drivers of differences in glacier response time.
The effect of ablation gradient on glacier response time can
be understood from the fact that response time is known to
depend on the ablation at the terminus (Eqn (12)). In our
model, a larger ablation gradient generally corresponds to

log V
tan~'8 -

log ¢ -
log c,
Sabl

0.0 0.2 0.4 0.6 0.8 1.0
Si (sensitivity)

logV 1-e

tan'3 —
log ¢
logc, t1-e
Sabl

0.00 0.05 0.10 0.15 020 025 030 035 040 045
Si (response time)

Fig. 6. HSIC indices for the sensitivity and response time. The bars
indicate the 95% bootstrap confidence intervals.
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a shorter response time, which is consistent with theory
since a larger ablation gradient causes more terminus abla-
tion. The fact that the ablation gradient is identified as a sig-
nificant contributor confirms that the climate setting does
play an important role in determining glacier response to
climate change.

In addition to the effect of the geometric and climatic
factors on individual glacier response on a global scale, we
try to determine whether the regional sensitivities and
response times can be related to mean regional quantities.
The relationships between the mean regional quantities
and the regional sensitivities and response times will not
necessarily coincide with the factors found to be significant
using the HSIC analysis above, since (1) factors that contrib-
ute to the differentiation between regions may not be signifi-
cant on a global scale and (2) the effect of a certain quantity
on individual glacier response may not be evident when its
entire distribution is distilled to regional means. We com-
puted the Pearson correlation between the regional sensitiv-
ities =, and regional mean response times on the one hand,
and the regional means of V, ¢, c,, C*, g, B and the
regional ELA distances d, on the other.

The regional means of response times were most strongly
correlated to the regional mean c;, ¢; and g, (r=0.88, 0.86
and —0.87 respectively, all with p-values <3 x 107°), in add-
ition to V (r=0.76, p-value 1.5x107%) and B (r=—0.79,

Table 3. Pairwise normalized HSIC (Eqn (21)) for the model data,
showing dependence between input variables

Sabl logc, log ¢ tan~'p logV
(@ 0.09 0.01 0.03 0.05 0.01
G 0.02 0.01 0.01 0.00
log c, 0.19 0.22 0.40
log ¢, 0.16 0.53
tan~'8 0.12
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p-value 6.0x107°). Interestingly, mean regional volume
was positively correlated with mean regional response
time, despite the fact that on a global level there is not a
clear relationship between volume and response time
(Figs 5, 6), and within some regions there is a negative correl-
ation. This may be a result of the negative correlation within
regions masking the positive correlation between regions,
such that globally there is no net correlation visible. The
regional sensitivities only showed a significant correlation
to the regional ELA distances d, (r=-0.71, p-value
7.4 x 107%). This is because sensitivity to ELA is an indirect
measure of closeness to the bifurcation: the sensitivity to
ELA (Egn (16)) is proportional to 0V} /oP*, and that quantity
diverges to negative infinity as the bifurcation is approached
(note, however, that away from the bifurcation |0V /oP*| also
increases).

5. CONCLUSIONS

By building on a block model proposed by Harrison (2013),
we showed that a low-complexity dynamical model together
with glacier inventory data can be successfully used to char-
acterize features of glacier response to climate change. In
particular, we used it to estimate regionally differentiated
response times and sensitivities to ELA changes. We
applied global sensitivity analysis, based on the Hilbert-
Schmidt Independence Criterion, to quantify the contribution
of different model input variables to the model output over
the entirety of the input distribution. The results show that
volume sensitivity is mainly driven by the glacier size distri-
bution, followed by the surface slope. On the other hand, the
glacier response time estimates are mainly driven by the cli-
matic setting as captured in the ablation gradient, followed
by glacier surface slope. Global sensitivity analysis presents
a powerful tool in modeling physical systems, not only for
interpretation of outputs as demonstrated here, but also for
model reduction and identification of variables that cause
the most uncertainty in the output (Saltelli and others,
2008). Possible future work is to convert the simple block
model into a multiple-stage model, which could be used in
concert with global climate models to make projections of
glacier volume, and to validate the simulations with historic
glacier data.
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APPENDIX A. ROOT-FINDING METHOD
We consider the non-negative roots of functions of the type

f(x)= cox™/% 4 oy xM/H o e xm/dm (A1)
with x and the coefficients {c;} real, and the exponents
{ni/d;i} nonnegative rationals expressed in lowest terms.
These types of functions are sometimes called fractional
polynomials (since they resemble polynomials, but have
rational exponents). To find the roots, we make a substitution
that transforms f(x) to a polynomial function. Let/ = lem{d;}
and g = gcd{n;}. Then, f(y//8) is a polynomial in y, since all
the {d;} are factors of | and all the {n;} are multiples of g. The
roots of this polynomial, {y;}, can be found numerically
using eigenvalue methods (Edelman and Murakami, 1995).

The roots of f(x) in x will then be {y*/8}.

APPENDIX B. UNCERTAINTY IN THE INPUT
QUANTITIES

For glaciers with available thickness estimates, we assume a
thickness uncertainty of 30%, the estimated error in Huss and
Farinotti (2012). For glaciers whose thicknesses are calcu-
lated as a function of the surface area, we use an uncertainty
given by the root-mean-square relative error in the regression
on a test sample, i.e., a sample independent of the data used
for model calibration and validation. We assume a length
uncertainty of 20% following the estimates by Machguth
and Huss (2014) for small glaciers (the percent uncertainty
in larger glaciers is smaller). We use the root-mean-square
cross-validation error on a test set for the uncertainty in the
mass-balance gradients (0.32 for G* and 0.0028 a~ ! for
g.u1)- We apply the area uncertainty function suggested by
Pfeffer and others (2014) to assess the glacier area error.
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Fig. B1. RMSE as a function of B,. The points are the computed
errors, and the line is the interpolated function.
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To estimate the uncertainty for surface slope B, we
compare the average slopes in the RGI to those given in
Huss and Farinotti (2012). Instead of the arithmetic mean
used in the calculation of the mean slope in the RGI (calcu-
lated using the discretized topography along the glacier’s
centerline), Huss and Farinotti (2012) use a weighted
mean, giving smaller weights to very steep slopes in an
elevation band. To estimate the error function we partition
the set of slopes into evenly spaced bins in log space

Bach and others: How sensitive are mountain glaciers to climate change?

(in order to more accurately account for small slopes, to
which the model is more sensitive) and then compute the
RMSE in each bin. We fit a power function of the form

RMSE(B,) = \/E[(tan—%H —tan~1Bg)*] =c(tan"' B;,)", where
By is the slope from Huss and Farinotti (2012) and Sy is the
slope from the RGI. We find ¢ = 0.255 and r = 3.349 to give
the best fit (Fig. B1).
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