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Anisotropic Hardy—Lorentz Spaces with
Variable Exponents

Victor Almeida, Jorge J. Betancor, and Lourdes Rodriguez-Mesa

Abstract. In this paper we introduce Hardy-Lorentz spaces with variable exponents associated with
dilations in R". We establish maximal characterizations and atomic decompositions for our variable
exponent anisotropic Hardy-Lorentz spaces.

Introduction

Fefferman and Stein’s celebrated paper [26] has been crucial in the development of
the real variable theory of Hardy spaces. In [26] the tempered distributions in the
Hardy spaces H? (R") were characterized as those such that certain maximal func-
tions are in L? (R"). Coifman [10] and Latter [38] obtained atomic decompositions of
the elements of the Hardy spaces H? (R"). Here, 0 < p < oo and H?(R") = LP(R")
provided that 1 < p < co.

Many authors have investigated Hardy spaces in several settings. Some gener-
alizations substitute the underlying domain R" with other ones (see, for instance,
[7,9,12, 44, 54, 58]). Also, Hardy spaces associated with operators have been de-
fined (see [22, 23, 33, 34, 60], amongst others). If X is a function space, the Hardy
space H(R", X) on R” modelled on X consists of all those tempered distributions
f on R” such that the maximal function M(f) of f is in X. The definition of the
maximal operator M will be shown below. The classical Hardy space H? (R") is the
Hardy space on R” modelled on L? (R"). For a weight v on R” and corresponding
weighted Lebesgue space L? (R", v), the Hardy space H(R", L?(R",v)) was inves-
tigated in [28]. The Hardy space H(R", L?>4(R")), where L?9(R") represents the
Lorentz space, has been studied in [1,25,27,31,32]. The Hardy space H(R", A?(¢)) on
R" modelled on a generalized Lorentz space A (¢) was studied by Almeida and Cae-
tano [2]. The variable exponent Hardy space H?(*) (R"), investigated in [15,48,52,63],
is the space H(R", L*(")(R")) on R" modelled on the variable exponent Lebesgue
space LP(*) (R™).

By S(IR"), as usual, we denote the Schwartz function class on R” and by S'(R")
its dual space. If ¢ € S(R"), the radial maximal function M = M, used to char-
acterize Hardy spaces is defined by M(f) = sup,.,[f * ¢:, f € S'(R"), where
¢i(x) =t"p(x/t), x € R" and t > 0. Bownik [4] studied anisotropic Hardy spaces

Received by the editors February 29, 2016; revised January 4, 2017.

Published electronically 0, 0.

The authors are partially supported by MTM2013-44357-P and MTM2016-79436-P.

AMS subject classification: 42B30, 42B25, 42B35.

Keywords: variable exponent Hardy space, Hardy-Lorentz space, anisotropic Hardy space, maxi-
mal function, atomic decomposition.

https://doi.org/10.41 53%-201 6-053-6 Published online by Cambridge University Press

e


https://doi.org/10.4153/CJM-2016-053-6

ﬁ} DRAFT: Canad. J. Math. October 20, 2017 14:13 File: almeidaJ1796pp. 1219-1273 Page 1220 Sheet 2 ofji

S

46__

48__

S

1220 V. Almeida, J. J. Betancor, and L. Rodriguez-Mesa

on R” associated with dilations in R”. If A is an expansive dilation matrix in R”, that
is, a n x n real matrix such that minyc,(a|A| > 1 where 0(A) represents the set of
eigenvalues of A, for every k € Z, we define

par(x) =|detAFp(A*x), xeR",
and the maximal function M4 = My , associated with A is given by

Ma(f) = sup If * oails feS(R™).

Bownik [4] characterizes anisotropic Hardy spaces by maximal functions like M.
Recently, Liu, Yang, and Yuan [40] extended BowniK’s results by studying anisotropic
Hardy spaces on R” modelled on Lorentz spaces L?7(R").

Ephremidze, Kokilashvili, and Samko [24] introduced variable exponent Lorentz
spaces £P(*)-4C")(R"). In this paper we define anisotropic Hardy spaces on R" as-
sociated with a dilation A modelled on £?()4(*)(R"). These Hardy spaces are
represented by H?(*)4(*)(R", A) and they are called variable exponent anisotropic
Hardy-Lorentz spaces on R”. We characterize the tempered distributions in
HP()aC)(R", A) by using anisotropic maximal function M,4. Also, we obtain
atomic decompositions for the elements of H?(*)»4(")(R”, A). Our results extend
those ones in [40] to variable exponent setting.

Before establishing the results of this paper, we recall the definitions and properties
about anisotropy and variable exponent Lebesgue and Lorentz spaces we will need.

An exhaustive and systematic study about variable exponent Lebesgue spaces
LPC)(Q), where O ¢ R”, can be found in the monograph [17] and in [20]. Here,
p:Q — (0, 00) is a measurable function. We assume that 0 < p_(Q) < p,(Q) < oo,
where p_(Q) = essinf,cq p(x) and p,(Q) = esssup,, p(x). The space LP()(Q)
is the collection of all measurable functions f such that, for some A > 0, p(f/1) < oo,
where

p() = poiy (N = [ I1f()P P

We define | - || 5 - ) as follows:

1flpcy = inf{l >0: fQ( |f(/1x)|)P(X)dx < 1}, fe LP(')(Q)_

If p_(Q) > 1, then | - | 5.y is anorm and (LPC)(Q), | -| »(.)) is a Banach space.
However, if p_(Q) < 1, then |- ||,(.) is a quasinorm and (LPC(Q), |- lpc-y) isa
quasi Banach space.

A crucial problem concerning to variable exponent Lebesgue spaces is to describe
the exponents p for which the Hardy-Littlewood maximal function is bounded in
LPCI(R™) (see [13,19,49,51], amongst others). As shown in [14,16,29], the bounded-
ness of the Hardy-Littlewood maximal function, together with extensions of Rubio
de Francia’s extrapolation theorem, lead to the boundedness of a wide class of opera-
tors and vector-valued inequalities on LP(*)(R") and the weighted L") (v). These
ideas also work in the variable exponent Lorentz spaces, introduced by Ephremidze,
Kokilashvili, and Samko [24], and they will play a fundamental role in the proof of
some of our main results.
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Anisotropic Hardy-Lorentz Spaces with Variable Exponents 1221

The Lorentz spaces were introduced in [41] and [42] as a generalization of clas-
sical Lebesgue spaces. The theory of Lorentz spaces can be encountered in [3] and
[8]. Assume that f is a measurable function. We define the distribution function
ty: [0, 00) — [0, 0o] associated with f by

pr(s) = [{x eR": [f(x)[ > s}, s €[0,00).

Here, |E| denotes the Lebesgue measure of E, for every Lebesgue measurable set E.
The non-increasing equimeasurable rearrangement f*:[0,00) — [0, c0] of f is de-
fined by

fr(t)=inf{s>0:pus(s) <t}, te[0,00).

If 0 < p, q < o0, the measurable function f is in the Lorentz space LP>1(R") provided
that

Ul = ([~ 67 @) < oo

Then L?9(R") is complete and it is normable; that is, there exists a norm equivalent
with the quasinorm | - | Lp.q(rn) (see [8, p. 66]) for 1< p < oo and 1< g < oo.

Variable exponent Lorentz spaces have been defined in two different ways: one by
Ephremidze, Kokilashvili, and Samko [24] and the other by Kempka and Vybiral [36].

In this paper we consider the space defined in [24]. This election is motivated by
the following fact. We need to use a vectorial inequality for the anisotropic Hardy-
Littlewood maximal function (see Proposition 1.4). In order to prove this property,
we use an extrapolation argument requiring us to know the associated Kothe dual
space of the Lorentz space. The dual space of the variable exponent Lorentz space in
[24] is known ([24, Lemma 2.7]). However, characterizations of the dual space of the
variable exponent Lorentz space in [36] have not been established (see Remark 1.5).

For every a > 0 we denote by 3, the set of measurable functions p: (0, 00) —
(0,00) such that a < p_((0,00)) < p.((0,00)) < co. By P we represent the class of
bounded measurable functions p: (0, c0) — (0, co) such that there exist the limits

p(0) = lim p(¢) and p(c0) = lim p(t),

and the following log-Holder continuity conditions are satisfied:

Ip(6) - p(0)| < “nCt' for0<t<1/2,
p(1) -~ p(o0)] < ﬁ for te(0,00).

We also write P, = P n ‘B, for every a > 0.
Let p,q € Po. We represent by (p(-),q(-))-Lorentz space £LP(*)-4(")(R™) the
space of all those measurable functions f on R” such that

tﬁ’ﬁf*(t) € Lq(')(O, 00).
We define

1 Loy = 1EFO 7T () ac(0,00)r f € L2 (RN,
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We also consider the average f** of f* given by

() = % fotf*(s)ds, te(0,00),
and define

1 B T T al
HfH(Lgv),q(-)(Rn) = H”(') a0 f (t)”Lq(')(o,oo), fEL‘D( ) )(Rn).
We note that ||- H(Lll),(.),q(.) (®") satisfies the triangular inequality provided that
q-((0,00)) > 1. It is clear that

1
oo @y < DFI S0y

According to [24, Theorem 2.4], if p € Py, q € Py, p(0) > 1, and p(oo) > 1, there exists
C > 0 for which

A1 acr gy € ClFlercracr@ays f € £PC4O R,

If p,q € Py, then £2C )40 ) (R") is a Banach function space (in the sense of [3]) and
the dual space (£7()-4C)(R"))’ coincides with £2'(*)4'(")(R") [24, Lemma 2.7
and Theorem 2.8]. Here, as usual, if 7: (0, 00) — (1, 00), r' = -Z5. The behaviour of
the anisotropic Hardy-Littlewood maximal function on £(*)-4(*) (R") will be very
useful in the sequel. According to [24, Theorem 3.12], the classical Hardy-Littlewood
maximal operator is bounded from £?(*)4(*) (R") into itself provided that p, g € ;.

The main definitions and properties of the anisotropic setting we will use in this
paper can be found in [4].

Suppose that A is an expansive dilation matrix in R”. We say that a measurable
function p:R" — [0, o) is a homogeneous quasinorm associated with A when the
following properties hold:

(a) p(x)=0ifand onlyifx =0;

(b) p(Ax) =|detAlp(x), xeR"

(c) p(x+y)<H(p(x)+p(y)), x,yeR" forcertain H > L
If P is a nondegenerate n x n matrix, the set A defined by

A={xeR":|Px|<1}

is called the ellipsoid generated by P. According to [4, Lemma 2.2, p. 5], there exists an
ellipsoid A with Lebesgue measure 1 and such that, for certain ry > 1, A € rgA € AA.
From now on, the ellipsoid A satisfying the above properties is fixed. For every
k € Z, we define By = AFA, as the equivalent of the Euclidean balls in our anisotropic
context, and we denote by w the smallest integer such that 2By, c B,. We have that,
for every k € Z, |Bi| = b* , where b = | det A|, and By c rBy C By
The step quasinorm p4 on R” is defined by

bk, XGBk+1\Bk, kGZ,
pa(x) = 0 _
,  x=0.

Thus, p4 is a homogeneous quasinorm associated with A.
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By [4, Lemma 2.4, p. 6] if p is any quasinorm associated with A, then p,4 and p are
equivalent; that is, for a certain C > 0,

p(x)/C < pa(x) < Cp(x), xR,

The triplet (R", pa,|-|), where |- | denotes the Lebesgue measure in R”, is a space of
homogeneous type in the sense of Coifman and Weiss [11].

We now define maximal functions in our anisotropic setting. Suppose that ¢ €
S(R") and f € S'(R"). The radial maximal function Mg (f) of f with respect to ¢ is
defined by

Mo(f)(x) = iugl(f * i) ()],
€

where ¢ (x) = b¥@(A™¥x), k € Z and x € R". Since the matrix A is fixed, we do not
refer to it in the notation of maximal functions.
The nontangential maximal function M, (f) with respect to ¢ is given by

My(f)(x) = sup [(f*pi)(y)l xeR™

keZ,yex+By
Ifa=(ap...,a,) € N*, we write |&| = a; + -+ + a,. Let N € N. We consider the
set
Sn={9eSR"): sup(1+pa(x))ND*¢(x)| <1, ¢ N" and |a| < N}.
xeR"
Here,
olel
D% = s
ox;"...0x,"

when « = (&, ..., a,) € N"

The radial grandmaximal function MY (f) of f of order N is defined by
MY (f) = sup Mg(f).
(pESN
The nontangential grandmaximal function My(f) of f of order N is given by
My (f) = sup My (f).
(pESN
We now define variable exponent anisotropic Hardy-Lorentz spaces. Let N € N
and p, g € Po. The (p(- ), g(-))-anisotropic Hardy-Lorentz space Hﬁ,( a() (R", A)
associated with A is the set of all those f € §'(R") such that My (f) e £LPC )40 (R,

On Hfi,( 4C) (R" A), we consider the quasinorm | - HH{J( 240 (gn o) defined by

Lo gy = 1M (D) Lrcracr ey f € HE O R, ).

Our first result shows that the space H ﬁ,( at )(R”, A) does not actually depend
on N provided that N is large enough. Furthermore, we prove that H 1’11( 4l (R", A)
can be characterized also by using the maximal functions M 2,, My, and MY.

Theorem 11 Let f € S'(R") and ¢ € S(R™) such that [ ¢ # 0. Assume that
D> q € Po. Then the following assertions are equivalent.

(i)  There exists Ng € N such that, for every N > Ny, f € H{]( a0 (e ),

https://doi.org/10.41 53%-201 6-053-6 Published online by Cambridge University Press

DRAFT: Canad. J. Math. October 20, 2017 14:13 File: almeidaJ1796pp. 1219-1273 Page 1223 Sheet 5 ofji

e


https://doi.org/10.4153/CJM-2016-053-6

ﬁ} DRAFT: Canad. J. Math. October 20, 2017 14:13 File: almeidaJ1796pp. 1219-1273 Page 1224 Sheet 6 ofji

S

46__

48__

S

1224 V. Almeida, J. J. Betancor, and L. Rodriguez-Mesa

(i) My(f) e LPCaC)(R™),
(ii) M(f) e L) (RM).
Moreover, for every g € S'(R") the quantities

HMN(g) ||u<'>,q(-)(Rn), N > Ny,
HMg(g) ”LP(')M(')(RW);
HM<p(g) ”LP('),q(')(Rn)

are equivalent.

According to Theorem 1.1 we let H?(*)4(*) (R, A) denote Hi,( a0 (Rn A), for
every N > Nj.

In order to prove this theorem, we follow the ideas developed by Bownik [4, §7]
(see also [40, §4]) but we need to make some modifications due to that decreasing
rearrangement and variable exponents appear.

Let1<r < oo,seNand p,q €By. We say that a measurable function a on R" is
a(p(-),q(-),r, s)-atom associated with xo € R" and k € Z when a satisfies
(a) suppa C xo + By;

(b) [all; < b*" | xxyeB, H21p<-),q('>(Rn) (note that (xxy+B, )™ = X(0,6%))5
(¢) fgna(x)x*dx =0, for every a € N” such that |a| <.

Here,ifa = (a;,...,a,) € Nand x = (xy,...,x,) € R", then x* = x" --- x5

Remark 1.2 From now on, any time we write aisa (p(-),q(-),r,s)-atom associ-
ated with xo € R" and k € Z, it is understood that (a), (b), and (c) hold.

In the next result we characterize the distributions in H?(*)-4(*)(R", A) by atomic
decompositions.

Theorem 1.3  Let p,q € P,.
(i) There exist sy € N and C > 0 such that if, for every j € N, 1; > 0 and a;
isa (p(-),q(-),00,s0)-atom associated with x; € R" and €; € Z, satisfying that

2 jeN )Lj||Xx,-+Bej ”Ep('),q(')(ﬂgn)xxﬂ'Bej € LP(‘)’q(.)(RH)- Then

f=3 Aja; e HCHCN(R, A),
jeN

and

£pC () (R)

1f N ezoc- yac> mn,a) < CH > Al XoxyeBe, ||le<~>,q<->(Rn)Xx,-+Bej
jeN

If also p(0) < q(0), then there exists ro > 1 such that for every ry < r < oo the above
assertion is true when (p(-),q(-), 00, sq)-atoms are replaced by (p(-),q(+),7,0)-
atoms.

(ii) There exists so € N such that for every s € N, s > sg, and 1 < r < oo, we can find
C > 0 such that, for every f € HPC')4C)(R", A), there exist, for each j € N, A; > 0
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anda (p(-),q(-),r,s)-atom a;j associated with x; € R" and €; € Z, satisfying that

Z )‘jHXxﬁBe,. ”le(w,q(')(Rn)XxﬁBej e LPCaC )(R")7

jeN
f = Z A]‘a]‘ in S,(Rn),
jeN

and

£ )a(") (Rm) < C”fHHP(‘),q(')(]Rn,A).

H Z /\J'HXijrBej HE( 340 (Rm) Xxj+Be;
jeN
Letl < r < oo, s € Nand p,q € PBo. We define the anisotropic variable expo-
nent atomic Hardy-Lorentz space H?(')-4(*):":s(R", A) as follows. A distribution
f eS8’ (R") is in HP(')4():rs(R™, A) when, for every j € N there exist 1; > 0 and a
(p(+),4q(+),r,s)-atom a; associated with x; € R" and ¢; € Z such that f = 3,y A;a;,
where the series converges in §'(R"), and
Z )‘jHXxﬁBe,. ”le(»,q(-)(Rn)XxﬁBej e LPC)aC )(R")-
jeN

For every f e HP(")-4(*):ns(R", A) we define

||fHHp( $)a( s (R, A) = inf” ]%:\T AJ' HXxﬁ-Bej HEP( *)a(” )(R”)X"J‘*Bé’j £pC )l )(]Rn)’
where the infimum is taken over all the sequences (1;)jen € [0, 00) and (a;) jev of
(p(+),q(+),r,s)-atoms satisfying that f = 3y Aja; in S'(R") and

Z AJ'HXxﬁBej Hzlﬂ aC) (Rm) Xxj+Be, e LP0 At )(Rn)’

jeN
being a; associated with x; € R"” and ¢; ¢ Z, for every j € N.

In Theorem 1.3 we state some conditions so that the inclusions H?(*)-4(*) (R", A) c
HP( (s (R7, A) and HPC 100 1ms (RR 4) ¢ HPC 100 (R™, A) hold continu-
ously.

In our proof of Theorem 1.3 a vector valued inequality, involving the Hardy-Lit-
tlewood maximal function in our anisotropic setting, plays an important role. The
mentioned maximal function is defined by

1
Mi(f)(x)=  sup o [ f(2)ldz, xeR".
keZ,yex+By y+Bk

After proving a version of [24, Theorem 3.12] for My, by using an extension of Ru-
bio de Francia extrapolation theorem (see [14,16,29]), we can establish the following
result.

Proposition 1.4  Assume that p, q € P1. For every r € (1, 00), there exists C > 0 such
that

1/ 1/
H(%MHL(L')V) rHu('),ﬂ-)(Rn)SCH(ZVJ'V) rHum,q(v(Rn)’

jeN

for each sequence (f;) jen of functions in L}, (R").
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Remark 1.5 We do not know if the last vectorial inequality holds when the
Lorentz space £P()4(")(R") is replaced by the variable exponent Lorentz space
Lp(-y,q¢-)(R") introduced by Kempka and Vybiral [36]. In order to apply extrapola-
tion technique, it is necessary to know the associated Kothe dual space (see [39, p. 25])
(Lp(-y,q¢-)(R"))* of Lyc.y,q¢-)(R™), but its characterization is, as far we know, an
open question.

Also, in order to prove Theorem 1.3, we need to establish that H?(*)-4C*)(R", A) n
L} (R™) is a dense subspace of H?("):4(")(R", A). At this point a careful study of
Calderén-Zygmund decomposition of the distributions in H?(*)4(")(R", A) must
be done.

To establish boundedness of operators on Hardy spaces, atomic characterizations
(as in Theorem 1.3) play an important role. Meyer [46] (see also [47, p. 513]) gave a
function f € H'(R") whose norm is not achieved by finite atomic decomposition.
More recently, Bownik [5] adapted that example to get, for every 0 < p < 1, an atom
in H? (R") with the same property. Also, in [5, Theorem 2] it was proved that there
exists a linear functional [ defined on the space Hy™°(R"), consisting in finite linear
combinations of (1, c0)-atoms, such that, for a certain C > 0, |[[(a)| < C, for ev-
ery (1, c0)-atom g, and [ cannot be extended to a bounded functional on the whole
H'Y(R™).

BowniK’s results have motivated some investigations of operators on Hardy spaces
via atomic decompositions. Meda, Sjogren and Vallarino [45] proved thatif1 < g < oo
and T is alinear operator defined on H ;i’g (R™), the space of finite linear combinations
of (1, g)-atoms, into a quasi Banach space Y such that

sup{| Taly : aisa (1,q)-atom} < oo,

then T can be extended to H'(R") as a bounded operator from H'(IR") into Y. Also,
itis proved that the same is true when (1, q)-atoms are replaced by continuous (1, c0)-
atoms, in contrast with the Bownik’s result. Yang and Zhou [61] established the result
when 0 < p <1and (p,2)-atoms are considered. Ricci and Verdera [50] proved that,
for 0 < p <1, when H fmm (R") is endowed with the natural topology, the dual spaces
of H>>(R") and H? (R") coincide.

Also, this type of results have been recently established for Hardy spaces in more
general settings (see, for instance, [6,15,40, 62]).

In order to study boundedness of some singular integrals on our anisotropic
Hardy-Lorentz spaces with variable exponents we consider finite atomic Hardy-
Lorentz spaces in our settings.

Letl < r < oo, s € Nand p,q € Po. The space Hfifl' aC)rs (Rm A consists
of all those f € HP(*)4(*)(R", A) such that there exist k € N and, for every j € N,
1<j<k,Aj>0anda(p(-),q(-),r s)-atom a; such that f = Zle Aja;. For every

fe Hﬁfl rat )’r’s(Rn,A), we define

k
HfHHf"(] 024" s (R _A) = inf” Z; Aj“)(xﬁng ” le( ©)a( )(Rn)Xxj+ng are )(]R")’
j=
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2__
3 where the infimum is taken over all the finite sequences (A ;) ?:1 c (0,00) and (a j)?:l
4_ of (p(+),q(+),r,s)-atoms such that f = ijzl Ajaj and being, for every j e N, j <k,
5_ a; associated wit(h ;cj (6 %R” and ¢; € Z.

p(),q(*),00,s .
37 The space H,, ../ (R", A) and the quasinorm || - HHﬁf.,-cg.lq( Yoot (o) AT de-

fined in a similar way by considering continuous (p(-),g(-), o0, s)-atoms.

8 In Theorem 1.6 we establish some conditions that imply that HE° »a(:).rs (R",A)
137 is dense in HP(" )4 ) (R", A).
Hn_ Theorem 1.6  Let p,q € Py.
12* (i) Assume that p(0) < q(0). Then there exist so € N and rq € (1, 00) such that for
14* everys €N, s > sg, and r € (rg, o),
15 H : HHﬁi. 224 s (R A) and H ’ HHP( *:4C) (Rn,A)
10— p(-).( )urs
17 are equivalent quasinorms in H, . 7" 777" (R", A).
18 (ii) There exists so € N such that for every s > s,
19 [ - ||H§< )05 (R4 and || goc-rac ) (me, )
20 in,con
21 are equivalent quasinorms in Hgfl:c)ég( oS (RA A,
22
23 As an application of Theorem 1.6, we prove that convolutional type Calderén-Zyg-
2% mund singular integrals are bounded in H? ()a( )(R”, A). A precise definition of
25__ the singular integral that we consider can be found in Section 6.
26
o7 Theorem 1.7 Let p,q € Py. Assume that p(0) < q(0). If T is a convolutional type
o8 Calderon-Zygmund singular integral of order m € N, m > so where sq is as in Theo-
20 rem 1.6(i), then
30__ (i) T is bounded from H?C' )40 ) (R™ A) into £LPC)40) (R™);
31 (ii) T is bounded from HPC')4C)(R™, A) into itself
32
33 Our results, as far as we know, are new even in the isotropic case, that is, for the
34__ Hardy-Lorentz HP(*):4(*) (R") of variable exponents, extending results in [1].
35 The paper is organized as follows. A proof of Theorem 1.1 is presented in Section 2
36 where we prove the main properties of variable exponent anisotropic Hardy-Lorentz
37 spaces. Next, in Section 3, Calderén-Zygmund decompositions in our setting are
38__ investigated. The proof of Theorem 1.3, which is presented distinguishing the cases r =
39 oo and r < oo, is included in Section 4. Finite atomic decompositions are considered
40__ in Section 5 where Theorem 1.6 is proved. In Section 6, we define the singular integral
a1 that we consider and prove Theorem 1.7 after showing some auxiliary results.
2 Throughout this paper, C always denotes a positive constant that can change its
43_ value from a line to another one.
44
45 2 Maximal Characterizations (Proof of Theorem 1.1)
46__
a7 From now on, for simplicity, we will write |-||,(.y,4(-) and |-[4(.) instead of
e I Nepcrac) mny and ||| Lac) (0,00)» respectively.

T @

https://doi.org/10.41 53%-201 6-053-6 Published online by Cambridge University Press 4}


https://doi.org/10.4153/CJM-2016-053-6

ﬁ} DRAFT: Canad. J. Math. October 20, 2017 14:13 File: almeidaJ1796pp. 1219-1273 Page 1228 Sheet 10 0335

S

46__

48__

S

1228 V. Almeida, J. J. Betancor, and L. Rodriguez-Mesa

First, we establish very useful boundedness results for the anisotropic maximal
function My on variable exponent Lorentz spaces.

Proposition 2.1  Assume that p,q € P1(0, 00). Then the maximal function Myy is
bounded from £PC )40 (R™) into itself

Proof This property can be proved like [24, Theorem 3.12]. Indeed, it is clear that
IMuLfllLoe(rry < [ fllzoe(rmy> £ € L% (R™). On the other hand, according to [4, p. 14],
My is bounded from L'(R") into L»*°(R"). Then, proceeding as in the proof of
[3, Theorem 3.8, p. 122], we deduce that, for some C > 0, (Mg f)* < Cf**. Since
p,q €P1(0,00), by taking & = 1/p — 1/q and v = 0 in [24, Theorem 2.2], we can write

IMuL(F)lp(-yq(-y < CIEPCIAC) gy < pCIHaC) gy
:CHpr('),q(')'

Thus, the proof of this proposition is finished. ]

The following vectorial boundedness result for My, appears as Proposition 1.3 in
the introduction.

Proposition 2.2 Assume that p, q € P,. For every r € (1, 00), there exists C > 0 such
that

1r 1/r
(2.1) H(%(MHL(JCJ)Y) Hp(.),q(.ﬁcu(%'ff'r) Hp('),q(')’

for each sequence (f;) jen of functions in L}, (R").

loc

Proof Accordingto [6, Prop. 2.6(ii)] the family of anisotropic balls {x + B } xern, kez
constitutes a Muckenhoupt basis in R”. For every r > 0, we define the r-power of the
space LPC a0 (R™), (£PC)-4C)(R™)), as follows:

(LP(')’q(')(R”))r = { f measurable in R" : |f|" € LP(')’q(')(R”)},
(see [18, p. 67]). By using [15, Lemma 2.3] we deduce that, for every r > 0,
(£PCaC) (rryyr = £rpC)raC) (R
We choose 8 € (0,1) such that Sp, fq € P;. According to [24, Lemma 2.7],
(£PPCYPAC) (RMY))* = (£FPC PG (R)) = £ FPC)) S (BaC)) (1Y,

where the first space represents the associate dual space of £AP(")#4(*)(R") in the
Kothe sense (see [39, p. 25]). Since p, fq € P, Proposition 2.1 implies that My, is
bounded from £ (#P(-))"-(Fa())'(R") into itself. According to [18, Corollary 4.8 and
Remark 4.9], we conclude that (2.1) holds for every r € (1, c0). [ |
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2__

3 As in [4, p. 44] we consider the following maximal functions that will be useful in
4 the sequel. If K € Z and N, L € N, we define for every f € §'(R"):
= MyEE(f)(x) = sup |(f * i) (x)|max(1, p(A™x))F(1+67FF)7E, xeR”,
6 keZ,k<K
T - - —k—K\—
o My (f)(x) = sup  sup |(f * ¢x) () max(L p(A7y)) (14 67)E,
— keZ,k<K yex+Bj
9_ xeR”,
10— pk-Ky-L
14 b-k-K)-
11 T(f,V’K’L(f)(x) = sup sup |(f*(P:)(y)| < ( + IZ -,
12_ kez k<K yeln Max(1, p(A™(x = y)))N max(1, p(A~%y))
13 x e R",
14— 0,K,L 0,K,L
15 My™(f) = sup M= (),
16 pesy
17 Mgt (f) = sup Mg (f).
18_ pesn
19__ We will now establish some properties we will need later.
20—
21 Lemma 2.3 LetKeZ N,LeN,r>0,and ¢ e S(R"). Then there exists a constant
22 C > 0 that does not depend neither on K, L, N, r, nor ¢ such that, for every f € S'(R"),
23__ r r
- (TYFL(f) ()" < CMup((MEE())) (x), xR,
22* Proof Our proof is inspired by the ideas presented in [43, p. 10].
7 Let f € S'(R"), k € Z, k < K and x € R". Since
o (ICF * 1) ) max(t, p (A=) (167 7) ) < (M () '(2), ye 2+ By
30: we can write
31 - _ —k—KN—L\ "
o (1Cf * o) () max(L, p(A™5)) F (1+5775)7F)
1 r
33— < — f MEL z)) dz, e R".
5 i) o (IEHD@) 2,y
22 Suppose that z € y + By and y € R". According to [4, p. 8], we have that
37 p(z=x) <b*(p(z=y) +p(y—x)) <b"*(1+b7%p(y-x)),
38
39 where w is the smallest integer so that 2B, c B,,. We choose s € Z such that btk (1+
40 b*p(y - x)) € [b%, b5*!). Then we get
41__ - - _k—K\-L\"
s (1 * @) (M max(1, p(A™y)) (1 + 7))
- 1 r

43— <b(1+b7%p(y-x f MEE(f)(2)) dz
“ (P ) gt b =)y (Mo ()
45__ -k 1 KL r

<b(1ebp(y-x) o [ (M d
e (167 =2)) 5 (M ()(2) dz

— Nr r
j;f <26 (1+b7*p(y %)) Mur((MEH(f))") (x), yex+By.
O— —Q
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Hence, we obtain
(TRE(F)(x)" < CMu ((MEH(F))") (%), xeR™ [

According to [4, p. 14], for every 1 < p < oo, the Hardy-Littlewood maximal func-
tion My is bounded from L?(R") into itself. So from Lemma 2.3 we deduce that,
for every 1 < p < oo, there exists C > 0 such that

I Ty () eoeny < CIMG " (F)Loqeny,  f € S'(R).
This property was proved in [4, Lemma 7.4] by using a different procedure.
Lemma 2.4 LetKeZ, N,LeN, and ¢ € S(R"). Assume that p, q € Py. Then
[T () o yiacy S CIMEE() e yacy> £ €S (R,
where C > 0 does not depend on (N, K, L, ¢).

Proof We choose r > 0 such that rp,rq € P;. Let f € S'(R"). According to
[15, Lemma 2.3] and a well-known property of the nondecreasing equimeasurable
rearrangement, we get

I3 )l = 170730 (LT AT ()
700 [ (T (1) T (g
o (A 05) R AR
From Lemma 2.3 and Proposition 2.1 it follows that
1T (Ao a() < CH(Mﬁ’L(f))l/rHip(-),rq(-) = CIMy (Ollp-ya¢)- ®

The next two results were established in [4, pp. 45-47] as Lemmas 7.5 and 7.6, re-
spectively.

Lemma 2.5 Forevery N, L € N, there exists My € N satisfying the following property:
if ¢ € S(R") is such that [ ¢(x)dx # 0, then there exists C > 0 such that, for every
feS'(R")andK €N,

MSSE(f)(x) < CTIRE(F)(x),  x € R™.
Lemma 2.6 Let ¢ € S(R"). Then for every M,K € N and f e S'(R") there exist
L e Nand C > 0 such that
-M n
MgL(f)(x) <Cmax(Lpa(x)) ~, xeR™
Actually, L does not depend on K € N.

Lemma 2.7 Let p, q € Py. There exists ag > 0 such that the function g, defined by

ga(x) = (max(l,pA(x)))_a, x eR”,
is in LPC 120D (R™), for every « > aq.
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Proof Leta > 0. According to [4, Lemma 3.2] we have that

1 lx] <1,

« < hg =C
g (x) (x) {|X|—aln b/In A, |X‘ >1,

for certain C > 0. Here A, is greater than max{|A| : A is an eigenvalue of A} (for
instance we can take A, = 2max{|A| : A is an eigenvalue of A}). N ote that g < h.
To simplify we denote v,, = |B(0,1)|. We have that

(s) 0 s> C,
s) =
Hhe y(C/s)"ROD@I®) s ¢ (0, C).

Then

s )1 te(0,v,),
hy(t) = C{(Vn/t)am(h)/(nln(m) t>v,.

Since q(0) > 0 and p(0) > 0, we have that [, t1()/P()=1] g% (£)|1() d¢ < 0. Also,
there exists &g > 0 such that /> t1(O/P(O1) g (£)|2() dt < oo, because p, q € Py.
Hence, g, € £P()4C)(R™) for every a > . [ |

Lemma 2.8 Let p,q € Py and let D be a subset of R". Then yp € LPC )40 (R™) if
and only if |D| < oo.

Proof We have that (xp)* = x[o,p)- Since p, q € Bo, for every A > 0,

=/ (yp)*(t)t70 a0 o ID| $-1+4(8)/p(1)
I 1 )= [
ifand only if | D| < co. -

dt < oo,

Proof of Theorem 1.1  We recall that we are taking f € S'(R") and ¢ € S(R") such
that [ ¢(x)dx # 0. It is clear that for every N € N,

Mo (o gty < IMp(H)lp(-ya(-) < ClAf e a0 @ ay-

Hence, (i)= (ii) = (iii).
Now, we are going to complete the proof. Let M, be the value in Lemma 2.5 for
N =L = 0. Then for a certain C > 0,

2.2) My ()llpc-yac-) € CIM () p(-y¢-)» €S (R"), and M > M.
Indeed, by Lemma 2.5, there exists C > 0 such that

My (g)(x) < CTO™(g)(x), xeR", geS'(R"),KeN, and M > M,.
Then Lemma 2.4 leads to

HM?V’IK’O(g) Hp( Y.q(*) < CHM(I;’O(g)HP( “),q(+)> g€ S’(Rn), KeN, and M > M,.

By using monotone convergence theorem in £2(")4(") (R") (see [24, Definition 2.5
v)]) jointly with [15, Lemma 2.3] and by letting K — oo, we conclude that (2.2) holds.
Our next objective is to see that, for a certain C > 0,

(2.3) 1Mo (o a0 < CHMg(f) lp(ya()-
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Note that by combining (2.2), (2.3), and [4, Proposition 3.10], we conclude that (iii)
= (ii) = (i).
In order to show (2.3), we first note that there exists Ly € N such that M g’L" (f) e

£PC a0 ) (R"), for every K € N. Indeed, we denote by aq the constant appearing in
Lemma 2.7. According to Lemma 2.6, we can find Ly € N such that, for every K € N,
there exists C > 0 for which

Mg’L‘)(f)(x) < Cmax(1,p(x)) . xeR™

Then Lemma 2.7 leads to Mg’L" (f) e £PC-aC ) (R™), for each K € N.
From Lemmas 2.4 and 2.5, we infer that there exist M, € N and Cy > 0 such that

(24) M (Do yacy < CollMG™ (o Y-

for every K € N.
Fix Ky € N. We define the set Q¢ by

Qo = {x e R": Myl (f)(x) < M (f)(x)},

where C, > 0 will be specified later.
By using (2.4), [15, Lemma 2.3], and [24, Theorem 2.4] and choosing r > 1 such
that rp, rq € Py, we get

\IMﬁ"’L“ Doy
= |7 T (MESE (£)) (1)
= ot ([MER (1)]7(0)
= |70 a® ([MEL (H)T) (g y = ISR O oy mac)
< (IR OIS ) g )
<A{ (1M (O xao 15 yracy) (IR (D xag ] 15 o)) )

r r 1 r r

< A (1M D] il g )+ G I DI )
r r 1 0>Lo r
LM () x0]" rp(yorac ) +a(|\[M?&f PO (- yrac) "}

1
< Az( [ MG (f) xa o ya( ) + a|\MR2§°’L° o yac- ))

IA

0>4L0 CO 0>40
<A (1M () xaa (- ac) + a”Mgf (o yac) )
where Ay, A, > 0 depend only on p, g, and r. Hence, by taking C, > 2CyA,, we obtain

M2 () ya(-) < 2421 Mg (f) X (- Yua(- )

because M(I;"’L“ (f) e £PC a0 (R™),
According to [4, (716)], we have that

(2.5) MEOI () (x) < C[ Mpr (MY ™ (£)V7) (x)]",  x € Q.
The constant C>0 does not depend on Kj, but it does depend on L.
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2__

3 From (2.5), Proposition 2.1, and [15, Lemma 2.3], we obtain

4__ Ko,L 0,Ko,L ry\\ "

5__ HM‘PO "(Fxaolp-rac) < C” (MHL(M‘P " () / )) Hp('),q(')

6 = C“MHL(M%KO)LO(f)l/r)H:p(-),rq(-)

7

5 < C|MmyKete (f)l/rH:p( Yora(+)

9_ = CIMP L ()] p(-yq(-)-
10— We conclude that
11

KoLo 0,Ko,Lo
12_ M () p(-ya) < CIMG " (F)lp(-yac-)-
13 Again, note that this constant C > 0 does not depend on K; and it depends on L.
14 We have that M(I;’L“ (f)(x) t My(f)(x), as K - oo, for every x € R”, and
15 0,K,L 0 n
e My=o(f)(x) t My(f)(x), as K —> oo, for every x € R". Hence, the monotone
17* convergence theorem in the £P(")-4(*)(R")-setting ([24, Theorem 2.8 and Defini-
187 tion 2.5, v)], jointly with [15, Lemma 2.3]), leads to
19__ ||M¢(f)Hp('),q(') SCHJVI((;(]C)HP(-),q(')'
;2* Observe that the last inequality says that M, (f) e £P(")4(")(R"), but the constant
0y C > 0 depends on f, because Ly depends also on f.
3 On the other hand, since M, (f) € £P()4C)(R™), MO (f) € L£PC a0 ) (R,
) 47 for every K € N. Hence, we can take Ly = 0 at the beginning of the proof of this part.
o By proceeding as above we concluded that

25__
26— ”Mqv(f)Hp('),q(') S("HNI?)(]{)HP('),q(')’
z; where C > 0 does not depend on f.
29* Thus, the proof of the theorem is finished. ]
30 The last part of this section is dedicated to establishing some properties of the space
31 Hp(~),q(-)(Rn,A)_
32
33 Proposition 2.9  Let p, q € Py. Then HP()-1C)(R", A) is continuously contained in
34_ S'(R™).
35
36__ Proof Let f e S'(R")and ¢ € S(R"). We define Ay = [(f, ¢)|. We can write
37 Ao =(f = 9)(0) < sup [(f x9)(2)[ < My(f)(x), x € Bo.
38— zex+By
39— Then
40
4l Hx e R": My(f)(x)>2A0/2}| 21 and (My(f))"(t) 2 A0/2, te(0,1).
42 Hence, we get
43__ 11 %
4 1Mo () p(-ynqc-y 2 NEPO T (Mg (£))* (1) X172y (D) 4
45 Aoy, 1
6 2 I xazn (Dllgc)-
47 . i .
o Since [ £7C) 74 y(q/2,1)(t)] 4¢ - > 0, we conclude the desired result. [ |

O— —Q
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Proposition 2.10 Let p,q € Po. If f € HPC)aC)(R", A), then f is a bounded
distribution in S'(R™).
Proof Let f e H?(')4C)(R", A) and ¢ € S(R"). For every x € R", we have that

(F* )N < sup [(F*9)(2)| < Mp(£)(»), yex+Bo.

zey+By

By proceeding as in the proof of Proposition 2.9, we deduce that for a certain C > 0,

|(f *@)(x)| < CHfHHp(->,q<~>(Rn,A), x e R".

Thus, we prove that f is a bounded distribution in §'(R"). [ |
Proposition 2.11  Assume that p, q € Py. Then HP(*)-1C)(R", A) is complete.

Proof We choose r € (0,1] such that p(-)/r,q(-)/r € P;. In order to see that
HPC)4C) (R™) A) is complete, it is sufficient to prove that if ( fx ) ke is @ sequence in
HPC)aC)(R™) A) such that ¥ yoy | fx 150 e - (@ ay < then the series . ey fk
converges in H?(' )4 ) (R", A) (see, for instance, [3, Theorem 1.6, p. 5]). Assume
that (f¢)kex is a sequence in HP(*)-4(C") (R™, A) such that

> I Vet ac> (n 4y < -
keN

For every j € N, we define F; = Z{;:o fx. According to [15, Lemma 2.3] and [24,
Theorem 2.4],if j, £ € N, j < £, we get

| Fe = Fill o yac> (4

¢ r 4
i H k:z:jJrlkaHP(')’q(')(R",A) < H k:zj;i—lMN(fk)H

r

p(-)aq(+)

e , e r
(22 M50 | 5l 2 G0

O ¢
< M ale;
p(+)/ra(+)/r k;.“ [N Tpyprac e

p(-)/ra()/r

<| £ i)y
k=j+1

4 ¢
<C X IMNCFN Tpymacyir = C 20 1filinc yac) @, ay-
k=j+1 k=j+1

Hence, (F;)jev is a Cauchy sequence in HP(")»4(*)(R", A). By Proposition 2.9,

(Fj)jen is a Cauchy sequence in S'(R"). Then there exists F € S'(R") such that
Fj - F,as j » oo,in §'(R"). We have that

My(F) < lim 3 Mu(fo).
k=0
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According to [24, Theorem 2.8 and Definition 2.5 v)], by proceeding as above, we
obtain
,

j J
I My CE)- 3.0 < H}i“}o ,;)MN(f")Hp(-mm ) jlir?oH z;)MN(fk)H;(')’q("

< 2 NN 1o ymac-yir = C 20 1kl inc rac n -
keN keN

Then F € HP(')-4C*)(R”, A). Also, we have that

J oo
HF_ ka”;{p('),q(')(Rn,A) <C Z kaH;{p('M(‘)(Rn,A)’ je N.
k=0 k

=j+1

Hence, F = ¥,y fx in the sense of convergence in H?(* )40 ) (R", A). ]

A Calder6n-Zygmund Decomposition

In this section we study a Calderén-Zygmund decomposition for our anisotropic set-
ting (associated with the matrix dilation A) for a distribution f € §'(R") satisfying
that |[{x € R" : Myf(x) > A}| < oo, where N € N, N > 2and A > 0. We will
use the ideas and results established in [4, Section 5, Chapter I]. Also, we prove new
properties involving variable exponent Hardy-Lorentz norms that will be useful in
the sequel.

Let A>0,N e N, N >2,and f € S'(R") such that |Q,| < co, where

Q) ={xeR": My(f)(x) > A}.

By the Whitney Lemma ([4, Lemma 2.7]), there exist sequences (x;);jev € ) and
(€}) jen C Z satisfying the following

(3.1) Q= J(xj + Bey)s
jeN
(3.2) (xi +Be-w) N (Xj+Be;-w) =@, i,jeN,i#fj

(% +Bejraw) " =0, (xj+Berawn) N #3, jeN;
ifi, je Nand (x; + Bg420) N (Xj + Bejrow) # @, then |6 - €] < w;
(3.3) #{j € N: (xi + Bev2w) N (Xj + Bej20) # 0y <L, ieN.
Here, L denotes a nonnegative integer that does not depend on Q. If E c R" by { E
we represent the cardinality of E.

Assume now that 6 € C*°(IR") satisfies that supp6 c B,,0< 6 <1,and 6 =1on
By. For every j € N, we define

0i(x)=0(A"%(x~-xj)), xeR",

and, for every i e N,

_J0i(x)/(Zjen 0j(x))  x €y,
(i(x)_{o o x € Q.

The sequence {{;};ey is @ smooth partition of unity associated with the covering
{xi + Be,+w yiew of Q.
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Let i,s € N. By P; we denote the linear space of polynomials in R” with degree at
most s. P is endowed with the norm || - | ;,; defined by

1/2
1Pl = (75 [ PORGER) T, pew.

Thus, (P, | - [i,s) is a Hilbert space. We consider the functional Ty ; ; on P given by

T;.0.(Q) = jlc<f,Q<:i>, Qew..

Then Ty ; s is continuous in (Ps, || - |;,s), and there exists Py ; s € P such that

T;:.(Q) = f%fR Py (x)Q() i (x)dx, Qe

To simplify, we write P; to refer to Py,; ;. We define b; = (f — P;)(;.

We will find values of s and N for which the series Y ;. b; converges in S'(R")
provided that f € HP(*)»4C")(R", A). Then, we define g = f — ¥,y b.

The representation f = g + Y,y b; is known as the Calderén-Zygmund decom-
position of f of degree s and height A associated with My (f).

First, note that if f ¢ H?(')»4C")(R", A) and N € N, N > Ny, then

IXtxermma(r) x>y -2y <00
for every p > 0, and by Lemma 2.8, [{x € R" : My(f)(x) > p}| < oo, for every u > 0.
Here, Ny is the one defined in Theorem 1.1.

Our next objective is to prove that L} _(R") n HP():4(")(R", A) is a dense sub-
space of H?(*)-4C*)(R", A). This property will be useful to deal with the proof that
every element of H?(')4(") (R", A) can be represented as a sum of a special kind of
distributions, so called atoms, which will be developed in the next section.

We need to establish some auxiliary results. First, we prove the absolute continuity
of the norm H : ”P(-),q(-)'

Proposition 3.1  Let (Ex)ken be a sequence of measurable sets satisfying that Ey >
Eis1, k €N, |Ey| < 0o, and |NgenEx| = 0. Assume that p,q € Py. If f € LP(')’q(')(R"),
then

IfxElpc-yqc-) — 0, ask —> oo.

Proof Let f e £P(')4C")(R") and k € N. We have that (fyg,)* < f*. Then fyz, €
£PC a0 ) (R, Moreover, since | Ngey Ex| = limg_.o |Ex| = 0, for every t > 0 there
exists ko € N such that (fyg, )*(¢t) =0, k € N, k > ko. Hence, for every ¢ > 0,

trl')’ﬁ(fXEk)*(t) — 0, ask— oo.

By using dominated convergence theorem ([20, Lemma 3.2.8]) jointly with [I5,
Lemma 2.3] and by taking into account that q € Py and that f e £P( )40 (R™),
we obtain

HfXEka(-),q(-)—>0, as k — oo. u

Note that the last property also holds by more general exponent functions p and g.
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Proposition 3.2 Assume that p, q € Py. There exists so € N, such that for every s € N,
s > so, and each N € N, N > max{Ny, s}, where Ny is defined in Theorem 1.1, the
following two properties holds.

(i) Let f € HPC)I9CN (R A) and A > 0. If f = g+ X bi is the anisotropic
Calderon-Zygmund decomposition of f associated with My f of height A and degree s,
then the series Y. ;o bi converges in HPC' 140D (R", A).

(ii) Suppose that f € HPC')1C)(R", A) and that, forevery j € Z, f = gj+ Y ien i
is the anisotropic Calderén-Zygmund decomposition of f associated with My f of height
27 and degree s. Then (gj)jez © HPC)aC)(R™, A) and (gj)jez converges to f, as
j = +oo, in HPC 10 )(R7, A).

Proof (i) Lets, N € N, N > max{ Ny, s}. The Calderén-Zygmund decomposition of
f associated with My f of height A > 0 and degree sis f = g+ 3, bi. We are going
to specify s and N in order that the series 3,y b; converges in H?(*)-4(")(R", A),

By using [4, Lemmas 5.4 and 5.6], we get that there exists C > 0 so that, for every
ieN,

Mn (bi)(x)

S C( MNf(x)Xx"+Bei+2w (x) + )L Z /\:k(s+l)Xxi+(B€,'+2w+l+k\B€,-+2w+k) (x)) ’ x € Rn.
keN

Let j,m € N, j < m. For every x € R”, we infer

NE

n($0)

J

, M (bi)(x)
J

<

Mz

i

IN

C( MNf(x) z Xxi+B€i+2m (x) +A Z Z A:k(s+l)Xxi“’(B€i+2m+l+k\Bl,»+2w+k) (x)) .
iz i=j keN

We also have that, for every x € x; + (Bp,+20+1+k \Be,+20+k )> With i, k € N, i < m,

1

+ By, 120414k | Xi+Be, 120414k

MHL(Xxi+Be,-+zm)(x) 2 |X‘ Xxi+Be; 120 (y)dy = b_k_l'

We choose r > 1 such that rp, rq € P;. Then we take s € N such that A=°b” < 1and
Ny <s. ForeveryieN, i< m, we get
= —k(s
Z /1* ( +1) Xxi+(B€,»+2w+1+k\Be,-+2m+k) (x)
k=0
< Cmax(U 0 (M (1) ()

< C(MHL(Xxi+B€i+2w)(x)) r> X € (xi + B€,»+2w)c-

https://doi.org/10.41 53%-201 6-053-6 Published online by Cambridge University Press

DRAFT: Canad. J. Math. October 20, 2017 14:13 File: almeidaJ1796pp. 1219-1273 Page 1237 Sheet 19 0335

e


https://doi.org/10.4153/CJM-2016-053-6

ﬁ} DRAFT: Canad. J. Math. October 20, 2017 14:13 File: almeidaJ1796pp. 1219-1273 Page 1238 Sheet 20 0335

1 1238

3 Hence, we obtain

- (202
i=j

e ()

24 By using Proposition 2.2, we get

. Ji(E0)

42— For every k € N, we define Ej, =
that 352, Xxi+Be;soa S Cxg,>k € N. By (3.1) and (3.2), U;jen (% +Bg,—0 ) € Q),and then
Yien [Xi +Be_o] = b7 ¥ bY < Q)] < 00, where Q) = {x e R : Mn(f)(x) > A}

We deduce that
46__

14__ < C( H MN(f) i Xxi+Be; 120
i=j
17 " /\H i(MHL(XXﬁBe,-m)) r
=j N
19__ = C( H MN(f) Z Xxi+Be,»+2w
i=j

2 + /\H ( i MHL(Xx;+Bgi+2w)) r) v
i=j

26 H( S (M (s o))

‘P(')»q(')

36_ < C( H Mn(f) iXXHBIin
i=j

< | M () Y e
i=j

- < C| My (f) XUz, (xi+ By a)

V. Almeida, J. J. Betancor, and L. Rodriguez-Mesa

— < CO(MNf(x) ZXxHBeiuw (X) +A Z(MHL(XXi+Bl,~+2w)(x)) r) » XE€ R™.
i=j i=j

By using [15, Lemma 2.3], since £?(*):4(*) (R") is a quasi Banach space, we obtain

‘P( )>a(*)

p(-).q()

P('),q('))

p(-).q()
r

rp()orq (- ))

r

’ yr
rp(-)rq(- ) H ( Xx +Bg,; +2w)

rp(+)rq()

= CH ;XWB""”” p()a()’

From (3.3) and (3.4), it follows that

: )
p()a() P()a()

m
AH Z Xxi+Be, 420
i=j

p().q()

p()a()’
U2, (x; + Be,126 ). By (3.3) there exists C > 0 such

[e)

— |Ex| < Z |xi + Bp,120| = b*° Z b%, keN.

48__ i=k

S
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Proposition 3.1 implies that
lm [My(F)xeelpcy.ac) =0

Hence, the sequence {Y¥,bi}ray is Cauchy in HPC)4C)(R" A).  Since
HPC)aC)(R", A) is complete (Proposition 2.11), the series Y. b; converges in
HPCaC) (R A),

(ii) In order to prove this property, we can proceed as in the proof of (i). Assume
that j € Z. We define Q; = {x ¢ R” : My f(x) > 27}. By putting b; = ¥,y bs,» since,
as we have just proved in (i), the last series converges in H?(*>:4(")(R", A) and then
in §’(IR"), we obtain, for a chosen r > 1 verifying that rp, rq € Py,

My (b)) (x) < Co( M f(x) xa,(x) + 27 3 (Mur (o510 )(x)) ), x €R".

ieN
It follows that

335) | MN(bj)”p(‘)»q(’)

1/r

r

rp<~>,rq<~>)'

<C(IM(Fxallpcyac + 2| ( IE%( Mz (Y 8e,.0)) )

From Proposition 2.2, we get

| (ieZI\I(MHL(X{we,.m})) ) v

r r

<c|(Taena)”

() I\ & (- )ra)
—c|S x
H%X“‘ p()a(5)

< Clxallpcy.a)-
From (3.5) it follows that

IMN (B p(-ya¢-) < COUMNE X, lp¢- a0y + 21 x0, lpc- y.ac))
< CIMy(F)xa;llpcya)-
Since f € HP(*)-4C*)(R", A), by again invoking [15, Lemma 2.3], we have that

1My sy = TN L yra-) < 00

Then by [24, Theorem 2.8] (see [24, Definition 2.5 vii)]), My (f)(x) < o0, a.e. x € R".
Hence, My (f)xq, | 0, as j — +oo, for a.e. x € R". According to Proposition 3.1 we
conclude that | My (f)xa;lp(-),q-) = 0 as j — +oo. Hence, [Mn (b))l p(-),q(-)
0,as j > +oo,and | f = gjl grcrac) mn,ay = 0, a8 j = +oo. ]

By C°(R") we denote the space of smooth functions with compact support in
R™. We say that a distribution h € §'(R”) isin L{ .(R") when there exists a (unique)
H e L] (R") such that

(o) = [ H(x)$(x)dx, ¢eC(®R).
The space S’(R™) L, .(R") is also sometimes denoted by S, (R") and it was studied,

loc

for instance, in [21,56,57].
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Proposition 3.3 Iff € S'(R"),A>0,s,NeN,N>2,ands < N, and f = g+¥ ;. bi
is the anisotropic Calderén-Zygmund decomposition of f associated with My (f) of
height A and degree s, then g € L} _(R™).

loc

Proof LetA>0,NeN,N>2,seN,s<N,and f € §'(R") such that |Q,] < oo,
where Q) = {x € R" : My(f)(x) > A}. We write f = g+ 3 ;. b; the Calderén-
Zygmund decomposition of f associated with My (f) of height A and degree s.
According to [4, Lemma 5.9] we have that
My (g)(x) < CA AT ™ 4 My(f)(x)xas (x), xeR”,
ieN
where

= () t ifx ex;+ (Be+2wit+1\Be;+20+1 ), for some t € N,
= t(x) =
P 0 otherwise.

As shown in the proof of [4, Lemma 5.10 (i), p. 34], we get

f AT gy < .
R™ jeN
Then, since My (f)(x) < A, x € Qf, we obtain that My(g) € L], .(R").

Let ¢ € S(R"). Since for a certain C > 0, we have g * ¢, < CMn(g), k € N, by
proceeding as in the proof of [4, Theorem 3.9] we can prove that for every compact
subset F of R” there exists a sequence {k;}jex ¢ Z such that k; - —o0, as j - oo,
and g * ¢, - GF, as j — oo, in the weak topology of L' (F) for a certain G € L'(F).
A diagonal argument allows us to get a sequence {k;}jen ¢ Z such that k; — —oo,
as j = oco,and g * g, - G, in the weak * topology of M(K) (the space of complex
measures supported in K) for every compact subset K of R”, being G € L} (R").
According to [4, Lemma 3 .8], g * ¢x, > g, as j — oo in S'(R"). If ¢ € C*(R"), we
have that

66 (g =lm [ (g% pi)(x)s(x)dx= [ Gx)g(x)dx
Since C°(R") is a dense subspace of S(R"), g is characterized by (3.6). [ |

Corollary 3.4 Assume that p, q € Py. Then L, (R")nHPC)-4C)(R", A) is a dense
subspace of HP(' )40 (R A).

Proof This property is a consequence of Propositions 3.2 and 3.3. ]

We finish this section with a convergence property for the good parts of Calderén-
Zygmund decomposition of distributions in L}, _(R")nH(" )-4()(R", A), which we
will use in the proof of atomic decompositions of the elements of H?(*»4(*)(R", A),
Proposition 3.5  Assume that p,q € Py, and f € L}, (R")nHP()-4C)(R", A). For
every j € N, f = gj + ¥,y bij is the anisotropic Calderon-Zygmund decomposition
of f associated with My(f) of height 2/ and degree s, with s, N € N, s > so, and
N > max{s, No}, where Ny is as in Theorem 1.1 and sy is as in Proposition 3.2. Then
gj = 0,as j— —oo, in §'(R").
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Proof Since f € L, _(IR"), there exists a unique F € L| _(R") such that

loc
(f:9) = [ F$(x)dx, peCr(®).

According to Proposition 3.3, for every j € Z, there exists a unique G; € L}, _(R") for
which

(3.7) (890 = [ Gi(x)p(x)dx, ¢ eCT(RM).
Let j € Z and ¢ € CZ°(R"). We are going to see that
ZN/R| (F(x) = Pyj(x)) Cij(x)| [9(2)ldx < oo.
For every i € N, by [4, Lemma 5.3], we have that
[ IEG) = Py 0) s ()l g0l

ng F dx +2/|(x;i i+ By, 40) N .
( (x.-,j+Bl,-,j+w)ﬂsupP(¢)| (X)l * |(x1,] ot ) supp(¢)|)

Then
i%fw [(F(x) = Pi,j(x))3i,j(x)[|¢(x)]dx < C( /Supp(¢) IF(x)|dx + 21‘|Supp(¢)|)_

Hence, from Proposition 3.2(i), we get
[ S EE) =P Gi(é(x)dx = 3 [ () = P(0)) () (x)dx
ieN ieN
= Z((f—Pi,j)(i,p‘ﬁ)

ieN
= (X (=P 9).
ieN
Then there exists a measurable subset E c R” such that |[R" \ E| = 0, and
Gj(x)=F(x) - Y (F(x) - P;j(x)){;j(x), x€E and jeZ,
ieN
for a suitable sense of the convergence of series. Note that we have used a diagonal

argument to justify the convergence for every j € Z.
We can write

Gj(x) = F(x)XQ; (x) = > Pij(x){i,j(x), x€E and jeZ,
ieN
where Q; = {x € R" : My(f)(x) > 27}, j € Z. Note that the last series is actually a
finite sum for every x € R".
Let j € Z. According to [4, Lemma 5.3] we obtain
IGj(x)| < C2/, ae xeQ;.
On the other hand, G;(x) = F(x), a.e. x € Q. Also, we have that

|F| < sup f + oil < M ().
keZ,peC (R*)NSy
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Then |G;(x)| < C2/,ace. x € Q. Hence, we conclude that

(3.8) IGj(x)| < C2, ae xeR"
We consider the functional T; defined on S(R") by

19) = [ Gix)¢(x)dx, ¢ e SR,
From (3.8) we deduce that Tj € S'(R"). By (3.7), T;(¢) = (gj» ¢)> ¢ € CZ°(R"). Then
(890 = [ Gi(x)g(x)dx, ¢ eS®RY),
and, again from (3.8), it follows that g; — 0, as j > —oco, in §'(R"). [ |
Atomic Characterization (Proof of Theorem 1.3)

As we mentioned in the introduction, we are going to prove Theorem 1.3 in two steps,
first in the case where 7 = oo and then when r < co.

Proof of Theorem 1.3 when r = co.

(i) Suppose that for every j € N, ajisa (p(-),q(-), 00, s)-atom associated with x; €
R" and ¢; € Z. Here, s € N will be fixed later. Assume also that (A;) jen ¢ (0, 00) and
that

| 5

jeN HXijrBej Hp( <)q(*)

KxitBesl| oy gy

We are going to show that the series 3 ;o Aja; converges in HPC)1aC)(R™ A). Let
&,meN, £ <m. We define fo,m = X.7., Aja;j, and we take ¢ € S(R"). We have that

(4.1)
IMy(fe,m)llpc-y.a¢)

< H;/\jM@(“J')”p(-),q(')

m
C AiMy(a;)xx,
< (H}; Mo (@) Xy Be, v p('),q('))

211 +Iz.

m
e | 2, iMo (8)) 05

We now estimate I;, i = 1,2. We first study I;. Let j € N. Since a; is a
(p(+),q(+), 00,s)-atom, we can write
My(a;)(x) < [ajlool @l < Cllxsene, lp(-) gy X €R™
By defining g; = yx -5, (| Xx;+5, 150+ .q(-y2i)% it follows that
M gi(x) 2 (e, (- .q()45) - X, (7)dy

|B€j+w| xj+ij+w

= b—w( HXxj+Bej H;%'),qt)li) , x€Xj+Bews
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where « € (0,1) is such that p(-)/a, q(-)/a € P;. According to Proposition 2.2 and
[15, Lemma 2.3], we have that

(42) n<c|; 2 Al Lot a) Keemegro |
Hg(MHLg’ e p(a()
< H(i:: MHLgf)/a)a ;/(‘x')/a,q(')/a
: H(g )a Z(a-)/a,q(-)/«
Hﬁ g I Kt |y

Suppose now that aisa (p(-), q(-), o0, s)-atom associated with z € R"” and k € Z.
Let m € N. By proceeding as in [4, pp. 19-20] we obtain

My (a)(x)
1
(bAs_+l)—m
| Xe+Bellp(-)ac)
1 1

—m(s Y
pro- e ( Yern (7)dy)

HXZ+Bk ”p( *)q(*) ‘Bk+m+w+1‘ Z+Bkim+w+1
bm(y_l)A:m(s+1)
—(MHL(XZ+Bk)(x)) y’ xXez+ (Bk+m+w+l\Bk+m+w)~
Ixz+mlpcyac)
Here y is chosen such that yp(-),yq(-) € P;. We now take s € N, satisfying that

b= < 1. We obtain
1

My(a)(x)<C—
Ixz+Blp¢- )00

(Mu (o8 (%)) x ¢ 2+ Brs

By proceeding as above, we get

m
_ Y
(43) 12 < CH;AjHXXj+Bej Hp%-),q(.)(MHL(Xx,-+Bej)) Hp(),q()

-¢|( i“?” Dt Iy Mo (o)) | e

<C”ZA HXx;+Be Hp( ),q( ) Xxj+Be; p()a()’

By combining (4.1), (4.2), and (4.3), we infer that the sequence (Z;‘zo Aja;)ken is
Cauchyin H?(')4C)(R", A). Since H?(*)4(*) (R™, A) is complete (Proposition 2.11),
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the series ) oy Aja; converges in HP()-4C ) (R™) A). Moreover, we get

Aj

ol <]
HJ% T g a0 ) (R, 4) 2

Xx;+Be,
jeN ”X"j‘*BEjHP('))Q(') v

p()a()’

(ii) Assume that f € HP(C')4C)(R", A) n LL _(R™), s > 5o (so was defined in Propo-
sition 3.2), and N > max{Njy, s} (No was defined in Theorem 1.1). We recall that
HPC)aC ) (R A) n L} (R™) is a dense subspace of H?("):4(")(R", A) (Corol-
lary 3.4). Let j € Z. We define Q; = {x € R" : My(f)(x) > 2/}. According
to [4, Chapter 1, Section 5] we can write f = g; + > ycy bj k that is, the Calderén-
Zygmund decomposition of degree s and height 2/ associated with My f. The prop-
erties of g; and b; x will be specified when we need each of them.

As proved in Proposition 3.2(ii), g; — f, as j = +0o, in both HP()»4(")(R", A)
and §'(R"), and in Proposition 3.5, g; = 0, as j > —oo, in §'(R"). We have that

f=>(gin—g) in S'(R").

JEZ
As in [4, p. 38] we can write, for every j € Z,

gj+1_gj: Zhi,j’ in S,(Rn),
ieN

where

iy = (F =P = S (- RINE =PI e

keN

According to the properties of the polynomials P’s and the functions (s it follows that,
for every P € P,

/ hij(x)P(x) dx =0, i,jeN.
]Rn

We also have that, for certain Co > 0, | h;,j|le < Co2/ and supp h; j € xi; + B, ,+40>
for every i, j € N ([4, (6.12) and (6.13), p. 38]). Hence, for every i, j € N, the function
aij=h;;27Cy' HXx,.’jJ,Bei,ij H;} (- 152 (p(+),q(+), 00, 5)-atom. Moreover,

(4.4) f= > Aijai; in S'(R"),

ieN, jeZ

where A; j = 21C| Xij+Be, a0 ||p( ).q(-) foreveryieN, jeZ.
We are going to explain the convergence of the double series in (4.4).
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We now choose 8 > 1such that 8p, fq € P,. Assume that 7 = (77, 7,):N > N x Z
is a bijection. By proceeding as before we get, for every k € N,

k

|2

An(m)

Xkn(my+ By 440

m=0 \|Xx,,<m>+Be,,(m)+4w lpc-y.a() p():a(+)
< CH mz:o ZﬂZ(M)Xxﬂ(m)*'B"n(m)Hw 2(- (")
: (m)/B B
my(m
<] mZ:o(z 7 s By Hp('),qm

. CH Zk: (27 Mgt (X e, 120)) ” (D)

=0
k /B B

. B
ZO(IVIHL(27r (m)/ﬂX"n(m)"Ben(m)””)) ) Hﬁp('),ﬁq(')

: CH ( Z ZHZ(m)X"«mﬁBf'um)ﬂw)WH ﬁ

Bp(-).Ba(+)
C E 2/ E x
: H]eZ zeNX'ﬁBe”“w p(+)sa(+)

< CH Z 21)(9}.
jez.

p(-)a()

Since f € HP( 140" )(R", A), by [24, Thm. 2.8 and Def. 2.5 vii)], My (f)(x) < oo,
ae. x € R". Let x € R" such that My(f)(x) < oo. There exists jo € Z such that
200 < My (f)(x) < 2/°*1. We have that

> Ve, (x) = 3 2 =2 <2Mw (£)().

Jjez j<jo
We conclude that
k An(m)
H mZ::O \|Xxn<m>+Be,,(m,+4w oy Kotaom *Beamyrio | o(),4(-)

B
Bp(-).Bq(-)

An(m) 1/B
H ( o | Xx"(m)+38,,(m>+4w HP( ya(+) Xx”(m>+Beﬂ(m)+4a)) H
< Clflapcrac) @n,a)>

where C > 0 does not depend on (k, 7).
According to [24, Theorem 2.8 and Definition 2.5, v)], we deduce that

Cllf I mec rac) @n,ay-

H Aatm) Xxn(my+Be

w(m) H4®

meN ‘|Xxn(m)+Bl”(m)+4w Hp('),q(') p(+)sa(- )

From the property we have just established in part (i) of this proof, we deduce
that the series ¥,y An(m)@n(m) converges both in HPC)aC)(R", A) and S'(R").
Hence, for every ¢ € S(R"), the series 3., Ax(m){(@r(m)> ¢) converges in C.
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Also, we have that if A:N x Z — N x Z is a bijection, then the series

Z /len(m) <aAon(m)’ (/5)

meN
converges in C, for every ¢ € S(R"). In other words, the series 3. ,,en An(m) (@r(m)> §)
converges unconditionally in C, for every ¢ € S(R"). Hence,

Z )Ln(m)|<an(m)’ ¢)| < 00,

meN

for every ¢ € S(R").
Let ¢ € S(R™). Since ¥ ,en Ar(m)|{@r(m)> $)| < 00, the double series

2 Aijlaij¢)
(i,j)eNxZ
is summable, that is, sup,, . Yi1ci<m, |jl<m Ai,jl{@i,j> §)| < co. Then for every bijection
m:N — N x Z, we have that
(f.¢) = Z(ZAi,jwi,j’ﬁb)) = 2 Aa(m)(@n(m), 9)-
ieN " jeZ meN
Suppose now that f € H?("):4(")(R" A). Then there exists a sequence {f;} jen
in L}, (R") n HPC)4C)(R" A) such that f; = 0, fj > f, as j — oo, in
HPC)-4C)(R™) A), and I fi1 = fill e racy (re,ay < 277 fll o - ) (R, a)» fOr every
j € N. Then we can write
f = Z(f}+l _f])s
jeN
in the sense of convergence in both HP(")4C")(R", A) and S'(R"). For every
j € N, there exist a sequence {A;j}ienv C (0,00) and a sequence {a; j}ien of
(p(-)>q(+), o0, s)-atoms, being for every i € N, a; j associated with x; ; € R"” and
¢ ; € Z, satisfying that

fjJrl _fj = ZA,‘J@,‘)J‘, in S,(RH);

ieN
and
H A Xeo +Be, < C27 | fllmnc a4y -
N HXXi,;“"Be,-,}- ”P())Q() > Lillp(+),q(*) >
Here, C > 0 does not depend on f.
We have that
Aij
2 H P B
ieN,jez | Xxi,j+Be, ;I p(-).q(+) p().a()
Aij
< Axij+Be, ;
jezll it IXee oBe,, (- ya () (- )a(")

< C[ fl e 20> mr,a)-
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Anisotropic Hardy-Lorentz Spaces with Variable Exponents 1247
By proceeding as above we can write

f= Z /ln(m)a,,(m), in S,(Rn),
meN

for every bijection 7: N — N x N.
Thus, the proof of this case is completed. ]

Proof of Theorem 1.3 when r < .

In order to prove this property we proceed in a series of steps establishing auxiliary
and partial results.

Proposition 4.1 Let1<r < oo and let p, q € Py. There exists sq € N satisfying that if
s eN, s > so, we can find C > 0 for which, for every f € HPC')4C) (R, A), there exist,
foreach je N, Aj > 0anda (p(-),q(-),r,s)-atom a;j associated with some x; € R"
and ¢; € Z, such that

< Clf lec rac> (e, ay

-1
HJEZI\;M‘XX“B@ (- y.0) Kb pC)a(c) =

and f = ¥ jen Ajaj in S'(R™).

Proof Supposethataisa (p(-),q(:),o0,s)-atom associated with xo € R"” and k €
Z. We have that

1/r B
lall = ( [ laGordx)" <6 falw <59 el
o+Bj

Hence, aisa (p(-),q(-),r,s)-atom associated with xo € R” and k € Z. Then this
property follows from the previous case r = co. ]

We are going to see that the (p(-),q(-),,s)-atoms are in H?()-4C)(R", A),

Proposition 4.2 Let p,q € Py such that p(0) < q(0). Assume that max{1,q,} <
r < oo. There exists so € N such that if a is a (p(-),q(-),r,s0)-atom, then a €
HPC a0 (R A),

Proof Let ¢ € S(R"). Assume that a isa (p(-),q(-),r,s)-atom associated with
x0 € R" and ¢ € Z, where s € N will be specified later. We have that

My (a)llp(-yqc-) < CUIMp(@) Xxgt By |- ya( )

+ [ My (@) XxosBey o)l o (- na())
= Il + Iz.

It is clear that
(Mg (@) Xxg+Bayen) (1) =0 for t>|xg + Beg| = 0.
Then since 0 < p(0) = lim;_o+ p(t) < g(0) = lim_ ¢+ g(t), we can write

I < C|[ 77040 (M (@) x40y . C|| (My(a))* 0,000y

q(*)
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By using [15, Lemma 2.2] and since r > max{1, q, }, we obtain
L < C[(My(a))" L (0,00) = C[Mg(a)|1r(mry < Clla] L)
< CO™ | xxgrBey I (- ya( ) < 00

By proceeding as in the proof of the case r = oo (see [4, pp. 19-21]) we get
C

lpya()

My (a)(x) < i (Maz(XxorBe, ) (%)) % ¢ X0+ Begsw
Xo+Be,

provided that s > log’;ﬁ -1, where y > lis such that yp, yq € P;. Then Proposition 2.1
implies that
y
1 < N Cteorse ) p i IMELGooep ) v
| xo+Beg ¢+ ya( ) I xxo+Be, I pC- )oa( )
Thus, we have shown that a ¢ H?(*)-4C)(R", A), [ |

Note that the constant C in the proof of the last proposition depends on the atom
a. This fact indicates that this next result cannot be a consequence of Proposition 4.2.
We need a more involved argument to show the following property.

Proposition 4.3  Let p,q € Py with p(0) < q(0). There exist so € N and ry > 1 such
that, for every r > ro we can find C > 0 satisfying that if, for every j €N, 1; > 0 and a;
isa(p(-),q(-),r,s0)-atom associated with x; € R" and €; € Z such that

z A’j‘|Xxj+Bt’j ”I_JE V(- )Xxj+B€j e £PC)a )(Rn))
jeN

then f =3 e Ajaj € HPC)aC)(R™ A) and

-1
1f 1 zec a0 (o, a) < C“je%)tj||xx,-+3ej Ip(- )y X, ()’

In order to prove this proposition we need to establish some preliminary proper-
ties.

Lemma 4.4  Assume that (A ) ke is a sequence in (0, 00), (€k ) ken is a sequence in Z,
(xk ) ken is a sequence in R", v is a doubling weight, that is, vdx is a doubling measure,
(with respect to the anisotropic balls), £ € N, £ > 1, and 0 < p < co. Then

(4.5) | 3 Mteessegse <Cb"|| 3 Mxayom,
keN keN

Le(R",v) LP(Rmv)

Here, C, § > 0 depends only on v.

Proof Suppose first that p > 1. We follow the ideas in the proof of [55, Theorem 2,
p-53]. Wetake 0 < g € L” (R",v), where p' is the exponent conjugated to p, that is,
p'=p/(p-1).Let y € R" and k € Z. We define the maximal operator M, by

M,(h)(z) = |h(x)|v(x)dx, zeR".

1
sup 7/
meZ, yez+By, V()’ +Bm) Y+Bm
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3 Since v is doubling with respect to the anisotropic balls, for a certain & > 0, we have
that
4_

v(y + Bx)
o— f)’+3k+e g(X)V(X)dx : bwﬁ f}“eru g(X)v(x)dx

o gb”f M,(g)(x)v(x)dx, yeR", keZ.
y+Bg
We have taken into account that

11 1 f
M, z)> —— x)v(x)dx, ze€y+By.
i O 2 ;g [, s ey B

Let m € N. We can write

t5— Lo 2 s (e = S [ et

ktDBeve

. _bmm)t v x)v(x)dx.
15 SO  M(V)

X+

20 Hence, the maximal theorem [55, Theorem 3, p. 3] leads to

2 | L5 My, (g0 v(x)d]
R" f2h k

1M, (g) ”LP'(R",V)

m
24__ €8
<b H A
2t e

m
14
21 < Cb”|| Y Aexsn,,
k=0

Lo (RM,v) &l (R",v)

20__ We conclude that

S m
31 H Z /lkXxﬁBuek (x)‘
k=0

< OO 5 Mopen,
k=0

Le(R",v) ~ Lo (Rmv)

33_ By taking m — oo, the monotone convergence theorem allows us to establish (4.5)
34__ in this case.

35__ Assume now that 0 < p < 1. For every xo € R" and ko € Z, we denote by &y, x,)
36— the Dirac measure in R"*! supported in (xo, ko). Let m € N. We have that

38__ fx > AkSisen) (5 )

€y+Betj ko

m
41 = Z Ak [I;"H X{(y,j):xey+Bg+j}(y’j)6(xk,€k)(y’j)
k=0

I m m
43— = 20 M X{(jyweysBen) (K6 €k) = D McXorBewg, (%), X €R™.
k=0 k=0

45 Also, we can write

m m
47— / > M) (157) = 20 Mk XwgrBe (%), x €R™
x€y+B; k=0 k=0

T @
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By arguing as in the proof of [55, Theorem 1, p. 52], replacing the area Littlewood-
Paley functions by our area integrals, we can prove that

fo ilk(s(xkxek)(y’j)‘

Gy+Be+j‘ k=0

Lr(R",v)

m
<cb”| f > MeS(ey 0 (05|
x€y+B; k=0

By letting m — oo and using monotone convergence theorem we conclude (4.5). W

LP(R™v)

We now recall definitions of anisotropic A,-weights and anisotropic weighted
Hardy spaces (see [6,55]).

Let r € (1, 00) and v be a nonnegative measurable function on R”. The function v
is said to be a weight in the anisotropic Muckenhoupt class A, (R", A) when

v(y)dy) ( ﬁ _/HBk(v(y))—l/(r—ﬁdy) 1 < oo.

We say that v belongs to the anisotropic Muckenhoupt class A;(R", A) when

[v]a,enay = sup (o
(R4) xeRn, kez "\ | Bkl Jx+By

1 /‘ -1
v n4) = Su — v(y)d sup (v < 0.
[ ]AI(R A) xER”,I‘;CGZ( |Bk| Xx+Bj (y) y) yex+%k( (y))
We define Ao (R, 4) = Uyzycoo A, (R, 4).
The weight v satisfies the reverse Holder condition RH,(R", A) (in short, v «
RH,(R", A)) if there exists C > 0 such that

1 ; 1/r 1 .
(M‘/’;JFB (V(}’)) d}’) SC@ /x\«{»B V(}/)dy, XER 5 and keZ

The classes A,(R", A) and RH,(R", A) are closely connected. In particular, if v €
A1(R", A), there exists a € (1, 00) such that v € RH,(R", A) ([37, Theorem 1.3]).

Let1<r < ooand v € A, (R", A). For every N € N, the anisotropic Hardy space
H (R", v, A) consists of all those f € §'(R") such that My(f) € L"(R",v). There
exists Ny, € N satisfying that Hy(R",v,A) = Hy (R",v, A), for every N > N,.,.
Moreover, when N > N, ,, the quantities | My (f)|r(rn,v) and [Mn,, (f) ] zrn,v)
are equivalent, for every f € Hy (R",v, A). We denote by H"(R", v, A) to the space
Hy (R",v,A).

By proceeding as in the proof of [55, Lemma 5, p. 116], we can obtain the following
property.

5V

Lemma 4.5 Let p € (0,00) and q > max{l, p}. Assume that v € RH(4/p) (R", A).
Then there exists C > 0 such that if, for every k € N, the measurable function ay has its
support contained in the ball xy + Be,, where xi € R", €y € Z, | ax|q < | xx+8e, |g» and
Ak > 0, we have that

h
keN

< CH %AkXxHBek
€

Le(R7,v) L (R™,v)

If1 <r < ooand N € N, we say that a function a € L"(R") is a (r, N)-atom
associated with xo € R” and j, € Z, when a satisfies the following properties:
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1 Anisotropic Hardy-Lorentz Spaces with Variable Exponents 1251
2__
3 (i) suppac xq + Bj,,
4 (i) [af, <br,
5 (iil) fpn a(x)x%dx =0, forall |a| < N, @ € N".
6— The next result is an anisotropic version of the second part of [55, Theorem 1, p. 112].
7
8__ Lemma 4.6  Let0 < p < co. Assume that v € RH(q/,) (R", A) where q > max{1, p}.
9__ There exists Ny € N and C > 0 such that if, for every k € N, ay is a (q, Ny)-atom
10__ associated with x € R" and €y € Z, and Ay > 0, satisfying that
11 oo
i: H ];)Lk)(kaek PR ) < o0,
14 the series Y 11 Axay converges in both S'(R") and HF (R",v, A) to an element f €
15 HP(R",v, A) such that
16__ oo
1;— | £ Ieze (e 0,0y < CH kZ::l/\kXowek LP(Rn,y)
1o— Proof Suppose that a is a (g, N)-atom associated with xo € R” and ¢y € Z. Here
20— . .
o1 N e N will be specified later.
o We choose ¢ € S(R"). We now estimate | M (a)| pq(rn) by considering in a sep-
03 arate way the regions xo + By, +w and (xo + Bgy1w )S.
24* Since g > 1 the maximal theorem ([4, Theorem 3.6]) implies that
25__ 1/q
- ([ Kerrmipen COM (@) () 0) " < [My () 1agany < OB/ < COUr,
21 Hence, the function o = & Xx+Be,,., My (@) is a (g, —1)-atom associated with xo
28— and £y + w. The index —1 means that no null moment condition needs to be satisfied.
29— By proceeding as in [4, p. 20] we get, for every m € N,
30—
31 Mq;(a)(x) < C(b/\z_\[+l)7m> X € Xo + (B€0+w+m+1 N B€g+w+m)~
32— We define pyn = Xxo+Byyimen> M € N. Itis clear that p,, isa (g, -1)-atom associated
33— with x¢ and € + w + m + 1, for every m € N, and that
34__
35 X(XMB%W)ch,(a) <C Z (b)tfﬂ)fmpm_
36 meN
37 Hence, we obtain
38_ (4.6) My(a) < C(Bo+ X (BA)™p,, ).
30__ meN
40 Here, C > 0 does not depend on a.
4 Suppose that k € N and, for every j € N, j < k, A; > 0 and a; is a (¢, N)-atom
22 associated with x; € R" and ¢; € Z. According to (4.6) we get
4 k k NI
05 My( D2 2ja5) < C( D2 4;(Bos + 3 (BAY) p, ),
a0 j=0 =0 m=0
47: where By j and p,, j, j = 1,...,k, and m € N have the obvious meaning and are
r (q,-1)-atoms. By using Lemmas 4.4 and 4.5, and by taking p; = min{1, p} we have
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that

H Z)‘ al| H? (R",v,A)

el St O o
( AE’H)_mpl Zk:AJP"’f’ LP(R",v) H Z Jﬁo]‘ Lr(R", "))

§ 41

mp, § 41
(mze;\](b/\Nﬂ) p Z /\JXxJ+Be st || o gy + H ;)Aj)(xj+3gj LP(R",V))
< C( Z (b/\NJrl)—mplb&mpl " 1) H Z)l P
T = Xxi+Bejow | 1y (v

for a certain § > 0. Hence, if (6 —1)Inb/In(A-) < N + 1, we conclude that

” Z j ]HHP(]R” vA) ” ZAJX"ﬁBe

Le(R",v)
Standard arguments allow us to finish the proof of this property. ]
From Lemma 4.6 we can deduce the following.

Lemma 4.7  Assume that p,q € Py, po € (0,00), go > max{l,po} and v €
A1(R", A)NRH 4,/p,) (R", A). Suppose that, for every k € N, Ay > 0 and ay is a
(p(+),q(-), qo, N1)-atom associated with xj € R" and &y € Z, satisfying that

H Z/‘k||Xxk+Bek Hp( ),q( ) Xxk+Be,

<
keN Lro (R",v)

Here, N, is the one defined in Lemma 4.6.
Then the series f = ¥ ey Ak ax converges in HP*(R", v, A) and

U iecas oy < € 2 Aelitosn ke tsot |

Here C does not depend on {1y }ken and {ag } gen-

Proof It is sufficient to note that, for every k € N, ai|xxene, [p(-).q(-) is 2
(qo> Ny)-atom and v is doubling with respect to anisotropic balls. ]

Proof of Proposition 4.3 We choose & > 1 such that ap,aq € P, so we
have (ap)’,(aq)’ € P,. We recall that the dual space (£L#P()-a()(R"))*
of £Lor()aaC)(R") s £(@P(+))(@a())(R") and the maximal operator My is
bounded from £(©P())"(«4(*))"(R") into itself (Proposition 2.1).

In the sequel our argument is (as in [15]) supported in Rubio de Francia iteration
algorithm. Given a function h we define MY, (h) = |h| and, for every i € N, i > 1,
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ML, (h) = Myg o M7} (h). We consider
Miy; (h)

R(h) =3

iz0 2/ |Mm1 ”Eocp( ) (aq( )’

We have that
() [H < R(h); -
(i) R isbounded from £(#P())-(«a(*))"(R™) into itself and

IRCA) N ¢apc-yycaat-)y < 200l ap(- )y aqc-)ys

(iii) R(h) € A (R", A)and [R(h)]a,®n,a) < 2| MuL | (ap(-)),(aq(-)) - Hence, there
exists B9 > 1such that R(h) € RHg, (R", A).

We choose r > max{l, g, } such that R(h) € RH(,q) (R", A). It is sufficient to take
r>max{l,qs, Bo/(«(Bo —1))}.

Suppose that k € N and, for every j € N, j < k, A; > 0 and a; is a
(p(-)>q(-),r, Ny)-atom associated with x; € R" and ¢; € Z. Here, N; is the one
defined in Lemma 4.6. We define f; = Z?:o Aja;j. According to Proposition 4.2,
fi € Hp(-),q(')(Rn,A)_

By R(h) € A;(R", A) N RH(,qy (R", A) and Lemma 4.7, f € H/*(R",R(h), A)
and

k
-1
A7) | felgyve@nrny.a) < CH ;}MHXWBQ Io(- a0y XxyeBe, L/ (R R(R))’

Let ¢ € S(R™). By using [15, Lemma 2.3] and [24, Lemma 2.7], we can write

IM Y oy = IO Lap(-yaq( )
<Csup [ (My(f) ()" h(x)d,

where the supremum is taken over all the functions 0 < h e £(®P(*))’(xa(-))" (Rm)
such that HhH(ap( )5 (eq( ) <l
By the above properties (i), (ii), and (iii) and (4.7), for every

0 < e £(xP( ) (@) (R
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such that || ap( - )y, (aq(-))y <1 we get
[ My (f) () h(x)dx
< [ (M0 () R(h) (x)dx

k _ 1/a
<C [ (XM, Ity Koo (1)) RO ()
j=0

k . 1o
< CH (;A;I\Xxmse,» I5¢-yac- )X"ﬁBej) IRCA) | (ap(-)y,(aaC- )y

ap(+)axq(-)

1/« L
Sy ElcapCoyeac )y

k
-1
<C| 2 il (-, q0 ) Ko |
j=0
1/«

p(-)a()

k
< CH Z(:] A‘j‘|Xxj+Blj “;E “)q(- )Xxj+Bej
]:

Hence, we obtain

k
-1
I ficl Epcrac> o,y < CH];)MHXWB@ Ip(-y.a(- ) XxjeBe, o( ()

We finish the proof by using standard arguments. ]

Finite Atomic Decomposition (Proof of Theorem 1.6)

The proof of this result follows the ideas developed in [6,45]. Here we only show those
points where a variable exponent Lorentz space norm appears.
(i) Assume thatrg < r < oo ands € N, s > s, rg and s¢ being the parameters
appearing in Theorem 1.3(i). By using this result, we get that
HP( *)a(- )’r’S(Rn,A) c HP( )a(+) (R“,A)

fin

and, for every f € HEC )t )’r’S(R”,A),

fin
[ lrzecacr @,y < ClFlgpc s (g gy
We now prove that there exists C > 0 such that | f| (0 s < C, provided
fin

that

(R",4)

fe Hgfl.),q(-),r,s(Rn)A) and Hf”HP(')v'i(')(R",A) =1.

Let f € Hfifl')’q(')’r’s(R",A) such that || f|| go(- yac+) (rn,4) = 1. We have that f €
L"(R") and supp f ¢ B, for some mq € Z. For every j € Z, we define the set
Qj = {x e R" : My(f)(x) > 2/}, where N € N, N > max{No, s} (here Ny is as
in Theorem 1.1). According to the proof of Theorem 1.3 and [6, p. 3088], for every
i€ Nand j € Z there exist ; ; > 0and a (p(-),q(-), o0, s)-atom a; ; satisfying the
following properties:

(@) f =X ;Aijai,j> where the series converges unconditionally in §'(R").
(b) |/1i,ja,-,]-| < CZJ, ieN andj € Z;
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and for certain sequences {x; ;}ien, jez € R" and {€; }ien, jez € Z,

(c) supp(ai ;) © xi,j + B, ;1405
(d) Qj =Ujen(xi,j + Be, j+40)3
() (xij+Be,;-20) N (xk,j+ Bey ;-20) =@, j€Z, i,k eN, i # k;

-1
(f) H ,'ENZJ:EZAi’j ‘|Xxi,j+Bei’j+4w Hp( < ),q( - )Xxi,j+Blg,j+4w p(+)a(+)

< C[ fllaec 20> mrn, 4y = C-
The constants C in (b) and (f) do not depend on f.
By using (b), (c), (d), and (e), we obtain

/Rn >3 ijaij(x)|dx

je€Z ieN
<C Z Z 2j|x,<)j + Bgi’j+4w|
J€Z ieN
<C Z 2" Z |.X',',j + Bfi,j—2w| =C Z 2]| U(xi,j + BZ,-,]-+4w)
j€Z  ieN jeZ ieN
<CY 2|0 = cf 3 2 ya, (x)dx < cf My (f) (x)dx.
JEZ R" JEZ R"

Note that My(f) € L'(R"), because f is a multiple of a (1,7,s)-atom. Let m =
(m,m):N - N x Z be a bijection. We have that [p, ¥ ,en [Ar(m) @r(m) (x)]dx <
co. Then there exist a monotone function y:N — N and a subset E ¢ R” such
that 3,y [Ar(u(m)) @n(u(m)) (x)| < oo, for every x € E and [R"\E| = 0. Hence,
Y et | Az(m) @r(m) (%)] < oo, for every x € E. Since the last series has positive terms,
we conclude that the series 3. ,,en Ax(m)@x(m)(x) is unconditionally convergent, for
every x € E, and ¥ eny An(m) @n(m) (%) = ¥ jez(Zien Ai,ja1,j(x)), x € E. Moreover,
the arguments in the proof of Theorem 1.3(ii) (see also [6, pp. 3088-3089]) lead us to
f(x):Z( Zli,jai,j(x)), x€eE.
je€Z = ieN
We have that
1) My () (%) < Gl X8y 501,90y X € (Bmpraw)"-
Indeed, let x € (Byy+40 )¢ It was proved in [6, pp. 3092-3093] that

My(f)(x) < C inf My(f)(w).
Then we obtain

MN(f)(x) < HXB

inf [Mn(f)(u)]xB,,

X3 [ 1.0y | 5B p(1a()
c S M,
“Mva I, N Bumg llp(+).q(+)
[ Xy 620
C

S IMN(O) ()
H)(Bm0 Hp( )q(+)

< Crl X (- ya-)-
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Thus, (5.1) is established.
We now choose jo € Z such that 2/° < Ci[| ¥5,,.a [ 5( - y,4¢-) < 2", where Cy is
the constant appearing in (5.1). We have that

Qj ¢ Bngraw>  J > Jjo-

By following the ideas developed in [45] (see also [6]), we define

h = Z Zli,ja,-,j and [: Z Z)L,')ja,')j.

j<jo ieN j>jo ieN
Note that the series converges unconditionally in §'(R") and almost everywhere. We

have that Ujs j, Q; © Byy+40- Then supp [ € By i44- Since supp f ¢ By 140, We also
have that supp h ¢ B,;,14,. As above, we can see that

[ Z Z |/\i,ja,-,]-(x)x“|dx = f z Z |)Li,jai,j(x)x“|dx < 00.
R" i5jo ieN Bmg+ia j>7jq ieN
Then [, [(x)x%dx = 0, for every « € N” and |a| < s. Since [p, f(x)x%dx = 0, for
every a € N” and |a] < s, we also have that [, h(x)x*dx = 0, for every a € N" and
la <'s.

Moreover, by using (3.3) we get

|h(x)| < C Y27 <C2° < Cy s
j<jo

[
mosaa lp(-).a(-)"

Here C, does not depend on f. Hence, h/C, isa (p(+),q(), o0, s)-atom associated
with the ball By, 40.
As in [6, Step 4, p. 3094], we can see that if

Fy={(i,j):i€eN, jeZ, j>joandi+|j|<]J} and L= > Aijai
(i,j)eFy

for every J € N such that J > |jo|, then limj_, ;e [; = [, in L"(R"). Moreover, we can
find J large enough such that [-[;isa (p( ), q( ), r,s)-atom associated with the ball
Big+4w- Wehave that f = h + [; + (I-[}) and

HfHHP( 2407 s (R, A)

< H C XBumg+to
< C2
| XBugssa o)
Xoxi,j+Be jrao my+4w
4 Z Ai ) it e . XB . ”
(20 I XBugasa [ () 1PC 0D

J
(i-j)eFy HXxi,j"'Be,-,jJrzlw

Axi,j+Be, a0

sorere] (i,%:EFJAi’j [PEE- R PYE WIE HP('W')) :

Thus, (i) is established.
(ii) This assertion can be proved by using Theorem 1.3 and by proceeding as in
[6, Steps 5 and 6, pp. 3094 and 3095] (see also [45, pp. 2926-2927]).
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Applications (Proof of Theorem 1.7)

In this section, we present a proof of Theorem 1.7. We have been inspired by some
ideas due to Cruz-Uribe and Wang [15], but their arguments have to be modified to
adapt them to the anisotropic setting and variable exponent Lorentz spaces.

First of all we formulate the type of operator that we are working with. We consider
an operator T:S(R") — §’(R") that commutes with translations. It is well known
that this commuting property is equivalent to both the fact that T commutes with
convolutions and that there exists L € $'(R") such that

T(¢)=Lx¢, ¢eSR").
Assume that:
(i) The Fourier transform L of L is in L (R").

This property is equivalent to that the operator T can be extended to L*(R") as a
bounded operator from L*(R") into itself.

We say that T is associated with a measurable function K: R”\{0} — R when, for
every ¢ € L (R"), the space of L* (R")-functions with compact support,

(61) T(§)(x) = [ K(x=y)p(dy, x¢supp.

We assume that K satisfies the following properties: there exists Cx > 0 such that
(i) |K(x)| < pf—;) x e R"\{0},
(iii) for some y > 0,

LICO LI
[K(x=y) = K(x)| < Ck 07, b7p(y) <p(x).
p(x)”

An operator T satisfying the above properties is usually called a Calderén-Zygmund
singular integral in our anisotropic context. These operators and other ones related
with them have been studied, for instance, in [4,40,59]. In [59] some sufficient con-
ditions are given in order that a measurable function K: R”\{0} — R defines by (6.1) a
principal value integral tempered distribution having a Fourier transform in L* (R").

If T is an anisotropic Calderdn-Zygmund singular integral, T can be extended
from L*(R") n L?(R", v) to L?(R", v) as a bounded operator from L?(R",v) into
itself, for every 1 < p < co and v € A,(R", A), and as a bounded operator from
LY(R™,v) into L>>(R",v), for every v € A;(R", A). Also, anisotropic Calderén—
Zygmund singular integrals satisfy the following Kolmogorov type inequality.

Proposition 6.1 Let T be an anisotropic Calderon-Zygmund singular integral. If
veAj(R", A) and 0 < r < 1, there exists C > 0 such that, for every xo € R" and € € Z,

mel I Tf(2)["v(x)dx < Cv(xo + Be)' ™" fRn |f(x)|v(x)dx)r, FeL\(R",v),
Here, C = C([v]a,(rr,a)>T)-

Proof This property can be proved by taking into account that the operator T is
bounded from L'(R",v) into L* (R", v), provided that v € A;(IR", A). Indeed, let
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ve A (R",A)and 0 < r < 1. For every f € L'(R", v), we have that
[ AT rvdx
a+B,
- rf M W({x € a+ Be: |Tf(x)] > A})dA
0

. If 1z,
scfo ) 1mm{v(a+3e),%}d)t

HfHLI(Kn,V)

TatBY g oo .
<c(va+Be) [T NN iy [, V20N

V(a+Byp)
<Cv(a+Bo)( fR F)(x)dx) . n

In order to study Calderén-Zygmund singular integrals in Hardy spaces it is usual
to require on the kernel K more restrictive regularity conditions than the above ones
(ii) and (iii).

As in [4, p. 61] (see also [35]) we say that the anisotropic Calder6n-Zygmund sin-
gular integral T associated with the kernel K is of order m when K € C"(R"\{0})
and there exists Ck,,,, > 0 such that for every x, y e R", x # y,

CK,m
p(x-y)

where k is the unique integer such that x — y € By,;\B. Here K is defined by

(6.2) |(8;E)(x,A_ky)| < =Cxmb™*, aeN", |af<m,

K(x,y)=K(x - A¥y), x,yeR", x - ye By, \Bx.

Asit can be seen in [4, p. 61] this property reduces to the usual condition in the isotro-
pic setting.

In order to prove Theorem 1.7 we need to consider weighted finite atomic aniso-
tropic Hardy spaces as follows.

Let p,qe Py, r>1,s€N, pg e (0,1) and v € A;(R", A). The space

p(+),q(" ).
Hpoonin = (R 4)

consists of all finite sums of multiple of (p(-),q(-),r,s)-atoms and it is endowed
with the norm | - | HEC a0 0 (1) defined as follows: for every

e R ),
I ;o0 o
1/po

k
LI(R",v) Hf= lejaf}’

1

k
= inf{ H ;Afo i3, 10 gy Ko,

where the infimum, as usual, is taken over all the possible finite decompositions. Note
that according to Proposition 4.2, if max{1, g, } < r < co and s > s¢, being s, the same

as in Proposition 4.2, then Hﬁév)fqlﬁl 1S (RMA) = Hfifl' -4 )rs (R1 A g sets.
The following property will be useful in the sequel.
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Lemma 6.2 Let p,q € Py, max{l,q,} < r < oo and s € N. There exists sy € N such
that if s > so, po < min{p_,q_} and v € A;(R", A) n LPC)/Po)-(a()/po) (R e
can find C > 0 such that, for every f € Hgtfv)fq;i )rss (R", A),

”fHHi((),V)}?'E T )rs (R",A) < C”fHHPO (R",v,A)-

Proof The proof of this property follows the same ideas as in the proof of Theo-

rem L.6. Let so be as in Proposition 4.2 and let f € Hisv)fezi )»r,S(Rn)A), with s > 5.

Then f € Hgfl')’q(')’r’s(R”,A) and there exists my € Z such that supp f c B,,,.
Also, f € L"(R") and, as we proved in (5.1), My(f)(x) < Ci|xs

X € (Bm0+4w)c.
Assume that || f gro (n,v,4) = 1. Our objective is to see that

-1
p(+).q(-) When

mo |

HfHH,’Zf,,},)f’?,f'"”S(R",A) <C,

for some C > 0 that does not depend on f.

A careful reading of the proof of [6, Lemma 5.4] allows us to see that there exist a
sequence {x; k }ien ez © R", a sequence {¢; i }ien kez C Z, and a bounded sequence
{bi,k}iEN,kGZ such that

D) f= Tkez(Tien 250ik),

where the convergence is unconditional in §’(R") and almost everywhere of R";
(i) foracertains; €N, [p, b; x(x)x*dx =0, « ¢ N" and |a| < 53

(iii) supp(bik) € Xik + Be, ,+40> k € Zand i € N;

(iv) Q= {xeR": My(f)(x)>2"} = Uien(xix + Be, 140 )5 k € Zs
(v) thereexists L € Nforwhich §{j € N: (x; x+Be, ,+20 )N (Xjk +Be; +20) # D} < L,
ieNandk e Z.

We define, for every k € Z and i € N,
Aik = 2¢ ”Xx,-,k+Be,.,k lpc-).qc-) and  ai = bi,kHXx,-,wBe,,,k H;%-),q(~)'

There exists Cy > 0 such that Coa; x isa (p(-),q(-), c0,s;)-atom, for every k € Z
and i e N.
We have that

S

k
! ||Xxi,k+3ei,k ”iz'),q(')

Xxii+Be, (x)

< C2koyq (x), keZandxeR"

Then

| Syan |

Lk
keZ ieN ‘|Xxi,k+3£’;,k ‘ ﬁ'),q(‘)

kpo .
< CH Z 2 X LY(R",v) < CHMN(f)p HLI(R",v)
keZ

= CIMN () [ gy = LA -

LY(R",v)
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We now choose kg € Z such that 2k < | X8, H;} .q(-)- We define, as in the proof of

Theorem 1.6,
h=> > Aikaix and [= > > Aikaik,

k<kgo ieN k>ko ieN
where the convergence of the two series is unconditional in §'(R") and almost ev-
erywhere of R”. We have that:
(i) There exists C; > 0 independent of f such that h/Cyisa (p(-),q(+),00,s1)-
atom;
(ii) By defining, for every J € N, Fy and [} as in the proof of Theorem 1.6, there exists
J1 € Nsuch that [ - [} isa (p(-),q(-),r, s )-atom;
(i) f=Ci&+(1-1,)+10,.

Then for s > max{sy, 51}, we can write

g 00 o

< ‘Cfﬂ Xﬁ:‘o + Xﬁz‘o
1X8us 5200 1800 I
4 Z Af(;( Xxi,k‘*‘Bt‘,»’k}:-:m
(i,k)eFy, ' ‘|Xxi,k+B£i’k+4w||p(-)’q(~) LY(R",v)
B B,
co(ie—2Bm) ) _c(1e —UOm) )

1XB 150500 1By 15 V2003100

< CL* [Vl ep(y/poycat poy)
The last inequality follows, because £(P(*)/20)(aC-)/po)" = (£p(-)/po,aC-)/po)! (see
[24]), since py < min{p_, g-}, and then
V(B ) = fR X8y (X)V ()X < X8, [ )/p0.aC )00 [V (o 1p0) (a1 00

Hence, | | pc-)ac- RS where C does not depend on f. [ |
po>v-fin >
We now prove a general boundedness result for sublinear operators.

Proposition 6.3  Assume that p,q € Py, p(0) < q(0), 0 < py < min{p_,q-,1},
max{1l,q, } <1, and s € N. There exist sg € N and ro > 1 such that if s > so, v > rq and
T is a sublinear operator defined on span{a : aisa (p(-),q(-),r,s)-atom}, then the
following hold.

(i) T has a (unique) extension on HP(' )40 )(R", A) as a bounded operator from
HPC a0 (R™ A) into £LPC)4C) (R™), provided that for each

Ve Al(Rn, A) n RH(,,/PO)/(RH, A)

there exists C = C([v].a,(rn,4)> [V]RH(r/PO)'(R”xA)) > 0 such that

V(X() + Bgo)l/‘Do
Per N OIS
forevery (p(-),q(+),r/po,s)-atom a associated with xo € R" and €, € Z.

I Tal Leo (n,vy < C
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(i) T has a (unique) extension on HP( )10 )(R", A) as a bounded operator from
HPC)aC ) (R™, A) into itself, provided that for each v € A, (R", A) NRH(;/p,y (R", A)
there exists C = C([v] .4, (rn,a)> [V]RH(r/po)’(Rn’A)) > 0 such that

v(xo + Bg, )P0

HXX0+BID ”P( *)q() ,

| Tal geo (rn,v,a) <

forevery (p(-),q(+),r/po,s)-atom a associated with xo € R" and €, € Z.

Proof (i) Suppose that for every v € A;(R", A) n RH(,/p,) (R", A) there exists
C > 0 such that, for every (p(-),q(+),r/po,s)-atom a associated with x, € R"” and
g() € Z,

v(xo + Bg, )/

HXXO'*'BeU HP( )q(+) .

(63) H TaHLpo (R",v) <C

Here, C can depend on [v] 4, (n,4) and [V]RH(Y/,,O)'(R",A)‘

The set Hflfl »aCDrlpos(Rm A) is dense in H?()2(*) (R, A) (see Theorem 1.6).
Hence, in order to see that there exists an extension T of T to H?(*)1(*)(R", A) as
a bounded operator from H?(")4C)(R", A) into £(*)-4C*)(R"), it is sufficient to
prove that, there exists C > 0 such that

1T (- ynq-) < CHfHHP('M(')(Rn,A), fe Hﬁ]ﬁ')’q(')’”"“’s(R",A).

Letf € Hgfl' »-a(*)r/pos(Rn A). Asin the proof of Proposition 4.3, Rubio de Francia’s
iteration algorithm allows us to write,

ITCE a0 = ITE Lo ypuat s < s6p [ TSI R(x)dx,

where the supremum is taken over all the functions i € £(®()/P0)(a(-)/po)’ (R™)
such that [ (5(-)/p0).(q()/po)” < 1. Also, there exists r; > 1 such that if r > r;, we

can find C > 0 such that for every h € £L(PC)/Po)-(a(-)/po)" (R,

Rh e A](RH,A) N RH(r/po)/(Rn,A) and [Rh]Al(]R",A) + [Rh]RH(r/pO)’(]R"’A) <C.

Let h e £®C)/po)-(a(-)/po) (R such that IRl (oY po)a(a(- Y po) S 1. We are
going to estimate || T'(f) | 1eo (rn,r)- As it was mentioned above

HE 0 (R, ) = HEC TP (R, 4).

We write f = Z;Ll)tjaj, where for every j € N, j < k, A; > 0 and g is a
(p(+),q(-),r/po,s)-atom associated with x; € R” and ¢; € Z. Since 0 < py < 1
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2
3 and T is sublinear, from (6.3) we deduce that
4 k
. T ey = [, TGP R < 242 [ [Ta, ()P Rh(x)dx
=1
6
7 Zk: Rh(x] + Bg )
o~ =R
9__
10 _ CH ZAPO Xxi+B€ ’ 1 )
11 ||Xx,+Be HP( ).q LI(R",Rh)
ii As established in the proof of Proposition 4.3,
14 Rh € A, (R", A) 0 £PC)/p0)(al)/po) (R,
15— According to Lemma 6.2, the arbitrariness of the representation of f leads to
16
17_ IT(f) | ro re,ry < ClLf | Erro e, RE,4)-
18— Since R is bounded from £(P()/P0)"-(4(-)/po)" (R™) into itself, we can write
19__
oo I T zeo . rmy
21 < Clf limoqainny < C [, (Mu()(x) Rh(x)dx
22
23 <IN Do 3p0.aC oo IRBL om0 aC- yipo)
;;17 < CH(MN(f))PO Hp( )/Po-q(*)/po = CHMN(f)HP( ),q(*) CHf”HP( »4(*) (R",A)°
26__ provided that h ¢ L(P( “)/po)"(a(+)/po)’ (Rn) and Hh”(p( Y/po)»(a(*)/po)’ <l
27__ We conclude that
22* 1T pc-yea) < CUf lmpc 0> @n,a)»
30 and the proof of (i) is finished.
(ii) We proceed in a similar way as in the proof of (i). Assume that ¢ ¢ S(R"
31 p Y p ¢
3 such that [ gdx # 0. Let f € Hgﬁ')’q(')’r/p"’s(R”,A), with s > s9, and s as before.
33 We have that
227 HT(f)| HPC )aC ) (R7,A) < CHMO(Tf)|p( )q(+) = CH(Mg(Tf))P" Hp(')/po,q(')/po
36 < Csup [ (MO(TF)(x))P Rh(x)dx
37—
38 < Csup | T(f) ”HPO (R",Rh,A)’
‘3“9)* where the supremum is taken over all the functions h ¢ £®(*)/P0)"-(a(-)/po)" (R")
a1 such that HhH(P(')/po)’,(q(‘)/po)’ <L
— We now finish the proof in the same way as (i) provided that, for every v ¢
fé: A1(R", A) N RH(;/p,) (R", A) there exists C > 0 such that
44__ v(x;j + B, )P
45 | Tal zro (g v,y < €
i [xes+Be, lpc-y.a0)
47 for every (p(-),q(-),r/po,s)-atom a associated with x; € R" and ¢; € Z. Here, the
48 constant C can depend on [v] 4, (r», 4y and [V]RH(V/PO),(Rn)A). ]
O— —
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We now prove Theorem 1.7 by applying the criteria established in Proposition 6.3.

Proof of Theorem 1.7(i) Assume that a is a (p(-),q(),r/po,s)-atom associated
with xo € R" and € € Z, and v € A;(R", A) N RH(;/p,) (R", A). Here, po, 7, and s
are as in Proposition 6.3. We can write

ol = [, T@EPds [ [T@@Pvds

=L +1,.

According to Proposition 6.1 there exits C > 0 such that

I < Cv(xo + Bgow)lfpo(fw la(o)lv(x)dx) "

< CV(XO + Bg0)17p°|Bgo|pO

X[( 1 |a(x)\’/p°dx)p0/r( ! y(x) 7P dx

|Bfo| *o+Be, |Bfo| *o+Be,

)1/<r/pn>'] po

We have used that v is a doubling measure.
Taking into account that aisa (p(-), q(-), 7/po, s)-atomand v € RH(,/,,) (R", A),
we obtain
1

| Xo+Bey [ p (- y.a(-) 1 Beo| Jx0+Be,

1=po Po bo
I < Cv(xg + Beyrw) P°|Bg,] ( v(x)dx)

v(xo + Be,)

5 .
HXonrBe(, HP(E Yq()

Note that C = C([v]4,(rn,4)» [v]RH(r/po)’(Rn’A)).

Since a isa (p(-),q(-),r/po,s)-atom associated with xo € R" and &, € Z, by
using the condition (6.2) and by proceeding as in [4, pp. 64-65] we deduce that for
every x € (xo + Boywres1) > (X0 + Bogswse), with £ € N,

Ta(x)] < Cb™ sup s [ la(y)ldy
xo+Be0

zeB_,p
< CoO ()" B, [T ],
< Cb—fob—t’(@ﬂ)bfn/(r/po)’Ha”r/p
< CoPl (p(x = x0)b™ ™) OVl .,
where § =mIni_/Inb.

Then
pLo(d+1) B, |Po/T
|Ta(x)| < C———57 ~Eopofr Be|
p(x —xo) HXxo+Be0 “p( +)a(+)
|Beo|6+1
= > X ¢ Xo + Beo we
p(x - xo)&“”)(:c0+3e0 Hp( *)q(") '
Thus,

B p0(5+1)
12 < C | €0| ‘/(\ V(x) dx

HXonrBeoHiz'),q(-) xo+Begw)¢ P(X = x0)Po(8+) 77
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Since
(xO + B€o+w)c = 'UO(xO + B€o+w+i+1) N\ (XO + B€0+w+i),
i=

b€0+w+1 < P(x _xo) < b€0+w+1+1)

for every x € (xg + Begrw+it1) > (X0 + Begsw+i)» i € N, we have that

v(x)
. S A— |
f(x0+B€0+W)[ P(x - XO)PO(‘S'H) x

||P”48

I o,
i=0 < (x0+Beg+w+i+1)N(X0+Beg+w+i) P(x - xO)‘DO((SH)

b—(€0+w+i)p0(6+1) v(x)dx

0 Xo+Beg+w+iti

<

e

1

oo
< [V]ay(rm,ay D b P g, il essinf  v(x)
i=0 xX€x0+Begtw+itl

<B[v]ay e ay D b Do) egginf y(x)
i=0

xsx0+Bg0

1

< b[v]a,(mn,a) Bl v(z)dz Y pi(Po(8+1)=1) p=(Co+w) (po(8+1)-1)
0 i=0

X0+Be0
1 b~ (Gotw)(po(8+1)-1)
= b[V]Al(R")A)E 1— h-Po(8+1)+1
Note that pg > 1/(8 +1).
We get

v(xo + By, ).

v(xo + Bg,)

I < C[V]Al(R"’A) Po >
HXxo+Be0 Hp( Yq()

where C does not depend on v.
Hence, for a certain C = C([v]a,(rn,a), [V]rH,,,, , (R7,4))>

v(xo + Be,)
I Ta H{Z’m (Rn,y) = : Po :
”XX(H'BeU ”p( g+
We complete the proof by applying Proposition 6.3(i). ]

Before proving Theorem 1.7(ii), we establish the following auxiliary result.

Lemma 6.4 Let ¢ € S(R") such that supp ¢ ¢ By and [ ¢(x)dx # 0. Assume that
L € 8'(R") and that Ty, is a Calderén-Zygmund singular integral of order m. Then for
every £ € Z, the operator Sy = Ty, o Ty is a Calderén-Zygmund singular integral of
order m. Moreover, if S,y is associated with the kernel Ko, there exists C > 0 such that

sup{ ||S¢) [ so» Cke» Ciceum } < C.
£eN

Proof Let ¢ € Z. For every v € S(R") we have that
Sty () = T (Te(w)) = pe x (Lxy) = (L * pe) * y.
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2__ —~ —

3 Hence, S(¢) = Trug,- Since |pe| < [|¢]1> the interchange formula leads to [|S¢¢y]|eo =
4_ ILdeloo < |IL]|oo|@]1- According to [53, p. 248], L * ¢ is a multiplier for S(R”) and,
5 for every y € S(R"),

6

. W) = [ (Lxg)(x=pu()dy, xeR"

2* Note that this integral is absolutely convergent for every x € R"”. Then S, is as-
* sociated with the kernel L % ¢, which is in C*°(R"). We define, for every k € Z,
10— 4 n

1 Ly € 8'(R") as follows:

12 (Lioy) = (Ly(A5),  yeSR").

13__

14 It is not hard to see that, for every k € Z, (L * ¢¢)x = L * ¢prk. Then (L * ¢p)_p =
15 L_g * ¢

16 Suppose that Ty is associated with the kernel K, that is, for every y € S(R"),

17

. (Lew)x) = [ KGe=pw()dy. x ¢ suppys

19— and K satisfies (ii) and (iii) after (6.1).

20— Let k € Z and y € S(R"). We have that

21__

22 (Li* 9)(x) = (Le(»), w(x = ) = {L(p) w(x - A%p))

2 - (L) y (A A - )

25_ = (Lxy(A"))(A™x)

26 - _

. - [ K- yyyay)dy, A f suppy(at),

28— Then

20__ _ _

" (Lix ) (x) =67 [ KA = )y(ndy, x fsuppy.

31— We are going to see that there exists C > 0 that does not depend on ¢ such that:
i O 1er DI < Clple).x B2 {0}

3 and, if § = min{y,lnA_/Inb},

35 (i) (Lg% ¢)(x=y) = (Loe* @) () < Cp(»)°/(p(x))°*!, when > p(y) < p(x).
36— First, we prove (i). We have that L_, * ¢ € L>(R") and L_, ¢ = L_,$ € L'(R").
37 Then we can write

50 (o)) = [ e ITL0)F0)dy, xR

40

4l Note that the two sides in the last equalities define smooth functions in R". Since
4 ILZ¢]| oo = | L] o> we deduce that

43__ — - n

" (Loe s ) < [P [ BDIdy, x€R".

45 We obtain

i I

o (e s 9)(¥) < =— 0= [ [(0ldy, % € Buaw ~ {0},

48__ p(x) R"

O— —
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3 On the other hand, since p(x + y) < b”(p(x) + p(¥)), x, y € R", we have that
4 p(x =) 2b"p(x)—p(»), x,y € R". Then if x ¢ By,,, and y € B, it follows that

5 p(x=y)2bp(x)-b"p(x)=b""(1-b"")p(x). We can write

~ (e DN <0 [ KA G- o0y < et [ B0

le()I CKbW
9__ < dy <
10_ < G Bo p(x =) y<( Dp(x)

p(Af(x - 7))
f |¢()’)|d)” X¢Bw+1

1 We conclude that |(L_, * ¢)(x)| < C/p(x), x e R” x {0}, where C > 0 is indepen-

12__ dent of ¢, and (i) is proved.
13 We now establish (ii). We can write

15 (Log* ¢)(x = y) = (Le * ¢)(x)

The mean value theorem leads to

20— |(Lo¢ * $)(x = ) = (L-e * §)(x)] < CYI| L] f |2l[¢(2)ldz,  x,y€R".

22 According to [4, (3.3) p. 11] , |y| < Cp(y)™* /b when p(y) < 1. Also, by [4, (3.2)

23__ p- 11], we get

)ln)ur/lnb

2% Iyl < Cp(y < Cp(y)mA-/mb 1< p(y) <.

26 Hence,

28: (Lo % ¢)(x —y) = (L_¢ * ¢)(x)] < Cp(y)i2A-/1nb
o p(y)ni-/int

2w 4w
30 SCW’ b™p(y) < p(x) <b™.

3 Assume that p(x) > b*" and b*"p(y) < p(x). It is clear that x ¢ supp ¢. Also, we
33 have that p(x — y) > b™p(x) — p(y) 2 b p(x) = b2"p(x) > b** = b*” > b. Then

34__ X — y ¢ supp ¢. We can write

where K_,(z) = b*K(A%z), z e R™.
Suppose that p(y) < b=

b2 (6> —1)p(y) > b*"p(y). We obtain

_ p(y)
45__ SC/ |¢(Z)|Wdz

46__
<c B [ oz

48__

S
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o _ f (e72m‘(x—y)-z _ e*2ﬂix-z)[:(z)$(z)dz, x,ye€ R™.

% (Loex $)(x=3) = (Le+ 9)(x) = [ (Koe(x=y=2) ~ Koelx - 2)$(2)dz

p(x) and z € supp ¢. Since p(z) < b™*"p(x), we have
a0 that p(x —2) > b™p(x) = p(2) 2 b™p(x) = b~ p(x) 2 b (b7 - b™)p(y) =

o (Lt $)(x=9) = (Lo )< [ (Kool =7 -2) - Kool = 2)[0(2)ld=
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2__

3 Suppose now that b** p(y) < p(x) < b5 p(y). Itfollows that p(x—y) > b™"p(x)-
. p(y) 2 (b = b2")p(x). From (i) we deduce
5 L1y C el
(Loex $)(x )~ (Lee * $) ()| < C P ) e recc B
- (p(x—y) p(x)) plx) = p(a)rtt
8 We conclude that, if § = min{y,InA_/Inb},
9— PO’ o
10 ‘(L*E*(p)(x_y)_(L*f*(/))(xNSCp(x)8+1’ b? p(y)ﬁp(x),
E where C > 0 does not depend on ¢, and (ii) is proved.
13* Since L * ¢p = (L_¢ * ¢),, from (i) and (ii) we infer that
14 (@) (L ¢e)(x)| < C/p(x), x ¢ R" ~ {0},
15__ and, if § = min{y,lnA_/Inb},
13* (i) (L ¢e)(x = y) = (L* ¢e)(x)] < Cp(»)°/(p(x))°*, when b*p(y) < p(x),
187 and C > 0 does not depend on #.
1 9: We are going to prove the m-regularity property for the kernel
20 He(x,y) = (L*¢e)(x-y), xyeR"
21— We have to show that if « € N*, |a| < m, and x, y € R", x — y € By \ By, with
22— k € Z, then
23__ — C C
(05 He) (x, A p)| € ——— = -,
- ’ plx—y) b*
267 where Hy(x, y) = He(x, A¥y) and C > 0 is independent of €. In order to prove this,
277 we proceed as in [4, pp. 66-67].
o8 We have that
29__ He(x,y) = [Rn K(x —z,y)¢e(2)dz, x—yeBy,
30—
31 where K(x, y) = K(x - y), x, y e R" ~ {0}.
3 Suppose that xg, yo € R” and xo — yo € Bji2w+1 \ Bjiow, where j € N, j > €. By
33 [4, (2.11), p. 68] it follows that xo — yo — z ¢ Bj,, and Xg — yo — Z € Bj;3441, for every
34 z € B,. By using the regularity of K, we deduce (see [4, (9.29), p. 66]), for every o € N,
35_ |a < m,
3 (STK(-, A7 )]) (0 — 2, AT yg)| < CbI2Y, zc B
37 y > 0 > Yo)l s > z [
38 Differentiating under the integral sign we get
39 |(8;H7)(x0,A7j’2Wy0)| <Cb 7™, aeN", |a|<m,
40
4l where C > 0 does not depend on {¢, j}.
2 Assume that x, yo € R", and xo - yo € Bj;1 \ Bj,is j < £+2w. Leta € N", |a| < m.
43 We can write
44 He(xy) = [ e T()fu(2)dz
45__ R 4
46_ - / e ANT () B((A%)2)dz,  x,y € R,
47
a8 where A* denotes the adjoint matrix of A.
O— —Q
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After making a change of variables, we get

Helxy)=b7¢ [ e CAT((4%) t2)f(e)dz
Rn

bt [ I (a4 ) F()dz, wy R

Then differentiating under the integral sign, we obtain
@ He(x )| < b [ Z@(2ldz, x.yeR", x=ye BB,

because j — £ < 2w. Here, C > 0 does not depend on {¢, j}.
Hence,

(8%He) (x0, A7 y0)| < Cb™ = Cb™4 677 < Cb™ p(x0 — o) ™.

We conclude that there exists C > 0 such that for every o € N”, |a| < m, and x, y € R”,
X =y €Biu By, ke Z,
C

(05 He) (x, A" y)| < o)

Thus, the proof of the property is finished. ]

Proof of Theorem 1.7(ii) Consider r, po and s as in Proposition 6.3. Assume that a is
a(p(-),q(+),r/po,s)-atom associated with xo € R” and €y € Z,and v € A;(R", A)n
RH(,/p,) (R", A). We take ¢ € S(R") such that [ ¢(x)dx # 0 and supp ¢ c By.

We can write

| Tall%;

HPo (R",v,A)
0 0 0 o
<c( [, ety [ (1) () (x)dx)
=h+.

The Hardy-Littlewood maximal function satisfies Kolmogorov inequality (see [30,
p- 91]). Then since Mg,(Ta) < CMpy1(Ta), we get

Ji < Cv(xo + Beyo) ([ IT(@)(0)(x)dx) "

Here, C = C([v]4,(r",4)) > 0.
By splitting the last integral in the same way, we obtain

fR |Ta(x)lv(x)dx = f on, TG+ [(xOJrBlow)c|Ta(x)\v(x)dx.
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Since T is a bounded operator in L"/?°(R") (see Proposition 6.3) and we have v ¢
RH(;/p,) (R", A), it follows that

/ |Ta(x)|v(x)dx
Xo+Beg+w

po/r r o\ (/o)
< (f |Ta(x)|r/P°dx) ' (f v(x)r/po) dx) '
Xo+Beytw Xo+Bey+w

v(xo + Bg,)

< CHaHr/Po |B€o+W|1/(r/p0) 71v(x0 * Be°+W) <C HXx +B Hp( )a(*) .
0+Be, ©)q(”

Here, C = C([v]4,(r",4) [V]RH(r/pO)’(Rn’A) ). We have used that v defines a doubling
measure.
Proceeding as in the estimation of I, in the proof of Theorem 1.7(i), we get

B 5+1
f |Ta(x)|v(x)dx < C B / &“dx
(xo+Begen)© | XxoBey | p(-)ia(+) 7 (orBegun)s p(x = x0)%*

|B[0|6+1
- ||Xxo+Beo Hp('),q(')
v(xo + By,)
||Xxo+Be0 HP( *)q(*) ’

where C = C([v]a,(rr,4)) >0and § = mInA_/Inb.
We conclude that

V(X() + Beo)|B€o |_(5+1)

=C

v(xo + By,)

h<C

5 .
HXonrBeo HP‘E V()
Here, C = C([v]a,(rn,4)> [V]Rm,, ) (R7,4)) > O.
According to Lemma 6.4, for every k € Z, the convolution operator Sy defined by
Sy(¥) = 9 * (Ty), yeSR"),

is a Calderén-Zygmund singular integral of order m and this property is uniformly
in k € Z; that is, the characteristic constant does not depend on k.
If k € Z, by proceeding as in the proof of Theorem 1.7(i), we get

|B£0|5+1 1
p(x— x9)%+! ||Xxo+3e0 Hp( )q(+)

where C > 0 does not depend on k.
Then

|S(k)(a)| <C > x¢x0+Bgo+W,

|B€o |6+1 1

MY(Ta)(x)| < C
% p(x—x(>)5+1 ||Xxo+Beo Hp('),q(')

> X¢X0+Bgo+w.

We conclude that

B
Jo € O[] n py) — 220 Beo)

HXxO+BeO Hiz “)q(*) .

The proof of this theorem can be completed by putting together the above estimates.
|
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Remark 6.5 In order to prove the boundedness of an operator T defined on Hardy
type spaces (or finite atomic Hardy type spaces) and that takes values in a Banach
(or quasi-Banach) space, it is usual to add the following condition: T is uniformly
bounded on atoms. As it can be seen (for instance, in [6, pp. 3096-3097], the last
condition implies the boundedness of T, roughly speaking, proceeding as follows: if

f=%%,1;aj,then

k k
(6.4) ITflx < Z; Al Tajlx < CZ; Ail < Cllf e

j= j=
In our case, for the anisotropic Hardy-Lorentz spaces with variable exponents, we
do not know if the last inequality in (6.4) holds. In Theorem 1.3 we establish our
atomic quasinorm. The condition in Proposition 6.3 is adapted to the quasinorms on
the anisotropic Hardy-Lorentz spaces with variable exponents and they replace the
uniform boundedness on atoms condition.

Remark 6.6 Asis well known, Lorentz and Hardy-Lorentz spaces appear related
with interpolation. Fefferman, Riviére, and Sagher ([25]) proved that if 0 < py <1,
then (HP°(R"),L*(R")),q = HP1(R"), where 1/p = (1-1)/pe, 0 < 1 < 1
and 0 < g < oo. Recently, Liu, Yang, and Yuan ([40, Lemma 6.3])) established an
anisotropic version of this result. By using a reiteration argument in [40, Theorem 6.1]
the interpolation spaces between anisotropic Hardy spaces are described. Kempka
and Vybiral ([36, Theorem 8]) proved that (LP¢ ") (R"), L°*(R"))g,4 = L. ,4> where
0<0<1L,0<g<ooandl/p(-)=(1-0)/p(-). Itis clear that a similar property
cannot be expected for the Lorentz space £(*)-4(*)(R"), since in the definition of
LPC)(R™), p is a measurable function defined in R" while in the definition of the
Lorentz space £P()4C")(R"), p and g are measurable functions defined in (0, c0).
Then the arguments used in [40] to study interpolation in anisotropic Hardy spaces
do not work in our variable exponent setting. New arguments must be developed in
order to describe interpolation spaces between our anisotropic Hardy-Lorentz spaces
with variable exponents.

Acknowledgments We would like to offer thanks to the referee for his suggestions,
which have improved this paper quite a lot.
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