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Anisotropic Hardy–Lorentz Spaces with
Variable Exponents

Víctor Almeida, Jorge J. Betancor, and Lourdes Rodríguez-Mesa

Abstract. In this paperwe introduceHardy–Lorentz spaceswith variable exponents associatedwith
dilations inRn . We establishmaximal characterizations and atomic decompositions for our variable
exponent anisotropic Hardy–Lorentz spaces.

1 Introduction

Feòerman and Stein’s celebrated paper [26] has been crucial in the development of
the real variable theory of Hardy spaces. In [26] the tempered distributions in the
Hardy spaces Hp(Rn) were characterized as those such that certain maximal func-
tions are in Lp(Rn). Coifman [10] and Latter [38] obtained atomic decompositions of
the elements of the Hardy spaces Hp(Rn). Here, 0 < p <∞ and Hp(Rn) = Lp(Rn)
provided that 1 < p <∞.

Many authors have investigated Hardy spaces in several settings. Some gener-
alizations substitute the underlying domain Rn with other ones (see, for instance,
[7, 9, 12, 44, 54, 58]). Also, Hardy spaces associated with operators have been de-
ûned (see [22, 23, 33, 34, 60], amongst others). If X is a function space, the Hardy
space H(Rn , X) on Rn modelled on X consists of all those tempered distributions
f on Rn such that the maximal function M( f ) of f is in X. _e deûnition of the
maximal operator M will be shown below. _e classical Hardy space Hp(Rn) is the
Hardy space on Rn modelled on Lp(Rn). For a weight ν on Rn and corresponding
weighted Lebesgue space Lp(Rn , ν), the Hardy space H(Rn , Lp(Rn , ν)) was inves-
tigated in [28]. _e Hardy space H(Rn , Lp,q(Rn)), where Lp,q(Rn) represents the
Lorentz space, has been studied in [1,25,27,31,32]. _eHardy spaceH(Rn ,Λp(ϕ)) on
Rn modelled on a generalized Lorentz spaceΛp(ϕ)was studied byAlmeida and Cae-
tano [2]. _e variable exponentHardy spaceHp( ⋅ )(Rn), investigated in [15,48,52,63],
is the space H(Rn , Lp( ⋅ )(Rn)) on Rn modelled on the variable exponent Lebesgue
space Lp( ⋅ )(Rn).
By S(Rn), as usual, we denote the Schwartz function class on Rn and by S′(Rn)

its dual space. If φ ∈ S(Rn), the radial maximal function M = Mφ used to char-
acterize Hardy spaces is deûned by M( f ) = supt>0 ∣ f ∗ φt ∣, f ∈ S′(Rn), where
φt(x) = t−nφ(x/t), x ∈ Rn and t > 0. Bownik [4] studied anisotropic Hardy spaces
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1220 V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

onRn associated with dilations inRn . If A is an expansive dilation matrix inRn , that
is, a n × n real matrix such that minλ∈σ(A) ∣λ∣ > 1 where σ(A) represents the set of
eigenvalues of A, for every k ∈ Z, we deûne

φA,k(x) = ∣detA∣−kφ(A−kx), x ∈ Rn ,

and themaximal function MA = MA,φ associated with A is given by

MA( f ) = sup
k∈Z

∣ f ∗ φA,k ∣, f ∈ S′(Rn).

Bownik [4] characterizes anisotropic Hardy spaces by maximal functions like MA.
Recently, Liu, Yang, and Yuan [40] extended Bownik’s results by studying anisotropic
Hardy spaces on Rn modelled on Lorentz spaces Lp,q(Rn).
Ephremidze, Kokilashvili, and Samko [24] introduced variable exponent Lorentz

spaces Lp( ⋅ ),q( ⋅ )(Rn). In this paper we deûne anisotropic Hardy spaces on Rn as-
sociated with a dilation A modelled on Lp( ⋅ ),q( ⋅ )(Rn). _ese Hardy spaces are
represented by Hp( ⋅ ),q( ⋅ )(Rn ,A) and they are called variable exponent anisotropic
Hardy–Lorentz spaces on Rn . We characterize the tempered distributions in
Hp( ⋅ ),q( ⋅ )(Rn ,A) by using anisotropic maximal function MA. Also, we obtain
atomic decompositions for the elements of Hp( ⋅ ),q( ⋅ )(Rn ,A). Our results extend
those ones in [40] to variable exponent setting.
Before establishing the results of this paper,we recall the deûnitions and properties

about anisotropy and variable exponent Lebesgue and Lorentz spaces we will need.
An exhaustive and systematic study about variable exponent Lebesgue spaces

Lp( ⋅ )(Ω), where Ω ⊂ Rn , can be found in the monograph [17] and in [20]. Here,
p∶Ω → (0,∞) is a measurable function. We assume that 0 < p−(Ω) ≤ p+(Ω) < ∞,
where p−(Ω) = ess inf x∈Ω p(x) and p+(Ω) = ess supx∈Ω p(x). _e space Lp( ⋅ )(Ω)
is the collection of all measurable functions f such that, for some λ > 0, ρ( f /λ) <∞,
where

ρ( f ) = ρp( ⋅ )( f ) = ∫
Ω
∣ f (x)∣p(x)dx .

We deûne ∥ ⋅ ∥p( ⋅ ) as follows:

∥ f ∥p( ⋅ ) = inf{ λ > 0 ∶ ∫
Ω
( ∣ f (x)∣

λ
)

p(x)
dx ≤ 1} , f ∈ Lp( ⋅ )(Ω).

If p−(Ω) ≥ 1, then ∥ ⋅ ∥p( ⋅ ) is a norm and (Lp( ⋅ )(Ω), ∥ ⋅ ∥p( ⋅ )) is a Banach space.
However, if p−(Ω) < 1, then ∥ ⋅ ∥p( ⋅ ) is a quasinorm and (Lp( ⋅ )(Ω), ∥ ⋅ ∥p( ⋅ )) is a
quasi Banach space.
A crucial problem concerning to variable exponent Lebesgue spaces is to describe

the exponents p for which the Hardy–Littlewood maximal function is bounded in
Lp( ⋅ )(Rn) (see [13,19,49,51], amongst others). As shown in [14,16,29], the bounded-
ness of the Hardy–Littlewood maximal function, together with extensions of Rubio
de Francia’s extrapolation theorem, lead to the boundedness of a wide class of opera-
tors and vector-valued inequalities on Lp( ⋅ )(Rn) and the weighted Lp( ⋅ )(ν). _ese
ideas also work in the variable exponent Lorentz spaces, introduced by Ephremidze,
Kokilashvili, and Samko [24], and they will play a fundamental role in the proof of
some of our main results.
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Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1221

_e Lorentz spaces were introduced in [41] and [42] as a generalization of clas-
sical Lebesgue spaces. _e theory of Lorentz spaces can be encountered in [3] and
[8]. Assume that f is a measurable function. We deûne the distribution function
µ f ∶ [0,∞)→ [0,∞] associated with f by

µ f (s) = ∣{x ∈ Rn ∶ ∣ f (x)∣ > s}∣, s ∈ [0,∞).

Here, ∣E∣ denotes the Lebesgue measure of E, for every Lebesgue measurable set E.
_e non-increasing equimeasurable rearrangement f ∗∶ [0,∞) → [0,∞] of f is de-
ûned by

f ∗(t) = inf{s ≥ 0 ∶ µ f (s) ≤ t}, t ∈ [0,∞).
If 0 < p, q <∞, themeasurable function f is in the Lorentz space Lp,q(Rn) provided
that

∥ f ∥Lp,q(Rn) = (∫
∞

0
t

q
p−1( f ∗(t))qdt)

1/q
<∞.

_en Lp,q(Rn) is complete and it is normable; that is, there exists a norm equivalent
with the quasinorm ∥ ⋅ ∥Lp,q(Rn) (see [8, p. 66]) for 1 < p <∞ and 1 ≤ q <∞.

Variable exponent Lorentz spaces have been deûned in two diòerent ways: one by
Ephremidze,Kokilashvili, and Samko [24] and the other byKempka andVybíral [36].

In this paper we consider the space deûned in [24]. _is election is motivated by
the following fact. We need to use a vectorial inequality for the anisotropic Hardy–
Littlewood maximal function (see Proposition 1.4). In order to prove this property,
we use an extrapolation argument requiring us to know the associated Köthe dual
space of the Lorentz space. _e dual space of the variable exponent Lorentz space in
[24] is known ([24, Lemma 2.7]). However, characterizations of the dual space of the
variable exponent Lorentz space in [36] have not been established (see Remark 1.5).
For every a ≥ 0 we denote by Pa the set of measurable functions p∶ (0,∞) →

(0,∞) such that a < p−((0,∞)) ≤ p+((0,∞)) < ∞. By P we represent the class of
boundedmeasurable functions p∶ (0,∞)→ (0,∞) such that there exist the limits

p(0) =∶ lim
t→0+

p(t) and p(∞) =∶ lim
t→+∞

p(t),

and the following log-Hölder continuity conditions are satisûed:

∣p(t) − p(0)∣ ≤ C
∣ ln t∣ for 0 < t ≤ 1/2,

∣p(t) − p(∞)∣ ≤ C
ln(e + t) for t ∈ (0,∞).

We also write Pa = P ∩Pa , for every a ≥ 0.
Let p, q ∈ P0. We represent by (p( ⋅ ), q( ⋅ ))-Lorentz space Lp( ⋅ ),q( ⋅ )(Rn) the

space of all thosemeasurable functions f on Rn such that

t
1

p(t)−
1

q(t) f ∗(t) ∈ Lq( ⋅ )(0,∞).

We deûne

∥ f ∥Lp( ⋅ ),q( ⋅ )(Rn) = ∥t
1

p(t)−
1

q(t) f ∗(t)∥Lq( ⋅ )(0,∞) , f ∈ Lp( ⋅ ),q( ⋅ )(Rn).
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1222 V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

We also consider the average f ∗∗ of f ∗ given by

f ∗∗(t) = 1
t ∫

t

0
f ∗(s)ds, t ∈ (0,∞),

and deûne

∥ f ∥(1)
Lp( ⋅ ),q( ⋅ )(Rn) = ∥t

1
p(t)−

1
q(t) f ∗∗(t)∥Lq( ⋅ )(0,∞) , f ∈ Lp( ⋅ ),q( ⋅ )(Rn).

We note that ∥ ⋅ ∥(1)
Lp( ⋅ ),q( ⋅ )(Rn) satisûes the triangular inequality provided that

q−((0,∞)) ≥ 1. It is clear that

∥ f ∥Lp( ⋅ ),q( ⋅ )(Rn) ≤ ∥ f ∥(1)
Lp( ⋅ ),q( ⋅ )(Rn) .

According to [24,_eorem 2.4], if p ∈ P0, q ∈ P1, p(0) > 1, and p(∞) > 1, there exists
C > 0 for which

∥ f ∥(1)
Lp( ⋅ ),q( ⋅ )(Rn) ≤ C∥ f ∥Lp( ⋅ ),q( ⋅ )(Rn) , f ∈ Lp( ⋅ ),q( ⋅ )(Rn).

If p, q ∈ P1, then Lp( ⋅ ),q( ⋅ )(Rn) is a Banach function space (in the sense of [3]) and
the dual space (Lp( ⋅ ),q( ⋅ )(Rn))′ coincides with Lp′( ⋅ ),q′( ⋅ )(Rn) [24, Lemma 2.7
and _eorem 2.8]. Here, as usual, if r∶ (0,∞) → (1,∞), r′ = r

r−1 . _e behaviour of
the anisotropicHardy–Littlewoodmaximal function on Lp( ⋅ ),q( ⋅ )(Rn) will be very
useful in the sequel. According to [24,_eorem 3.12], the classical Hardy–Littlewood
maximal operator is bounded fromLp( ⋅ ),q( ⋅ )(Rn) into itself provided that p, q ∈ P1.

_e main deûnitions and properties of the anisotropic setting we will use in this
paper can be found in [4].

Suppose that A is an expansive dilation matrix in Rn . We say that a measurable
function ρ∶Rn → [0,∞) is a homogeneous quasinorm associated with A when the
following properties hold:
(a) ρ(x) = 0 if and only if x = 0;
(b) ρ(Ax) = ∣detA∣ρ(x), x ∈ Rn ;
(c) ρ(x + y) ≤ H(ρ(x) + ρ(y)), x , y ∈ Rn , for certain H ≥ 1.
If P is a nondegenerate n × n matrix, the set ∆ deûned by

∆ = {x ∈ Rn ∶ ∣Px∣ < 1}

is called the ellipsoid generated by P. According to [4, Lemma 2.2, p. 5], there exists an
ellipsoid ∆ with Lebesguemeasure 1 and such that, for certain r0 > 1, ∆ ⊆ r0∆ ⊆ A∆.
From now on, the ellipsoid ∆ satisfying the above properties is ûxed. For every

k ∈ Z, we deûne Bk = Ak∆, as the equivalent of the Euclidean balls in our anisotropic
context, and we denote by ω the smallest integer such that 2B0 ⊂ Bω . We have that,
for every k ∈ Z, ∣Bk ∣ = bk , where b = ∣detA∣, and Bk ⊂ r0Bk ⊂ Bk+1.

_e step quasinorm ρA on Rn is deûned by

ρA(x) =
⎧⎪⎪⎨⎪⎪⎩

bk , x ∈ Bk+1/Bk , k ∈ Z,
0, x = 0.

_us, ρA is a homogeneous quasinorm associated with A.
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Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1223

By [4, Lemma 2.4, p. 6] if ρ is any quasinorm associated with A, then ρA and ρ are
equivalent; that is, for a certain C > 0,

ρ(x)/C ≤ ρA(x) ≤ Cρ(x), x ∈ Rn .
_e triplet (Rn , ρA, ∣ ⋅ ∣), where ∣ ⋅ ∣ denotes the Lebesguemeasure in Rn , is a space of
homogeneous type in the sense of Coifman andWeiss [11].

We now deûne maximal functions in our anisotropic setting. Suppose that φ ∈
S(Rn) and f ∈ S′(Rn). _e radial maximal function M0

φ( f ) of f with respect to φ is
deûned by

M0
φ( f )(x) = sup

k∈Z
∣( f ∗ φk)(x)∣,

where φk(x) = b−kφ(A−kx), k ∈ Z and x ∈ Rn . Since thematrix A is ûxed, we do not
refer to it in the notation ofmaximal functions.

_e nontangential maximal function Mφ( f ) with respect to φ is given by
Mφ( f )(x) = sup

k∈Z,y∈x+Bk

∣( f ∗ φk)(y)∣, x ∈ Rn .

If α = (α1 , . . . , αn) ∈ Nn , we write ∣α∣ = α1 + ⋅ ⋅ ⋅ + αn . Let N ∈ N. We consider the
set

SN = {φ ∈ S(Rn) ∶ sup
x∈Rn

(1 + ρA(x))N ∣Dαφ(x)∣ ≤ 1, α ∈ Nn and ∣α∣ ≤ N} .

Here,

Dα = ∂∣α∣

∂xα1
1 . . . ∂xαnn

,

when α = (α1 , . . . , αn) ∈ Nn .
_e radial grandmaximal function M0

N( f ) of f of order N is deûned by

M0
N( f ) = sup

φ∈SN

M0
φ( f ).

_e nontangential grandmaximal function MN( f ) of f of order N is given by
MN( f ) = sup

φ∈SN

Mφ( f ).

We now deûne variable exponent anisotropic Hardy–Lorentz spaces. Let N ∈ N
and p, q ∈P0. _e (p( ⋅ ), q( ⋅ ))-anisotropicHardy–Lorentz spaceHp( ⋅ ),q( ⋅ )

N (Rn ,A)
associatedwithA is the setof all those f ∈ S′(Rn) such thatMN( f ) ∈ Lp( ⋅ ),q( ⋅ )(Rn).
On Hp( ⋅ ),q( ⋅ )

N (Rn ,A), we consider the quasinorm ∥ ⋅ ∥Hp( ⋅ ),q( ⋅ )
N (Rn ,A) deûned by

∥ f ∥Hp( ⋅ ),q( ⋅ )
N (Rn ,A) = ∥MN( f )∥Lp( ⋅ ),q( ⋅ )(Rn) , f ∈ Hp( ⋅ ),q( ⋅ )

N (Rn ,A).

Our ûrst result shows that the space Hp( ⋅ ),q( ⋅ )
N (Rn ,A) does not actually depend

on N provided that N is large enough. Furthermore,we prove thatHp( ⋅ ),q( ⋅ )
N (Rn ,A)

can be characterized also by using themaximal functions M0
φ , Mφ , and M0

N .

_eorem 1.1 Let f ∈ S′(Rn) and φ ∈ S(Rn) such that ∫ φ /= 0. Assume that
p, q ∈ P0. _en the following assertions are equivalent.

(i) _ere exists N0 ∈ N such that, for every N ≥ N0, f ∈ Hp( ⋅ ),q( ⋅ )
N (Rn ,A).
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(ii) Mφ( f ) ∈ Lp( ⋅ ),q( ⋅ )(Rn).
(iii) M0

φ( f ) ∈ Lp( ⋅ ),q( ⋅ )(Rn).
Moreover, for every g ∈ S′(Rn) the quantities

∥MN(g)∥Lp( ⋅ ),q( ⋅ )(Rn) , N ≥ N0 ,

∥M0
φ(g)∥Lp( ⋅ ),q( ⋅ )(Rn) ,

∥Mφ(g)∥Lp( ⋅ ),q( ⋅ )(Rn)

are equivalent.

According to_eorem 1.1we let Hp( ⋅ ),q( ⋅ )(Rn ,A) denoteHp( ⋅ ),q( ⋅ )
N (Rn ,A), for

every N ≥ N0.
In order to prove this theorem, we follow the ideas developed by Bownik [4, §7]

(see also [40, §4]) but we need to make some modiûcations due to that decreasing
rearrangement and variable exponents appear.

Let 1 < r ≤∞, s ∈ N and p, q ∈ P0. We say that ameasurable function a on Rn is
a (p( ⋅ ), q( ⋅ ), r, s)-atom associated with x0 ∈ Rn and k ∈ Z when a satisûes
(a) supp a ⊆ x0 + Bk ;
(b) ∥a∥r ≤ bk/r∥χx0+Bk∥−1

Lp( ⋅ ),q( ⋅ )(Rn) (note that (χx0+Bk)∗ = χ(0,bk));
(c) ∫Rn a(x)xαdx = 0, for every α ∈ Nn such that ∣α∣ ≤ s.
Here, if α = (α1 , . . . , αn) ∈ N and x = (x1 , . . . , xn) ∈ Rn , then xα = xα1

1 ⋅ ⋅ ⋅ xαnn .

Remark 1.2 From now on, any time we write a is a (p( ⋅ ), q( ⋅ ), r, s)-atom associ-
ated with x0 ∈ Rn and k ∈ Z, it is understood that (a), (b), and (c) hold.

In the next resultwe characterize the distributions inHp( ⋅ ),q( ⋅ )(Rn ,A) by atomic
decompositions.

_eorem 1.3 Let p, q ∈ P0.
(i) _ere exist s0 ∈ N and C > 0 such that if, for every j ∈ N, λ j ≥ 0 and a j

is a (p( ⋅ ), q( ⋅ ),∞, s0)-atom associated with x j ∈ Rn and ℓ j ∈ Z, satisfying that
∑ j∈N λ j∥χx j+Bℓ j

∥−1
Lp( ⋅ ),q( ⋅ )(Rn)χx j+Bℓ j

∈ Lp( ⋅ ),q( ⋅ )(Rn). _en

f =∑
j∈N

λ ja j ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A),

and

∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) ≤ C∥∑
j∈N

λ j∥χx j+Bℓ j
∥−1
Lp( ⋅ ),q( ⋅ )(Rn)χx j+Bℓ j

∥
Lp( ⋅ ),q( ⋅ )(Rn)

.

If also p(0) < q(0), then there exists r0 > 1 such that for every r0 < r < ∞ the above
assertion is true when (p( ⋅ ), q( ⋅ ),∞, s0)-atoms are replaced by (p( ⋅ ), q( ⋅ ), r, s0)-
atoms.

(ii) _ere exists s0 ∈ N such that for every s ∈ N, s ≥ s0, and 1 < r ≤∞, we can ûnd
C > 0 such that, for every f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A), there exist, for each j ∈ N, λ j > 0
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Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1225

and a (p( ⋅ ), q( ⋅ ), r, s)-atom a j associated with x j ∈ Rn and ℓ j ∈ Z, satisfying that

∑
j∈N

λ j∥χx j+Bℓ j
∥−1
Lp( ⋅ ),q( ⋅ )(Rn)χx j+Bℓ j

∈ Lp( ⋅ ),q( ⋅ )(Rn),

f =∑
j∈N

λ ja j in S′(Rn),

and
∥∑

j∈N
λ j∥χx j+Bℓ j

∥−1
Lp( ⋅ ),q( ⋅ )(Rn)χx j+Bℓ j

∥
Lp( ⋅ ),q( ⋅ )(Rn)

≤ C∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) .

Let 1 < r ≤ ∞, s ∈ N and p, q ∈ P0. We deûne the anisotropic variable expo-
nent atomic Hardy–Lorentz space Hp( ⋅ ),q( ⋅ ),r ,s(Rn ,A) as follows. A distribution
f ∈ S′(Rn) is in Hp( ⋅ ),q( ⋅ ),r ,s(Rn ,A) when, for every j ∈ N there exist λ j ≥ 0 and a
(p( ⋅ ), q( ⋅ ), r, s)-atom a j associatedwith x j ∈ Rn and ℓ j ∈ Z such that f = ∑ j∈N λ ja j ,
where the series converges in S′(Rn), and

∑
j∈N

λ j∥χx j+Bℓ j
∥−1
Lp( ⋅ ),q( ⋅ )(Rn)χx j+Bℓ j

∈ Lp( ⋅ ),q( ⋅ )(Rn).

For every f ∈ Hp( ⋅ ),q( ⋅ ),r ,s(Rn ,A) we deûne

∥ f ∥Hp( ⋅ ),q( ⋅ ),r ,s(Rn ,A) = inf∥∑
j∈N

λ j∥χx j+Bℓ j
∥−1
Lp( ⋅ ),q( ⋅ )(Rn)χx j+Bℓ j

∥
Lp( ⋅ ),q( ⋅ )(Rn)

,

where the inûmum is taken over all the sequences (λ j) j∈N ⊂ [0,∞) and (a j) j∈N of
(p( ⋅ ), q( ⋅ ), r, s)-atoms satisfying that f = ∑ j∈N λ ja j in S′(Rn) and

∑
j∈N

λ j∥χx j+Bℓ j
∥−1
Lp( ⋅ ),q( ⋅ )(Rn)χx j+Bℓ j

∈ Lp( ⋅ ),q( ⋅ )(Rn),

being a j associated with x j ∈ Rn and ℓ j ∈ Z, for every j ∈ N.
In_eorem1.3we state some conditions so that the inclusionsHp( ⋅ ),q( ⋅ )(Rn ,A) ⊂

Hp( ⋅ ),q( ⋅ ),r ,s(Rn ,A) and Hp( ⋅ ),q( ⋅ ),r ,s(Rn ,A) ⊂ Hp( ⋅ ),q( ⋅ )(Rn ,A) hold continu-
ously.

In our proof of _eorem 1.3 a vector valued inequality, involving the Hardy-Lit-
tlewood maximal function in our anisotropic setting, plays an important role. _e
mentionedmaximal function is deûned by

MHL( f )(x) = sup
k∈Z,y∈x+Bk

1
bk ∫y+Bk

∣ f (z)∣dz, x ∈ Rn .

A�er proving a version of [24,_eorem 3.12] for MHL , by using an extension ofRu-
bio de Francia extrapolation theorem (see [14, 16,29]), we can establish the following
result.

Proposition 1.4 Assume that p, q ∈ P1. For every r ∈ (1,∞), there exists C > 0 such
that

∥(∑
j∈N

MHL( f j)r)
1/r

∥
Lp( ⋅ ),q( ⋅ )(Rn)

≤ C∥(∑
j∈N

∣ f j ∣r)
1/r

∥
Lp( ⋅ ),q( ⋅ )(Rn)

,

for each sequence ( f j) j∈N of functions in L1
loc(Rn).
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1226 V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Remark 1.5 We do not know if the last vectorial inequality holds when the
Lorentz space Lp( ⋅ ),q( ⋅ )(Rn) is replaced by the variable exponent Lorentz space
Lp( ⋅ ),q( ⋅ )(Rn) introduced by Kempka andVybíral [36]. In order to apply extrapola-
tion technique, it is necessary to know the associatedKöthe dual space (see [39, p. 25])
(Lp( ⋅ ),q( ⋅ )(Rn))∗ of Lp( ⋅ ),q( ⋅ )(Rn), but its characterization is, as far we know, an
open question.

Also, in order to prove_eorem 1.3,we need to establish that Hp( ⋅ ),q( ⋅ )(Rn ,A)∩
L1

loc(Rn) is a dense subspace of Hp( ⋅ ),q( ⋅ )(Rn ,A). At this point a careful study of
Calderón–Zygmund decomposition of the distributions in Hp( ⋅ ),q( ⋅ )(Rn ,A) must
be done.

To establish boundedness of operators on Hardy spaces, atomic characterizations
(as in _eorem 1.3) play an important role. Meyer [46] (see also [47, p. 513]) gave a
function f ∈ H1(Rn) whose norm is not achieved by ûnite atomic decomposition.
More recently, Bownik [5] adapted that example to get, for every 0 < p ≤ 1, an atom
in Hp(Rn) with the same property. Also, in [5, _eorem 2] it was proved that there
exists a linear functional l deûned on the space H1,∞

fin (Rn), consisting in ûnite linear
combinations of (1,∞)-atoms, such that, for a certain C > 0, ∣l(a)∣ ≤ C, for ev-
ery (1,∞)-atom a, and l cannot be extended to a bounded functional on the whole
H1(Rn).
Bownik’s results havemotivated some investigations of operators on Hardy spaces

via atomic decompositions. Meda, Sjögren andVallarino [45] proved that if 1 < q <∞
and T is a linear operator deûned onH1,q

fin(Rn), the space of ûnite linear combinations
of (1, q)-atoms, into a quasi Banach space Y such that

sup{∥Ta∥Y ∶ a is a (1, q)-atom} <∞,

then T can be extended to H1(Rn) as a bounded operator from H1(Rn) into Y . Also,
it is proved that the same is truewhen (1, q)-atoms are replaced by continuous (1,∞)-
atoms, in contrast with the Bownik’s result. Yang and Zhou [61] established the result
when 0 < p ≤ 1 and (p, 2)-atoms are considered. Ricci and Verdera [50] proved that,
for 0 < p < 1, when Hp,∞

fin (Rn) is endowed with the natural topology, the dual spaces
of Hp,∞

fin (Rn) and Hp(Rn) coincide.
Also, this type of results have been recently established for Hardy spaces in more

general settings (see, for instance, [6, 15,40,62]).
In order to study boundedness of some singular integrals on our anisotropic

Hardy–Lorentz spaces with variable exponents we consider ûnite atomic Hardy–
Lorentz spaces in our settings.

Let 1 < r < ∞, s ∈ N and p, q ∈ P0. _e space Hp( ⋅ ),q( ⋅ ),r ,s
fin (Rn ,A) consists

of all those f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A) such that there exist k ∈ N and, for every j ∈ N,
1 ≤ j ≤ k, λ j > 0 and a (p( ⋅ ), q( ⋅ ), r, s)-atom a j such that f = ∑k

j=1 λ ja j . For every
f ∈ Hp( ⋅ ),q( ⋅ ),r ,s

fin (Rn ,A), we deûne

∥ f ∥Hp( ⋅ ),q( ⋅ ),r ,s
fin (Rn ,A) = inf∥

k

∑
j=1

λ j∥χx j+Bℓ j
∥−1
Lp( ⋅ ),q( ⋅ )(Rn)χx j+Bℓ j

∥
Lp( ⋅ ),q( ⋅ )(Rn)

,
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Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1227

where the inûmum is taken over all the ûnite sequences (λ j)k
j=1 ⊂ (0,∞) and (a j)k

j=1
of (p( ⋅ ), q( ⋅ ), r, s)-atoms such that f = ∑k

j=1 λ ja j and being, for every j ∈ N, j ≤ k,
a j associated with x j ∈ Rn and ℓ j ∈ Z.

_e space Hp( ⋅ ),q( ⋅ ),∞,s
fin,con (Rn ,A) and the quasinorm ∥ ⋅ ∥Hp( ⋅ ),q( ⋅ ),∞,s

fin,con (Rn ,A) are de-
ûned in a similar way by considering continuous (p( ⋅ ), q( ⋅ ),∞, s)-atoms.

In _eorem 1.6we establish some conditions that imply that Hp( ⋅ ),q( ⋅ ),r ,s
fin (Rn ,A)

is dense in Hp( ⋅ ),q( ⋅ )(Rn ,A).

_eorem 1.6 Let p, q ∈ P0.
(i) Assume that p(0) < q(0). _en there exist s0 ∈ N and r0 ∈ (1,∞) such that for

every s ∈ N, s ≥ s0, and r ∈ (r0 ,∞),
∥ ⋅ ∥Hp( ⋅ ),q( ⋅ ),r ,s

fin (Rn ,A) and ∥ ⋅ ∥Hp( ⋅ ),q( ⋅ )(Rn ,A)

are equivalent quasinorms in Hp( ⋅ ),q( ⋅ ),r ,s
fin (Rn ,A).

(ii) _ere exists s0 ∈ N such that for every s ≥ s0,
∥ ⋅ ∥Hp( ⋅ ),q( ⋅ ),∞,s

fin,con (Rn ,A) and ∥ ⋅ ∥Hp( ⋅ ),q( ⋅ )(Rn ,A)

are equivalent quasinorms in Hp( ⋅ ),q( ⋅ ),∞,s
fin,con (Rn ,A).

As an application of_eorem 1.6,we prove that convolutional type Calderón–Zyg-
mund singular integrals are bounded in Hp( ⋅ ),q( ⋅ )(Rn ,A). A precise deûnition of
the singular integral that we consider can be found in Section 6.

_eorem 1.7 Let p, q ∈ P0. Assume that p(0) < q(0). If T is a convolutional type
Calderón–Zygmund singular integral of order m ∈ N, m ≥ s0 where s0 is as in _eo-
rem 1.6(i), then
(i) T is bounded from Hp( ⋅ ),q( ⋅ )(Rn ,A) into Lp( ⋅ ),q( ⋅ )(Rn);
(ii) T is bounded from Hp( ⋅ ),q( ⋅ )(Rn ,A) into itself.

Our results, as far as we know, are new even in the isotropic case, that is, for the
Hardy–Lorentz Hp( ⋅ ),q( ⋅ )(Rn) of variable exponents, extending results in [1].

_e paper is organized as follows. A proof of_eorem 1.1 is presented in Section 2
where we prove themain properties of variable exponent anisotropicHardy–Lorentz
spaces. Next, in Section 3, Calderón–Zygmund decompositions in our setting are
investigated. _e proof of_eorem1.3,which is presented distinguishing the cases r =
∞ and r <∞, is included in Section 4. Finite atomic decompositions are considered
in Section 5where_eorem 1.6 is proved. In Section 6,we deûne the singular integral
that we consider and prove_eorem 1.7 a�er showing some auxiliary results.

_roughout this paper, C always denotes a positive constant that can change its
value from a line to another one.

2 Maximal Characterizations (Proof of Theorem 1.1)

From now on, for simplicity, we will write ∥ ⋅ ∥p( ⋅ ),q( ⋅ ) and ∥ ⋅ ∥q( ⋅ ) instead of
∥ ⋅ ∥Lp( ⋅ ),q( ⋅ )(Rn) and ∥ ⋅ ∥Lq( ⋅ )(0,∞), respectively.
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1228 V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

First, we establish very useful boundedness results for the anisotropic maximal
function MHL on variable exponent Lorentz spaces.

Proposition 2.1 Assume that p, q ∈ P1(0,∞). _en the maximal function MHL is
bounded from Lp( ⋅ ),q( ⋅ )(Rn) into itself.

Proof _is property can be proved like [24, _eorem 3.12]. Indeed, it is clear that
∥MHL f ∥L∞(Rn) ≤ ∥ f ∥L∞(Rn), f ∈ L∞(Rn). On the other hand, according to [4, p. 14],
MHL is bounded from L1(Rn) into L1,∞(Rn). _en, proceeding as in the proof of
[3, _eorem 3.8, p. 122], we deduce that, for some C > 0, (MHL f )∗ ≤ C f ∗∗. Since
p, q ∈ P1(0,∞), by taking α = 1/p − 1/q and ν = 0 in [24,_eorem 2.2], we can write

∥MHL( f )∥p( ⋅ ),q( ⋅ ) ≤ C∥t1/p( ⋅ )−1/q( ⋅ ) f ∗∗∥q( ⋅ ) ≤ C∥t1/p( ⋅ )−1/q( ⋅ ) f ∗∥q( ⋅ )
= C∥ f ∥p( ⋅ ),q( ⋅ ) .

_us, the proof of this proposition is ûnished.

_e following vectorial boundedness result for MHL appears as Proposition 1.3 in
the introduction.

Proposition 2.2 Assume that p, q ∈ P1. For every r ∈ (1,∞), there exists C > 0 such
that

(2.1) ∥(∑
j∈N

(MHL( f j))r)
1/r

∥
p( ⋅ ),q( ⋅ ) ≤ C∥(∑j∈N

∣ f j ∣r)
1/r

∥
p( ⋅ ),q( ⋅ ) ,

for each sequence ( f j) j∈N of functions in L1
loc(Rn).

Proof According to [6,Prop. 2.6(ii)] the family of anisotropic balls {x + Bk}x∈Rn , k∈Z
constitutes aMuckenhoupt basis in Rn . For every r > 0, we deûne the r-power of the
space Lp( ⋅ ),q( ⋅ )(Rn), (Lp( ⋅ ),q( ⋅ )(Rn))r , as follows:

(Lp( ⋅ ),q( ⋅ )(Rn)) r = { f measurable in Rn ∶ ∣ f ∣r ∈ Lp( ⋅ ),q( ⋅ )(Rn)} ,

(see [18, p. 67]). By using [15, Lemma 2.3] we deduce that, for every r > 0,

(Lp( ⋅ ),q( ⋅ )(Rn))r = Lr p( ⋅ ),rq( ⋅ )(Rn).

We choose β ∈ (0, 1) such that βp, βq ∈ P1. According to [24, Lemma 2.7],

(Lβp( ⋅ ),βq( ⋅ )(Rn))∗ = (Lβp( ⋅ ),βq( ⋅ )(Rn))′ = L(βp( ⋅ ))′ ,(βq( ⋅ ))′(Rn),

where the ûrst space represents the associate dual space of Lβp( ⋅ ),βq( ⋅ )(Rn) in the
Köthe sense (see [39, p. 25]). Since βp, βq ∈ P1, Proposition 2.1 implies that MHL is
bounded from L(βp( ⋅ ))′ ,(βq( ⋅ ))′(Rn) into itself. According to [18, Corollary 4.8 and
Remark 4.9], we conclude that (2.1) holds for every r ∈ (1,∞).
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Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1229

As in [4, p. 44] we consider the following maximal functions that will be useful in
the sequel. If K ∈ Z and N , L ∈ N, we deûne for every f ∈ S′(Rn):

M0,K ,L
φ ( f )(x) = sup

k∈Z,k≤K
∣( f ∗ φk)(x)∣max(1, ρ(A−Kx))−L(1 + b−k−K)−L , x ∈ Rn ,

MK ,L
φ ( f )(x) = sup

k∈Z,k≤K
sup

y∈x+Bk

∣( f ∗ φk)(y)∣max(1, ρ(A−K y))−L(1 + b−k−K)−L ,

x ∈ Rn ,

TN ,K ,L
φ ( f )(x) = sup

k∈Z,k≤K
sup
y∈Rn

∣( f ∗ φk)(y)∣
max(1, ρ(A−k(x − y)))N

(1 + b−k−K)−L

max(1, ρ(A−K y))L ,

x ∈ Rn ,

M0,K ,L
N ( f ) = sup

φ∈SN

M0,K ,L
φ ( f ),

MK ,L
N ( f ) = sup

φ∈SN

MK ,L
φ ( f ).

We will now establish some properties we will need later.

Lemma 2.3 Let K ∈ Z, N , L ∈ N, r > 0, and φ ∈ S(Rn). _en there exists a constant
C > 0 that does not depend neither on K , L,N , r, nor φ such that, for every f ∈ S′(Rn),

(TN ,K ,L
φ ( f )(x)) r ≤ CMHL((MK ,L

φ ( f )) r)(x), x ∈ Rn .

Proof Our proof is inspired by the ideas presented in [43, p. 10].
Let f ∈ S′(Rn), k ∈ Z, k ≤ K and x ∈ Rn . Since

( ∣( f ∗φk)(y)∣max(1, ρ(A−K y))−L(1+b−k−K)−L) r ≤ (MK ,L
φ ( f )) r(z), y ∈ z+Bk ,

we can write

( ∣( f ∗ φk)(y)∣max(1, ρ(A−K y))−L(1 + b−k−K)−L) r

≤ 1
∣y + Bk ∣ ∫y+Bk

(MK ,L
φ ( f )(z)) rdz, y ∈ Rn .

Suppose that z ∈ y + Bk and y ∈ Rn . According to [4, p. 8], we have that

ρ(z − x) ≤ bω( ρ(z − y) + ρ(y − x)) ≤ bω+k( 1 + b−kρ(y − x)) ,

where ω is the smallest integer so that 2B0 ⊂ Bω . We choose s ∈ Z such that bω+k(1 +
b−kρ(y − x)) ∈ [bs , bs+1). _en we get

( ∣( f ∗ φk)(y)∣max(1, ρ(A−K y))−L(1 + b−k−K)−L) r

≤ bω( 1 + b−kρ(y − x)) 1
bω+k(1 + b−kρ(y − x)) ∫y+Bk

(MK ,L
φ ( f )(z)) rdz

≤ bω( 1 + b−kρ(y − x)) 1
bs ∫x+Bs+1

(MK ,L
φ ( f )(z)) rdz

≤ 2bω+1( 1 + b−kρ(y − x)) NrMHL((MK ,L
φ ( f )) r)(x), y ∈ x + Bk .
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1230 V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Hence, we obtain

(TN ,K ,L
φ ( f )(x)) r ≤ CMHL((MK ,L

φ ( f )) r)(x), x ∈ Rn .

According to [4, p. 14], for every 1 < p <∞, theHardy–Littlewoodmaximal func-
tion MHL is bounded from Lp(Rn) into itself. So from Lemma 2.3 we deduce that,
for every 1 < p <∞, there exists C > 0 such that

∥TN ,K ,L
φ ( f )∥Lp(Rn) ≤ C∥MK ,L

φ ( f )∥Lp(Rn) , f ∈ S′(Rn).
_is property was proved in [4, Lemma 7.4] by using a diòerent procedure.

Lemma 2.4 Let K ∈ Z, N , L ∈ N, and φ ∈ S(Rn). Assume that p, q ∈ P0. _en

∥TN ,K ,L
φ ( f )∥p( ⋅ ),q( ⋅ ) ≤ C∥MK ,L

φ ( f )∥p( ⋅ ),q( ⋅ ) , f ∈ S′(Rn),

where C > 0 does not depend on (N ,K , L, φ).

Proof We choose r > 0 such that rp, rq ∈ P1. Let f ∈ S′(Rn). According to
[15, Lemma 2.3] and a well-known property of the nondecreasing equimeasurable
rearrangement, we get

∥TN ,K ,L
φ ( f )∥p( ⋅ ),q( ⋅ ) = ∥t

1
r p(t)−

1
rq(t) ([TN ,K ,L

φ ( f )]∗(t)) 1/r∥r
rq( ⋅ )

= ∥t
1

r p(t)−
1

rq(t) [(TN ,K ,L
φ ( f )) 1/r]∗(t)∥r

rq( ⋅ )
= ∥(TN ,K ,L

φ ( f )) 1/r∥r
r p( ⋅ ),rq( ⋅ ) .

From Lemma 2.3 and Proposition 2.1 it follows that

∥TN ,K ,L
φ ( f )∥p( ⋅ ),q( ⋅ ) ≤ C∥(MK ,L

φ ( f )) 1/r∥r
r p( ⋅ ),rq( ⋅ ) = C∥MK ,L

φ ( f )∥p( ⋅ ),q( ⋅ ) .

_e next two results were established in [4, pp. 45–47] as Lemmas 7.5 and 7.6, re-
spectively.

Lemma 2.5 For every N , L ∈ N, there exists M0 ∈ N satisfying the following property:
if φ ∈ S(Rn) is such that ∫ φ(x)dx /= 0, then there exists C > 0 such that, for every
f ∈ S′(Rn) and K ∈ N,

M0,K ,L
M0

( f )(x) ≤ CTN ,K ,L
φ ( f )(x), x ∈ Rn .

Lemma 2.6 Let φ ∈ S(Rn). _en for every M ,K ∈ N and f ∈ S′(Rn) there exist
L ∈ N and C > 0 such that

MK ,L
φ ( f )(x) ≤ Cmax( 1, ρA(x))

−M , x ∈ Rn .

Actually, L does not depend on K ∈ N.

Lemma 2.7 Let p, q ∈ P0. _ere exists α0 > 0 such that the function gα deûned by

gα(x) = (max(1, ρA(x)))
−α , x ∈ Rn ,

is in Lp( ⋅ ),q( ⋅ )(Rn), for every α ≥ α0.
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Proof Let α > 0. According to [4, Lemma 3.2] we have that

gα(x) ≤ hα(x) = C
⎧⎪⎪⎨⎪⎪⎩

1 ∣x∣ ≤ 1,
∣x∣−α ln b/ ln λ+ ∣x∣ > 1,

for certain C > 0. Here λ+ is greater than max{∣λ∣ ∶ λ is an eigenvalue of A} (for
instance we can take λ+ = 2max{∣λ∣ ∶ λ is an eigenvalue of A}). N ote that g∗α ≤ h∗α .

To simplify we denote vn = ∣B(0, 1)∣. We have that

µhα(s) =
⎧⎪⎪⎨⎪⎪⎩

0 s ≥ C ,
vn(C/s)n ln(λ+)/(α ln(b)) s ∈ (0,C).

_en

h∗α(t) = C
⎧⎪⎪⎨⎪⎪⎩

1 t ∈ (0, vn),
(vn/t)α ln(b)/(n ln(λ+)) t ≥ vn .

Since q(0) > 0 and p(0) > 0, we have that ∫
vn
0 tq(t)/p(t)−1∣g∗α(t)∣q(t)dt <∞. Also,

there exists α0 > 0 such that ∫
∞
vn tq(t)/p(t)−1∣g∗α0(t)∣

q(t)dt <∞, because p, q ∈ P0.
Hence, gα ∈ Lp( ⋅ ),q( ⋅ )(Rn) for every α ≥ α0.

Lemma 2.8 Let p, q ∈P0 and let D be a subset of Rn . _en χD ∈ Lp( ⋅ ),q( ⋅ )(Rn) if
and only if ∣D∣ <∞.

Proof We have that (χD)∗ = χ[0,∣D∣). Since p, q ∈P0, for every λ > 0,

∫
∞

0
( (χD)∗(t)t

1
p(t)−

1
q(t)

λ
)

q(t)
dt = ∫

∣D∣

0

t−1+q(t)/p(t)

λq(t) dt <∞,

if and only if ∣D∣ <∞.

Proof of_eorem 1.1 We recall that we are taking f ∈ S′(Rn) and φ ∈ S(Rn) such
that ∫ φ(x)dx /= 0. It is clear that for every N ∈ N,

∥M0
φ( f )∥p( ⋅ ),q( ⋅ ) ≤ ∥Mφ( f )∥p( ⋅ ),q( ⋅ ) ≤ C∥ f ∥Hp( ⋅ ),q( ⋅ )

N (Rn ,A) .

Hence, (i)⇒ (ii)⇒ (iii).
Now, we are going to complete the proof. Let M0 be the value in Lemma 2.5 for

N = L = 0. _en for a certain C > 0,
(2.2) ∥M0

M(g)∥p( ⋅ ),q( ⋅ ) ≤ C∥Mφ(g)∥p( ⋅ ),q( ⋅ ) , g ∈ S′(Rn), and M ≥ M0 .
Indeed, by Lemma 2.5, there exists C > 0 such that

M0,K ,0
M (g)(x) ≤ CT0,K ,0

φ (g)(x), x ∈ Rn , g ∈ S′(Rn),K ∈ N, and M ≥ M0 .
_en Lemma 2.4 leads to
∥M0,K ,0

M (g)∥p( ⋅ ),q( ⋅ ) ≤ C∥MK ,0
φ (g)∥p( ⋅ ),q( ⋅ ) , g ∈ S′(Rn), K ∈ N, and M ≥ M0 .

By using monotone convergence theorem in Lp( ⋅ ),q( ⋅ )(Rn) (see [24, Deûnition 2.5
v)]) jointly with [15, Lemma 2.3] and by letting K →∞, we conclude that (2.2) holds.

Our next objective is to see that, for a certain C > 0,
(2.3) ∥Mφ( f )∥p( ⋅ ),q( ⋅ ) ≤ C∥M0

φ( f )∥p( ⋅ ),q( ⋅ ) .
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1232 V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Note that by combining (2.2), (2.3), and [4, Proposition 3.10], we conclude that (iii)
⇒ (ii)⇒ (i).

In order to show (2.3), we ûrst note that there exists L0 ∈ N such that MK ,L0
φ ( f ) ∈

Lp( ⋅ ),q( ⋅ )(Rn), for every K ∈ N. Indeed, we denote by α0 the constant appearing in
Lemma 2.7. According to Lemma 2.6, we can ûnd L0 ∈ N such that, for every K ∈ N,
there exists C > 0 for which

MK ,L0
φ ( f )(x) ≤ Cmax( 1, ρ(x))−α0 , x ∈ Rn .

_en Lemma 2.7 leads to MK ,L0
φ ( f ) ∈ Lp( ⋅ ),q( ⋅ )(Rn), for each K ∈ N.

From Lemmas 2.4 and 2.5, we infer that there exist M0 ∈ N and C0 > 0 such that
(2.4) ∥M0,K ,L0

M0
( f )∥p( ⋅ ),q( ⋅ ) ≤ C0∥MK ,L0

φ ( f )∥p( ⋅ ),q( ⋅ ) ,
for every K ∈ N.
Fix K0 ∈ N. We deûne the set Ω0 by

Ω0 = {x ∈ Rn ∶ M0,K0 ,L0
M0

( f )(x) ≤ C2MK0 ,L0
φ ( f )(x)} ,

where C2 > 0 will be speciûed later.
By using (2.4), [15, Lemma 2.3], and [24, _eorem 2.4] and choosing r > 1 such

that rp, rq ∈ P1, we get

∥MK0 ,L0
φ ( f )∥p( ⋅ ),q( ⋅ )

= ∥t
1

p(t)−
1

q(t) (MK0 ,L0
φ ( f ))∗(t)∥q( ⋅ )

= ∥t
1

r p(t)−
1

rq(t) ([MK0 ,L0
φ ( f )]∗(t)) 1/r∥r

rq( ⋅ )
= ∥t

1
r p(t)−

1
rq(t) ([MK0 ,L0

φ ( f )]1/r)∗(t)∥r
rq( ⋅ ) = ∥[MK0 ,L0

φ ( f )]1/r∥r
r p( ⋅ ),rq( ⋅ )

≤ (∥[MK0 ,L0
φ ( f )]1/r∥(1)r p( ⋅ ),rq( ⋅ ))

r

≤ A1{(∥[MK0 ,L0
φ ( f )χΩ0]1/r∥

(1)
r p( ⋅ ),rq( ⋅ ))

r + (∥[MK0 ,L0
φ ( f )χΩc

0
]1/r∥(1)r p( ⋅ ),rq( ⋅ ))

r}

≤ A1{(∥[MK0 ,L0
φ ( f )χΩ0]1/r∥

(1)
r p( ⋅ ),rq( ⋅ ))

r + 1
C2

(∥[M0,K0 ,L0
M0

( f )]1/r∥(1)r p( ⋅ ),rq( ⋅ ))
r}

≤ A2{(∥[MK0 ,L0
φ ( f )χΩ0]1/r∥r p( ⋅ ),rq( ⋅ ))

r + 1
C2

(∥[M0,K0 ,L0
M0

( f )]1/r∥r p( ⋅ ),rq( ⋅ ))
r}

≤ A2(∥MK0 ,L0
φ ( f )χΩ0∥p( ⋅ ),q( ⋅ ) +

1
C2

∥M0,K0 ,L0
M0

( f )∥p( ⋅ ),q( ⋅ ))

≤ A2(∥MK0 ,L0
φ ( f )χΩ0∥p( ⋅ ),q( ⋅ ) +

C0

C2
∥MK0 ,L0

φ ( f )∥p( ⋅ ),q( ⋅ )) ,

where A1 ,A2 > 0 depend only on p, q, and r. Hence, by takingC2 ≥ 2C0A2,we obtain

∥MK0 ,L0
φ ( f )∥p( ⋅ ),q( ⋅ ) ≤ 2A2∥MK0 ,L0

φ ( f )χΩ0∥p( ⋅ ),q( ⋅ ) ,

because MK0 ,L0
φ ( f ) ∈ Lp( ⋅ ),q( ⋅ )(Rn).

According to [4, (7.16)], we have that

(2.5) MK0 ,L0
φ ( f )(x) ≤ C[MHL(M0,K0 ,L0

φ ( f )1/r)(x)] r , x ∈ Ω0 .
_e constant C>0 does not depend on K0, but it does depend on L0.
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Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1233

From (2.5), Proposition 2.1, and [15, Lemma 2.3], we obtain

∥MK0 ,L0
φ ( f )χΩ0∥p( ⋅ ),q( ⋅ ) ≤ C∥(MHL(M0,K0 ,L0

φ ( f )1/r)) r∥ p( ⋅ ),q( ⋅ )
= C∥MHL(M0,K0 ,L0

φ ( f )1/r)∥r
r p( ⋅ ),rq( ⋅ )

≤ C∥M0,K0 ,L0
φ ( f )1/r∥r

r p( ⋅ ),rq( ⋅ )
= C∥M0,K0 ,L0

φ ( f )∥p( ⋅ ),q( ⋅ ) .
We conclude that

∥MK0 ,L0
φ ( f )∥p( ⋅ ),q( ⋅ ) ≤ C∥M0,K0 ,L0

φ ( f )∥p( ⋅ ),q( ⋅ ) .
Again, note that this constant C > 0 does not depend on K0 and it depends on L0.

We have that MK ,L0
φ ( f )(x) ↑ Mφ( f )(x), as K → ∞, for every x ∈ Rn , and

M0,K ,L0
φ ( f )(x) ↑ M0

φ( f )(x), as K → ∞, for every x ∈ Rn . Hence, the monotone
convergence theorem in the Lp( ⋅ ),q( ⋅ )(Rn)-setting ([24, _eorem 2.8 and Deûni-
tion 2.5, v)], jointly with [15, Lemma 2.3]), leads to

∥Mφ( f )∥p( ⋅ ),q( ⋅ ) ≤ C∥M0
φ( f )∥p( ⋅ ),q( ⋅ ) .

Observe that the last inequality says that Mφ( f ) ∈ Lp( ⋅ ),q( ⋅ )(Rn), but the constant
C > 0 depends on f , because L0 depends also on f .

On the other hand, since Mφ( f ) ∈ Lp( ⋅ ),q( ⋅ )(Rn), MK ,0
φ ( f ) ∈ Lp( ⋅ ),q( ⋅ )(Rn),

for every K ∈ N. Hence, we can take L0 = 0 at the beginning of the proof of this part.
By proceeding as above we concluded that

∥Mφ( f )∥p( ⋅ ),q( ⋅ ) ≤ C∥M0
φ( f )∥p( ⋅ ),q( ⋅ ) ,

where C > 0 does not depend on f .
_us, the proof of the theorem is ûnished.

_e last part of this section is dedicated to establishing some properties of the space
Hp( ⋅ ),q( ⋅ )(Rn ,A).

Proposition 2.9 Let p, q ∈ P0. _en Hp( ⋅ ),q( ⋅ )(Rn ,A) is continuously contained in
S′(Rn).

Proof Let f ∈ S′(Rn) and φ ∈ S(Rn). We deûne λ0 = ∣⟨ f , φ⟩∣. We can write
λ0 = ∣( f ∗ φ)(0)∣ ≤ sup

z∈x+B0

∣( f ∗ φ)(z)∣ ≤ Mφ( f )(x), x ∈ B0 .

_en
∣{x ∈ Rn ∶ Mφ( f )(x) > λ0/2}∣ ≥ 1 and (Mφ( f ))∗(t) ≥ λ0/2, t ∈ (0, 1).

Hence, we get

∥Mφ( f )∥p( ⋅ ),q( ⋅ ) ≥ ∥t
1

p( ⋅ )− 1
q( ⋅ ) (Mφ( f ))∗(t)χ(1/2,1)(t)∥q( ⋅ )

≥ λ0
2
∥t

1
p( ⋅ )− 1

q( ⋅ ) χ(1/2,1)(t)∥q( ⋅ ) .

Since ∥t
1

p( ⋅ )− 1
q( ⋅ ) χ(1/2,1)(t)∥q( ⋅ ) > 0, we conclude the desired result.
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Proposition 2.10 Let p, q ∈ P0. If f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A), then f is a bounded
distribution in S′(Rn).

Proof Let f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A) and φ ∈ S(Rn). For every x ∈ Rn , we have that

∣( f ∗ φ)(x)∣ ≤ sup
z∈y+B0

∣( f ∗ φ)(z)∣ ≤ Mφ( f )(y), y ∈ x + B0 .

By proceeding as in the proof of Proposition 2.9, we deduce that for a certain C > 0,

∣( f ∗ φ)(x)∣ ≤ C∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) , x ∈ Rn .

_us, we prove that f is a bounded distribution in S′(Rn).

Proposition 2.11 Assume that p, q ∈ P0. _en Hp( ⋅ ),q( ⋅ )(Rn ,A) is complete.

Proof We choose r ∈ (0, 1] such that p( ⋅ )/r, q( ⋅ )/r ∈ P1. In order to see that
Hp( ⋅ ),q( ⋅ )(Rn ,A) is complete, it is suõcient to prove that if ( fk)k∈N is a sequence in
Hp( ⋅ ),q( ⋅ )(Rn ,A) such that ∑k∈N ∥ fk∥r

Hp( ⋅ ),q( ⋅ )(Rn ,A) < ∞, then the series ∑k∈N fk
converges in Hp( ⋅ ),q( ⋅ )(Rn ,A) (see, for instance, [3, _eorem 1.6, p. 5]). Assume
that ( fk)k∈N is a sequence in Hp( ⋅ ),q( ⋅ )(Rn ,A) such that

∑
k∈N

∥ fk∥r
Hp( ⋅ ),q( ⋅ )(Rn ,A) <∞.

For every j ∈ N, we deûne F j = ∑ j
k=0 fk . According to [15, Lemma 2.3] and [24,

_eorem 2.4], if j, ℓ ∈ N, j < ℓ, we get

∥Fℓ − F j∥r
Hp( ⋅ ),q( ⋅ )(Rn ,A)

= ∥
ℓ

∑
k= j+1

fk∥
r

Hp( ⋅ ),q( ⋅ )(Rn ,A)
≤ ∥

ℓ

∑
k= j+1

MN( fk)∥
r

p( ⋅ ),q( ⋅ )

= ∥(
ℓ

∑
k= j+1

MN( fk))
r
∥

p( ⋅ )/r ,q( ⋅ )/r ≤ ∥
ℓ

∑
k= j+1

(MN( fk))r∥
p( ⋅ )/r ,q( ⋅ )/r

≤ ∥
ℓ

∑
k= j+1

(MN( fk))r∥
(1)

p( ⋅ )/r ,q( ⋅ )/r ≤
ℓ

∑
k= j+1

∥(MN( fk))r∥(1)p( ⋅ )/r ,q( ⋅ )/r

≤ C
ℓ

∑
k= j+1

∥(MN( fk))r∥p( ⋅ )/r ,q( ⋅ )/r = C
ℓ

∑
k= j+1

∥ fk∥r
Hp( ⋅ ),q( ⋅ )(Rn ,A) .

Hence, (F j) j∈N is a Cauchy sequence in Hp( ⋅ ),q( ⋅ )(Rn ,A). By Proposition 2.9,
(F j) j∈N is a Cauchy sequence in S′(Rn). _en there exists F ∈ S′(Rn) such that
F j → F, as j →∞, in S′(Rn). We have that

MN(F) ≤ lim
j→∞

j

∑
k=0

MN( fk).

https://doi.org/10.4153/CJM-2016-053-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-053-6


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT: Canad. J. Math. October 20, 2017 14:13 File: almeidaJ1796pp. 1219–1273 Page 1235 Sheet 17 of 55i
i

i
i

i
i

i
i

Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1235

According to [24, _eorem 2.8 and Deûnition 2.5 v)], by proceeding as above, we
obtain

∥MN(F)∥r
p( ⋅ ),q( ⋅ ) ≤ ∥ lim

j→∞

j

∑
k=0

MN( fk)∥
r

p( ⋅ ),q( ⋅ ) = lim
j→∞

∥
j

∑
k=0

MN( fk)∥
r

p( ⋅ ),q( ⋅ )
≤ ∑

k∈N
∥(MN( fk))r∥p( ⋅ )/r ,q( ⋅ )/r = C∑

k∈N
∥ fk∥r

Hp( ⋅ ),q( ⋅ )(Rn ,A) .

_en F ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A). Also, we have that

∥F −
j

∑
k=0

fk∥r
Hp( ⋅ ),q( ⋅ )(Rn ,A) ≤ C

∞
∑

k= j+1
∥ fk∥r

Hp( ⋅ ),q( ⋅ )(Rn ,A) , j ∈ N.

Hence, F = ∑k∈N fk in the sense of convergence in Hp( ⋅ ),q( ⋅ )(Rn ,A).

3 A Calderón–Zygmund Decomposition

In this sectionwe study a Calderón–Zygmund decomposition for our anisotropic set-
ting (associated with the matrix dilation A) for a distribution f ∈ S′(Rn) satisfying
that ∣{x ∈ Rn ∶ MN f (x) > λ}∣ < ∞, where N ∈ N, N ≥ 2 and λ > 0. We will
use the ideas and results established in [4, Section 5, Chapter I]. Also, we prove new
properties involving variable exponent Hardy–Lorentz norms that will be useful in
the sequel.

Let λ > 0, N ∈ N, N ≥ 2, and f ∈ S′(Rn) such that ∣Ωλ ∣ <∞, where

Ωλ = {x ∈ Rn ∶ MN( f )(x) > λ} .

By the Whitney Lemma ([4, Lemma 2.7]), there exist sequences (x j) j∈N ⊂ Ωλ and
(ℓ j) j∈N ⊂ Z satisfying the following

Ωλ = ⋃
j∈N

(x j + Bℓ j);(3.1)

(x i + Bℓ i−ω) ∩ (x j + Bℓ j−ω) = ∅, i , j ∈ N, i /= j;(3.2)
(x j + Bℓ j+4ω) ∩Ωλ

c = ∅, (x j + Bℓ j+4ω+1) ∩Ωλ
c /= ∅, j ∈ N;

if i , j ∈ N and (x i + Bℓ i+2ω) ∩ (x j + Bℓ j+2ω) /= ∅, then ∣ℓ i − ℓ j ∣ ≤ ω;
♯{ j ∈ N ∶ (x i + Bℓ i+2ω) ∩ (x j + Bℓ j+2ω) /= ∅} ≤ L, i ∈ N.(3.3)

Here, L denotes a nonnegative integer that does not depend on Ωλ . If E ⊂ Rn by ♯ E
we represent the cardinality of E.
Assume now that θ ∈ C∞(Rn) satisûes that supp θ ⊂ Bω , 0 ≤ θ ≤ 1, and θ = 1 on

B0. For every j ∈ N, we deûne
θ j(x) = θ(A−ℓ j(x − x j)), x ∈ Rn ,

and, for every i ∈ N,

ζ i(x) =
⎧⎪⎪⎨⎪⎪⎩

θ i(x)/(∑ j∈N θ j(x)) x ∈ Ωλ ,
0 x ∈ Ωc

λ .

_e sequence {ζ i}i∈N is a smooth partition of unity associated with the covering
{x i + Bℓ i+ω}i∈N of Ωλ .
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Let i , s ∈ N. By Ps we denote the linear space of polynomials in Rn with degree at
most s. Ps is endowed with the norm ∥ ⋅ ∥i ,s deûned by

∥P∥i ,s = ( 1
∫ ζ i ∫Rn

∣P(x)∣2ζ i(x)dx)
1/2
, P ∈ Ps .

_us, (Ps , ∥ ⋅ ∥i ,s) is aHilbert space. We consider the functional Tf , i ,s on Ps given by

Tf , i ,s(Q) = 1
∫ ζ i

⟨ f ,Qζ i⟩, Q ∈ Ps .

_en Tf , i ,s is continuous in (Ps , ∥ ⋅ ∥i ,s), and there exists Pf , i ,s ∈ Ps such that

Tf , i ,s(Q) = 1
∫ ζ i ∫Rn

Pf , i ,s(x)Q(x)ζ i(x)dx , Q ∈ Ps .

To simplify, we write Pi to refer to Pf , i ,s . We deûne b i = ( f − Pi)ζ i .
We will ûnd values of s and N for which the series ∑i∈N b i converges in S′(Rn)

provided that f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A). _en, we deûne g = f −∑i∈N b i .
_e representation f = g +∑i∈N b i is known as the Calderón–Zygmund decom-

position of f of degree s and height λ associated with MN( f ).
First, note that if f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A) and N ∈ N, N ≥ N0, then

∥χ{x∈Rn ∶MN( f )(x)>µ}∥p( ⋅ ),q( ⋅ ) <∞
for every µ > 0, and by Lemma 2.8, ∣{x ∈ Rn ∶ MN( f )(x) > µ}∣ <∞, for every µ > 0.
Here, N0 is the one deûned in _eorem 1.1.

Our next objective is to prove that L1
loc(Rn) ∩ Hp( ⋅ ),q( ⋅ )(Rn ,A) is a dense sub-

space of Hp( ⋅ ),q( ⋅ )(Rn ,A). _is property will be useful to deal with the proof that
every element of Hp( ⋅ ),q( ⋅ )(Rn ,A) can be represented as a sum of a special kind of
distributions, so called atoms, which will be developed in the next section.

We need to establish some auxiliary results. First,we prove the absolute continuity
of the norm ∥ ⋅ ∥p(.),q(.).

Proposition 3.1 Let (Ek)k∈N be a sequence of measurable sets satisfying that Ek ⊃
Ek+1, k ∈ N, ∣E1∣ <∞, and ∣∩k∈NEk ∣ = 0. Assume that p, q ∈ P0. If f ∈ Lp( ⋅ ),q( ⋅ )(Rn),
then

∥ f χEk∥p( ⋅ ),q( ⋅ ) Ð→ 0, as k Ð→∞.

Proof Let f ∈ Lp( ⋅ ),q( ⋅ )(Rn) and k ∈ N. We have that ( f χEk)∗ ≤ f ∗. _en f χEk ∈
Lp( ⋅ ),q( ⋅ )(Rn). Moreover, since ∣ ∩k∈N Ek ∣ = limk→∞ ∣Ek ∣ = 0, for every t > 0 there
exists k0 ∈ N such that ( f χEk)∗(t) = 0, k ∈ N, k ≥ k0. Hence, for every t > 0,

t
1

p( ⋅ )− 1
q( ⋅ ) ( f χEk)∗(t)Ð→ 0, as k Ð→∞.

By using dominated convergence theorem ([20, Lemma 3.2.8]) jointly with [15,
Lemma 2.3] and by taking into account that q ∈ P0 and that f ∈ Lp( ⋅ ),q( ⋅ )(Rn),
we obtain

∥ f χEk∥p( ⋅ ),q( ⋅ ) → 0, as k →∞.

Note that the last property also holds bymore general exponent functions p and q.
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Proposition 3.2 Assume that p, q ∈ P0. _ere exists s0 ∈ N, such that for every s ∈ N,
s ≥ s0, and each N ∈ N, N > max{N0 , s}, where N0 is deûned in _eorem 1.1, the
following two properties holds.

(i) Let f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A) and λ > 0. If f = g + ∑i∈N b i is the anisotropic
Calderón–Zygmund decomposition of f associated with MN f of height λ and degree s,
then the series∑i∈N b i converges in Hp( ⋅ ),q( ⋅ )(Rn ,A).

(ii) Suppose that f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A) and that, for every j ∈ Z, f = g j+∑i∈N b i , j
is the anisotropic Calderón–Zygmund decomposition of f associatedwithMN f of height
2 j and degree s. _en (g j) j∈Z ⊂ Hp( ⋅ ),q( ⋅ )(Rn ,A) and (g j) j∈Z converges to f , as
j → +∞, in Hp( ⋅ ),q( ⋅ )(Rn ,A).

Proof (i) Let s,N ∈ N, N > max{N0 , s}. _e Calderón–Zygmund decomposition of
f associated with MN f of height λ > 0 and degree s is f = g +∑i∈N b i . We are going
to specify s and N in order that the series∑i∈N b i converges in Hp( ⋅ ),q( ⋅ )(Rn ,A).
By using [4, Lemmas 5.4 and 5.6], we get that there exists C > 0 so that, for every

i ∈ N,

MN(b i)(x)

≤ C(MN f (x)χx i+Bℓ i+2ω
(x) + λ∑

k∈N
λ−k(s+1)
− χx i+(Bℓ i+2ω+1+k/Bℓ i+2ω+k)(x)) , x ∈ Rn .

Let j,m ∈ N, j < m. For every x ∈ Rn , we infer

MN(
m

∑
i= j
b i)(x)

≤
m

∑
i= j

MN(b i)(x)

≤ C(MN f (x)
m

∑
i= j
χx i+Bℓ i+2ω

(x) + λ
m

∑
i= j
∑
k∈N

λ−k(s+1)
− χx i+(Bℓ i+2ω+1+k/Bℓ i+2ω+k)(x)) .

We also have that, for every x ∈ x i + (Bℓ i+2ω+1+k/Bℓ i+2ω+k), with i , k ∈ N, i ≤ m,

MHL(χx i+Bℓ i+2ω
)(x) ≥ 1

∣x i + Bℓ i+2ω+1+k ∣ ∫x i+Bℓ i+2ω+1+k
χx i+Bℓ i+2ω

(y)dy = b−k−1 .

We choose r > 1 such that rp, rq ∈ P1. _en we take s ∈ N such that λ−s
− br ≤ 1 and

N0 < s. For every i ∈ N, i ≤ m, we get

∞
∑
k=0

λ−k(s+1)
− χx i+(Bℓ i+2ω+1+k/Bℓ i+2ω+k)(x)

≤ Cmax
k∈N

(λ−s−1
− br)k(MHL(χx i+Bℓ i+2ω

)(x)) r

≤ C(MHL(χx i+Bℓ i+2ω
)(x)) r , x ∈ (x i + Bℓ i+2ω)c .
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1238 V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Hence, we obtain

MN(
m

∑
i= j
b i)(x)

≤ C0(MN f (x)
m

∑
i= j
χx i+Bℓ i+2ω

(x) + λ
m

∑
i= j

(MHL(χx i+Bℓ i+2ω
)(x)) r) , x ∈ Rn .

By using [15, Lemma 2.3], sinceLp( ⋅ ),q( ⋅ )(Rn) is a quasi Banach space,we obtain

∥MN(
m

∑
i= j
b i)∥

p( ⋅ ),q( ⋅ )

≤ C(∥MN( f )
m

∑
i= j
χx i+Bℓ i+2ω

∥
p( ⋅ ),q( ⋅ )

+ λ∥
m

∑
i= j

(MHL(χx i+Bℓ i+2ω
)) r∥

p( ⋅ ),q( ⋅ ))

= C(∥MN( f )
m

∑
i= j
χx i+Bℓ i+2ω

∥
p( ⋅ ),q( ⋅ )

+ λ∥(
m

∑
i= j

(MHL(χx i+Bℓ i+2ω
)) r)

1/r
∥

r

r p( ⋅ ),rq( ⋅ ))

(3.4)

By using Proposition 2.2, we get

∥(
m

∑
i= j

(MHL(χx i+Bℓ i+2ω
)) r)

1/r
∥

r

r p( ⋅ ),rq( ⋅ ) ≤ C∥(
m

∑
i= j
χx i+Bℓ i+2ω

)
1/r

∥
r

r p( ⋅ ),rq( ⋅ )

= C∥
m

∑
i= j
χx i+Bℓ i+2ω

∥
p( ⋅ ),q( ⋅ ) .

From (3.3) and (3.4), it follows that

∥MN(
m

∑
i= j
b i)∥

p( ⋅ ),q( ⋅ )

≤ C(∥MN( f )
m

∑
i= j
χx i+Bℓ i+2ω

∥
p( ⋅ ),q( ⋅ ) + λ∥

m

∑
i= j
χx i+Bℓ i+2ω

∥
p( ⋅ ),q( ⋅ ))

≤ C∥MN( f )
m

∑
i= j
χx i+Bℓ i+2ω

∥
p( ⋅ ),q( ⋅ )

≤ C∥MN( f )χ⋃∞i= j(x i+Bℓ i+2ω)∥ p( ⋅ ),q( ⋅ ) .

For every k ∈ N,we deûne Ek = ⋃∞i=k(x i +Bℓ i+2ω). By (3.3) there exists C > 0 such
that∑∞

i=k χx i+Bℓ i+2ω
≤ CχEk , k ∈ N. By (3.1) and (3.2),⋃i∈N(x i+Bℓ i−ω) ⊂ Ωλ , and then

∑i∈N ∣x i +Bℓ i−ω ∣ = b−ω∑i∈N bℓ i ≤ ∣Ωλ ∣ <∞, whereΩλ = {x ∈ Rn ∶ MN( f )(x) > λ}.
We deduce that

∣Ek ∣ ≤
∞
∑
i=k

∣x i + Bℓ i+2ω ∣ = b2ω
∞
∑
i=k
bℓ i , k ∈ N.
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Proposition 3.1 implies that

lim
k→∞

∥MN( f )χEk∥p( ⋅ ),q( ⋅ ) = 0.

Hence, the sequence {∑k
i=0 b i}k∈N is Cauchy in Hp( ⋅ ),q( ⋅ )(Rn ,A). Since

Hp( ⋅ ),q( ⋅ )(Rn ,A) is complete (Proposition 2.11), the series ∑i∈N b i converges in
Hp( ⋅ ),q( ⋅ )(Rn ,A).

(ii) In order to prove this property, we can proceed as in the proof of (i). Assume
that j ∈ Z. We deûne Ω j = {x ∈ Rn ∶ MN f (x) > 2 j}. By putting b j = ∑i∈N b i , j , since,
as we have just proved in (i), the last series converges in Hp( ⋅ ),q( ⋅ )(Rn ,A) and then
in S′(Rn), we obtain, for a chosen r > 1 verifying that rp, rq ∈ P1,

MN(b j)(x) ≤ C0(MN f (x)χΩ j(x) + 2 j∑
i∈N

(MHL(χx i+Bℓ i+2ω
)(x)) r) , x ∈ Rn .

It follows that

∥MN(b j)∥ p( ⋅ ),q( ⋅ )(3.5)

≤ C(∥MN( f )χΩ j∥p( ⋅ ),q( ⋅ ) + 2 j∥(∑
i∈N

(MHL(χx i+Bℓ i+2ω
)) r)

1/r
∥

r

r p( ⋅ ),rq( ⋅ )) .

From Proposition 2.2, we get

∥(∑
i∈N

(MHL(χ{x i+Bℓ i+2ω}))
r)

1/r
∥

r

r p( ⋅ ),rq( ⋅ ) ≤ C∥(∑i∈N
χx i+Bℓ i+2ω

)
1/r

∥
r

r p( ⋅ ),rq( ⋅ )

= C∥∑
i∈N
χx i+Bℓ i+2ω

∥
p( ⋅ ),q( ⋅ )

≤ C∥χΩ j∥p( ⋅ ),q( ⋅ ) .
From (3.5) it follows that

∥MN(b j)∥p( ⋅ ),q( ⋅ ) ≤ C(∥MN( f )χΩ j∥p( ⋅ ),q( ⋅ ) + 2 j∥χΩ j∥p( ⋅ ),q( ⋅ ))
≤ C∥MN( f )χΩ j∥p( ⋅ ),q( ⋅ ) .

Since f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A), by again invoking [15, Lemma 2.3], we have that

∥MN( f )∥1/r
p( ⋅ ),q( ⋅ ) = ∥(MN( f ))1/r∥r p( ⋅ ),rq( ⋅ ) <∞.

_en by [24,_eorem 2.8] (see [24, Deûnition 2.5 vii)]),MN( f )(x) <∞, a.e. x ∈ Rn .
Hence, MN( f )χΩ j ↓ 0, as j → +∞, for a.e. x ∈ Rn . According to Proposition 3.1 we
conclude that ∥MN( f )χΩ j∥p( ⋅ ),q( ⋅ ) → 0, as j → +∞. Hence, ∥MN(b j)∥p( ⋅ ),q( ⋅ ) →
0, as j → +∞, and ∥ f − g j∥Hp( ⋅ ),q( ⋅ )(Rn ,A) → 0, as j → +∞.

By C∞c (Rn) we denote the space of smooth functions with compact support in
Rn . We say that a distribution h ∈ S′(Rn) is in L1

loc(Rn)when there exists a (unique)
H ∈ L1

loc(Rn) such that

⟨h, ϕ⟩ = ∫
Rn

H(x)ϕ(x)dx , ϕ ∈ C∞c (Rn).

_e space S′(Rn)∩L1
loc(Rn) is also sometimes denoted by Sr(Rn) and itwas studied,

for instance, in [21, 56, 57].
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Proposition 3.3 If f ∈ S′(Rn), λ > 0, s,N ∈ N,N ≥ 2, and s < N , and f = g+∑i∈N b i
is the anisotropic Calderón–Zygmund decomposition of f associated with MN( f ) of
height λ and degree s, then g ∈ L1

loc(Rn).

Proof Let λ > 0, N ∈ N, N ≥ 2, s ∈ N, s < N , and f ∈ S′(Rn) such that ∣Ωλ ∣ < ∞,
where Ωλ = {x ∈ Rn ∶ MN( f )(x) > λ}. We write f = g + ∑i∈N b i the Calderón–
Zygmund decomposition of f associated with MN( f ) of height λ and degree s.
According to [4, Lemma 5.9] we have that

MN(g)(x) ≤ Cλ∑
i∈N

λ−t i(s+1)
− +MN( f )(x)χΩc

λ
(x), x ∈ Rn ,

where

t i = t i(x) =
⎧⎪⎪⎨⎪⎪⎩

t if x ∈ x i + (Bℓ i+2ω+t+1/Bℓ i+2ω+t), for some t ∈ N,
0 otherwise.

As shown in the proof of [4, Lemma 5.10 (i), p. 34], we get

∫
Rn
∑
i∈N

λ−t i(x)(s+1)
− dx ≤ C∣Ωλ ∣.

_en, since MN( f )(x) ≤ λ, x ∈ Ωc
λ , we obtain that MN(g) ∈ L1

loc(Rn).
Let φ ∈ S(Rn). Since for a certain C > 0, we have g ∗ φk ≤ CMN(g), k ∈ N, by

proceeding as in the proof of [4, _eorem 3.9] we can prove that for every compact
subset F of Rn there exists a sequence {k j} j∈N ⊂ Z such that k j → −∞, as j → ∞,
and g ∗ φk j → GF , as j →∞, in the weak topology of L1(F) for a certain GF ∈ L1(F).
A diagonal argument allows us to get a sequence {k j} j∈N ⊂ Z such that k j → −∞,
as j → ∞, and g ∗ φk j → G, in the weak * topology ofM(K) (the space of complex
measures supported in K) for every compact subset K of Rn , being G ∈ L1

loc(Rn).
According to [4, Lemma 3 .8], g ∗ φk j → g, as j →∞ in S′(Rn). If ϕ ∈ C∞c (Rn), we
have that

(3.6) ⟨g , ϕ⟩ = lim
j→∞∫Rn

(g ∗ φk j)(x)ϕ(x)dx = ∫Rn
G(x)ϕ(x)dx .

Since C∞c (Rn) is a dense subspace of S(Rn), g is characterized by (3.6).

Corollary 3.4 Assume that p, q ∈ P0. _en L1
loc(Rn)∩Hp( ⋅ ),q( ⋅ )(Rn ,A) is a dense

subspace of Hp( ⋅ ),q( ⋅ )(Rn ,A).

Proof _is property is a consequence of Propositions 3.2 and 3.3.

We ûnish this sectionwith a convergence property for the good parts of Calderón–
Zygmund decomposition of distributions in L1

loc(Rn)∩Hp( ⋅ ),q( ⋅ )(Rn ,A),whichwe
will use in the proof of atomic decompositions of the elements of Hp( ⋅ ),q( ⋅ )(Rn ,A).

Proposition 3.5 Assume that p, q ∈ P0, and f ∈ L1
loc(Rn)∩Hp( ⋅ ),q( ⋅ )(Rn ,A). For

every j ∈ N, f = g j + ∑i∈N b i , j is the anisotropic Calderón–Zygmund decomposition
of f associated with MN( f ) of height 2 j and degree s, with s,N ∈ N, s ≥ s0, and
N > max{s,N0}, where N0 is as in _eorem 1.1 and s0 is as in Proposition 3.2. _en
g j → 0, as j → −∞, in S′(Rn).
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Proof Since f ∈ L1
loc(Rn), there exists a unique F ∈ L1

loc(Rn) such that

⟨ f , ϕ⟩ = ∫
Rn
F(x)ϕ(x)dx , ϕ ∈ C∞c (Rn).

According to Proposition 3.3, for every j ∈ Z, there exists a unique G j ∈ L1
loc(Rn) for

which

(3.7) ⟨g j , ϕ⟩ = ∫
Rn

G j(x)ϕ(x)dx , ϕ ∈ C∞c (Rn).

Let j ∈ Z and ϕ ∈ C∞c (Rn). We are going to see that

∑
i∈N
∫
Rn

∣ (F(x) − Pi , j(x)) ζ i , j(x)∣ ∣ϕ(x)∣dx <∞.

For every i ∈ N, by [4, Lemma 5.3], we have that

∫
Rn

∣(F(x) − Pi , j(x))ζ i , j(x)∣∣ϕ(x)∣dx

≤ C(∫(x i , j+B l i , j+ω)∩supp(ϕ)
∣F(x)∣dx + 2 j ∣(x i , j + B l i , j+ω) ∩ supp(ϕ)∣) .

_en

∑
i∈N
∫
Rn

∣(F(x) − Pi , j(x))ζ i , j(x)∣∣ϕ(x)∣dx ≤ C(∫
supp(ϕ)

∣F(x)∣dx + 2 j ∣ supp(ϕ)∣) .

Hence, from Proposition 3.2(i), we get

∫
Rn
∑
i∈N

(F(x) − Pi , j(x))ζ i , j(x)ϕ(x)dx =∑
i∈N
∫
Rn

(F(x) − Pi , j(x))ζ i , j(x)ϕ(x)dx

=∑
i∈N

⟨( f − Pi , j)ζ i , j , ϕ⟩

= ⟨∑
i∈N

( f − Pi , j)ζ i , j , ϕ⟩ .

_en there exists ameasurable subset E ⊂ Rn such that ∣Rn ∖ E∣ = 0, and

G j(x) = F(x) −∑
i∈N

(F(x) − Pi , j(x))ζ i , j(x), x ∈ E and j ∈ Z,

for a suitable sense of the convergence of series. Note that we have used a diagonal
argument to justify the convergence for every j ∈ Z.

We can write

G j(x) = F(x)χΩc
j
(x) −∑

i∈N
Pi , j(x)ζ i , j(x), x ∈ E and j ∈ Z,

where Ω j = {x ∈ Rn ∶ MN( f )(x) > 2 j}, j ∈ Z. Note that the last series is actually a
ûnite sum for every x ∈ Rn .

Let j ∈ Z. According to [4, Lemma 5.3] we obtain

∣G j(x)∣ ≤ C2 j , a.e. x ∈ Ω j .

On the other hand, G j(x) = F(x), a.e. x ∈ Ωc
j . Also, we have that

∣F∣ ≤ sup
k∈Z,φ∈C∞c (Rn)∩SN

∣ f ∗ φk ∣ ≤ MN( f ).
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_en ∣G j(x)∣ ≤ C2 j , a.e. x ∈ Ωc
j . Hence, we conclude that

(3.8) ∣G j(x)∣ ≤ C2 j , a.e. x ∈ Rn .
We consider the functional Tj deûned on S(Rn) by

Tj(ϕ) = ∫
Rn

G j(x)ϕ(x)dx , ϕ ∈ S(Rn).

From (3.8) we deduce that Tj ∈ S′(Rn). By (3.7), Tj(ϕ) = ⟨g j , ϕ⟩, ϕ ∈ C∞c (Rn). _en

⟨g j , ϕ⟩ = ∫
Rn

G j(x)ϕ(x)dx , ϕ ∈ S(Rn),

and, again from (3.8), it follows that g j → 0, as j → −∞, in S′(Rn).

4 Atomic Characterization (Proof of Theorem 1.3)

Aswementioned in the introduction,we are going to prove_eorem 1.3 in two steps,
ûrst in the case where r =∞ and then when r <∞.

4.1 Proof of Theorem 1.3 when r =∞.

(i) Suppose that for every j ∈ N, a j is a (p( ⋅ ), q( ⋅ ),∞, s)-atom associated with x j ∈
Rn and ℓ j ∈ Z. Here, s ∈ N will be ûxed later. Assume also that (λ j) j∈N ⊂ (0,∞) and
that

∥∑
j∈N

λ j

∥χx j+Bℓ j
∥p( ⋅ ),q( ⋅ )

χx j+Bℓ j
∥

p( ⋅ ),q( ⋅ ) <∞.

We are going to show that the series ∑ j∈N λ ja j converges in Hp( ⋅ ),q( ⋅ )(Rn ,A). Let
ℓ,m ∈ N, ℓ < m. We deûne fℓ ,m = ∑m

j=ℓ λ ja j , and we take φ ∈ S(Rn). We have that

∥Mφ( fℓ ,m)∥p( ⋅ ),q( ⋅ )

≤ ∥
m

∑
j=ℓ

λ jMφ(a j)∥
p( ⋅ ),q( ⋅ )

≤ C(∥
m

∑
j=ℓ

λ jMφ(a j)χx j+Bℓ j+ω
∥

p( ⋅ ),q( ⋅ ) + ∥
m

∑
j=ℓ

λ jMφ(a j)χx j+Bcℓ j+ω
∥

p( ⋅ ),q( ⋅ ))

= I1 + I2 .

(4.1)

We now estimate I i , i = 1, 2. We ûrst study I1. Let j ∈ N. Since a j is a
(p( ⋅ ), q( ⋅ ),∞, s)-atom, we can write

Mφ(a j)(x) ≤ ∥a j∥∞∥φ∥1 ≤ C∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ ) , x ∈ Rn .

By deûning g j = χx j+Bℓ j
(∥χx j+Bℓ j

∥−1
p( ⋅ ),q( ⋅ )λ j)α , it follows that

MHL g j(x) ≥ (∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )λ j)

α 1
∣Bℓ j+ω ∣ ∫x j+Bℓ j+ω

χx j+Bℓ j
(y)dy

= b−ω(∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )λ j)

α , x ∈ x j + Bℓ j+ω ,
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Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1243

where α ∈ (0, 1) is such that p( ⋅ )/α, q( ⋅ )/α ∈ P1. According to Proposition 2.2 and
[15, Lemma 2.3], we have that

I1 ≤ C∥
m

∑
j=ℓ

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )χx j+Bℓ j+ω∥

p( ⋅ ),q( ⋅ )

≤ C∥
m

∑
j=ℓ

(MHL g j)1/α∥
p( ⋅ ),q( ⋅ )

≤ C∥(
m

∑
j=ℓ

(MHL g j)1/α)
α
∥

1/α

p( ⋅ )/α ,q( ⋅ )/α

≤ C∥(
m

∑
j=ℓ

g1/α
j )

α
∥

1/α

p( ⋅ )/α ,q( ⋅ )/α

= C∥
m

∑
j=ℓ

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )χx j+Bℓ j

∥
p( ⋅ ),q( ⋅ ) .

(4.2)

Suppose now that a is a (p( ⋅ ), q( ⋅ ),∞, s)-atom associatedwith z ∈ Rn and k ∈ Z.
Let m ∈ N. By proceeding as in [4, pp. 19–20] we obtain

Mφ(a)(x)

≤ C 1
∥χz+Bk∥p( ⋅ ),q( ⋅ )

(bλs+1
− )−m

≤ C 1
∥χz+Bk∥p( ⋅ ),q( ⋅ )

bm(γ−1)λ−m(s+1)
− ( 1

∣Bk+m+ω+1∣ ∫z+Bk+m+ω+1

χz+Bk(y)dy)
γ

≤ C b
m(γ−1)λ−m(s+1)

−
∥χz+Bk∥p( ⋅ ),q( ⋅ )

(MHL(χz+Bk)(x))
γ , x ∈ z + (Bk+m+ω+1/Bk+m+ω).

Here γ is chosen such that γp( ⋅ ), γq( ⋅ ) ∈ P1. We now take s ∈ N, satisfying that
bγ−1λ−(s+1)

− ≤ 1. We obtain

Mφ(a)(x) ≤ C
1

∥χz+Bk∥p( ⋅ ),q( ⋅ )
(MHL(χz+Bk)(x))

γ , x ∉ z + Bk+ω .

By proceeding as above, we get

I2 ≤ C∥
m

∑
j=ℓ

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )(MHL(χx j+Bℓ j

)) γ∥
p( ⋅ ),q( ⋅ )

= C∥(
m

∑
j=ℓ

( λ1/γ
j ∥χx j+Bℓ j

∥−1/γ
p( ⋅ ),q( ⋅ )MHL(χx j+Bℓ j

)) γ)
1/γ

∥
γ

γp( ⋅ ),γq( ⋅ )

≤ C∥
m

∑
j=ℓ

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )χx j+Bℓ j

∥
p( ⋅ ),q( ⋅ ) .

(4.3)

By combining (4.1), (4.2), and (4.3), we infer that the sequence (∑k
j=0 λ ja j)k∈N is

Cauchy inHp( ⋅ ),q( ⋅ )(Rn ,A). SinceHp( ⋅ ),q( ⋅ )(Rn ,A) is complete (Proposition 2.11),
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the series∑ j∈N λ ja j converges in Hp( ⋅ ),q( ⋅ )(Rn ,A). Moreover, we get

∥∑
j∈N

λ ja j∥
Hp( ⋅ ),q( ⋅ )(Rn ,A)

≤ C∥∑
j∈N

λ j

∥χx j+Bℓ j
∥p( ⋅ ),q( ⋅ )

χx j+Bℓ j
∥

p( ⋅ ),q( ⋅ ) .

(ii) Assume that f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A) ∩ L1
loc(Rn), s ≥ s0 (s0 was deûned in Propo-

sition 3.2), and N > max{N0 , s} (N0 was deûned in _eorem 1.1). We recall that
Hp( ⋅ ),q( ⋅ )(Rn ,A) ∩ L1

l oc(Rn) is a dense subspace of Hp( ⋅ ),q( ⋅ )(Rn ,A) (Corol-
lary 3.4). Let j ∈ Z. We deûne Ω j = {x ∈ Rn ∶ MN( f )(x) > 2 j}. According
to [4, Chapter 1, Section 5] we can write f = g j + ∑k∈N b j,k , that is, the Calderón–
Zygmund decomposition of degree s and height 2 j associated with MN f . _e prop-
erties of g j and b j,k will be speciûed when we need each of them.
As proved in Proposition 3.2(ii), g j → f , as j → +∞, in both Hp( ⋅ ),q( ⋅ )(Rn ,A)

and S′(Rn), and in Proposition 3.5, g j → 0, as j → −∞, in S′(Rn). We have that

f =∑
j∈Z

(g j+1 − g j), in S′(Rn).

As in [4, p. 38] we can write, for every j ∈ Z,

g j+1 − g j =∑
i∈N

h i , j , in S′(Rn),

where

h i , j = ( f − P j
i )ζ

j
i −∑

k∈N
(( f − P j+1

k )ζ j
i − P j+1

i ,k ) ζ j+1
k , i ∈ N.

According to the properties of the polynomials P’s and the functions ζ ’s it follows that,
for every P ∈ Ps ,

∫
Rn

h i , j(x)P(x) dx = 0, i , j ∈ N.

We also have that, for certain C0 > 0, ∥h i , j∥∞ ≤ C02 j and supp h i , j ⊂ x i , j + Bℓ i , j+4ω ,
for every i , j ∈ N ([4, (6.12) and (6.13), p. 38]). Hence, for every i , j ∈ N, the function
a i , j = h i , j2− jC−1

0 ∥χx i , j+Bℓ i , j+4ω∥−1
p( ⋅ ),q( ⋅ ) is a (p( ⋅ ), q( ⋅ ),∞, s)-atom. Moreover,

(4.4) f = ∑
i∈N, j∈Z

λ i , ja i , j in S′(Rn),

where λ i , j = 2 jC0∥χx i , j+Bℓ i , j+4ω∥p( ⋅ ),q( ⋅ ), for every i ∈ N, j ∈ Z.
We are going to explain the convergence of the double series in (4.4).

https://doi.org/10.4153/CJM-2016-053-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-053-6


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT: Canad. J. Math. October 20, 2017 14:13 File: almeidaJ1796pp. 1219–1273 Page 1245 Sheet 27 of 55i
i

i
i

i
i

i
i

Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1245

We now choose β > 1 such that βp, βq ∈ P1. Assume that π = (π1 , π2)∶N → N ×Z
is a bijection. By proceeding as before we get, for every k ∈ N,

∥
k

∑
m=0

λπ(m)

∥χxπ(m)+Bℓπ(m)+4ω∥p( ⋅ ),q( ⋅ )
χxπ(m)+Bℓπ(m)+4ω∥ p( ⋅ ),q( ⋅ )

≤ C∥
k

∑
m=0

2π2(m)χxπ(m)+Bℓπ(m)+4ω∥ p( ⋅ ),q( ⋅ )

≤ C∥
k

∑
m=0

(2π2(m)/β χxπ(m)+Bℓπ(m)+4ω)
β∥

p( ⋅ ),q( ⋅ )

≤ C∥
k

∑
m=0

(2π2(m)/βMHL(χxπ(m)+Bℓπ(m)+2ω
)) β∥

p( ⋅ ),q( ⋅ )

= C∥(
k

∑
m=0

(MHL(2π2(m)/β χxπ(m)+Bℓπ(m)+2ω
)) β)

1/β
∥
β

βp( ⋅ ),βq( ⋅ )

≤ C∥(
k

∑
m=0

2π2(m)χxπ(m)+Bℓπ(m)+2ω
)

1/β
∥
β

βp( ⋅ ),βq( ⋅ )

≤ C∥∑
j∈Z

2 j∑
i∈N
χx i , j+Bℓ i , j+2ω

∥
p( ⋅ ),q( ⋅ )

≤ C∥∑
j∈Z

2 j χΩ j∥ p( ⋅ ),q( ⋅ ) .

Since f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A), by [24,_m. 2.8 and Def. 2.5 vii)], MN( f )(x) <∞,
a.e. x ∈ Rn . Let x ∈ Rn such that MN( f )(x) < ∞. _ere exists j0 ∈ Z such that
2 j0 < MN( f )(x) ≤ 2 j0+1. We have that

∑
j∈Z

2 j χΩ j(x) = ∑
j≤ j0

2 j = 2 j0+1 ≤ 2MN( f )(x).

We conclude that

∥
k

∑
m=0

λπ(m)

∥χxπ(m)+Bℓπ(m)+4ω∥p( ⋅ ),q( ⋅ )
χxπ(m)+Bℓπ(m)+4ω∥ p( ⋅ ),q( ⋅ )

= ∥(
k

∑
m=0

λπ(m)

∥χxπ(m)+Bℓπ(m)+4ω∥p( ⋅ ),q( ⋅ )
χxπ(m)+Bℓπ(m)+4ω)

1/β
∥
β

βp( ⋅ ),βq( ⋅ )

≤ C∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) ,

where C > 0 does not depend on (k, π).
According to [24,_eorem 2.8 and Deûnition 2.5, v)], we deduce that

∥ ∑
m∈N

λπ(m)

∥χxπ(m)+Bℓπ(m)+4ω∥p( ⋅ ),q( ⋅ )
χxπ(m)+Bℓπ(m)+4ω∥ p( ⋅ ),q( ⋅ ) ≤ C∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) .

From the property we have just established in part (i) of this proof, we deduce
that the series ∑m∈N λπ(m)aπ(m) converges both in Hp( ⋅ ),q( ⋅ )(Rn ,A) and S′(Rn).
Hence, for every ϕ ∈ S(Rn), the series∑m∈N λπ(m)⟨aπ(m) , ϕ⟩ converges in C.
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Also, we have that if Λ∶N ×Z→ N ×Z is a bijection, then the series

∑
m∈N

λΛ○π(m)⟨aΛ○π(m) , ϕ⟩

converges inC, for every ϕ ∈ S(Rn). In otherwords, the series∑m∈N λπ(m)⟨aπ(m) , ϕ⟩
converges unconditionally in C, for every ϕ ∈ S(Rn). Hence,

∑
m∈N

λπ(m)∣⟨aπ(m) , ϕ⟩∣ <∞,

for every ϕ ∈ S(Rn).
Let ϕ ∈ S(Rn). Since∑m∈N λπ(m)∣⟨aπ(m) , ϕ⟩∣ <∞, the double series

∑
(i , j)∈N×Z

λ i , j⟨a i , j , ϕ⟩

is summable, that is, supm∈N∑1≤i≤m , ∣ j∣≤m λ i , j ∣⟨a i , j , ϕ⟩∣ <∞. _en for every bijection
π∶N→ N ×Z, we have that

⟨ f , ϕ⟩ =∑
i∈N

(∑
j∈Z

λ i , j⟨a i , j , ϕ⟩) = ∑
m∈N

λπ(m)⟨aπ(m) , ϕ⟩.

Suppose now that f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A). _en there exists a sequence { f j} j∈N
in L1

loc(Rn) ∩ Hp( ⋅ ),q( ⋅ )(Rn ,A) such that f1 = 0, f j → f , as j → ∞, in
Hp( ⋅ ),q( ⋅ )(Rn ,A), and ∥ f j+1 − f j∥Hp( ⋅ ),q( ⋅ )(Rn ,A) < 2− j∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A), for every
j ∈ N. _en we can write

f =∑
j∈N

( f j+1 − f j),

in the sense of convergence in both Hp( ⋅ ),q( ⋅ )(Rn ,A) and S′(Rn). For every
j ∈ N, there exist a sequence {λ i , j}i∈N ⊂ (0,∞) and a sequence {a i , j}i∈N of
(p( ⋅ ), q( ⋅ ),∞, s)-atoms, being for every i ∈ N, a i , j associated with x i , j ∈ Rn and
ℓ i , j ∈ Z, satisfying that

f j+1 − f j =∑
i∈N

λ i , ja i , j , in S′(Rn),

and

∥∑
i∈N

λ i , j

∥χx i , j+Bℓ i , j
∥p( ⋅ ),q( ⋅ )

χx i , j+Bℓ i , j
∥

p( ⋅ ),q( ⋅ ) ≤ C2− j∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) .

Here, C > 0 does not depend on f .
We have that

∥ ∑
i∈N, j∈Z

λ i , j

∥χx i , j+Bℓ i , j
∥p( ⋅ ),q( ⋅ )

χx i , j+Bℓ i , j
∥

p( ⋅ ),q( ⋅ )

≤∑
j∈Z

∥∑
i∈N

λ i , j

∥χx i , j+Bℓ i , j
∥p( ⋅ ),q( ⋅ )

χx i , j+Bℓ i , j
∥

p( ⋅ ),q( ⋅ )

≤ C∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) .
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Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1247

By proceeding as above we can write

f = ∑
m∈N

λπ(m)aπ(m) , in S′(Rn),

for every bijection π∶N→ N ×N.
_us, the proof of this case is completed.

4.2 Proof of Theorem 1.3 when r <∞.

In order to prove this property we proceed in a series of steps establishing auxiliary
and partial results.

Proposition 4.1 Let 1 < r <∞ and let p, q ∈ P0. _ere exists s0 ∈ N satisfying that if
s ∈ N, s ≥ s0, we can ûnd C > 0 for which, for every f ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A), there exist,
for each j ∈ N, λ j > 0 and a (p( ⋅ ), q( ⋅ ), r, s)-atom a j associated with some x j ∈ Rn

and ℓ j ∈ Z, such that

∥∑
j∈N

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )χx j+Bℓ j

∥
p( ⋅ ),q( ⋅ ) ≤ C∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A)

and f = ∑ j∈N λ ja j in S′(Rn).

Proof Suppose that a is a (p( ⋅ ), q( ⋅ ),∞, s)-atom associated with x0 ∈ Rn and k ∈
Z. We have that

∥a∥r = (∫
x0+Bk

∣a(x)∣rdx)
1/r

≤ bk/r∥a∥∞ ≤ bk/r∥χx0+Bk∥−1
p( ⋅ ),q( ⋅ ) .

Hence, a is a (p( ⋅ ), q( ⋅ ), r, s)-atom associated with x0 ∈ Rn and k ∈ Z. _en this
property follows from the previous case r =∞.

We are going to see that the (p( ⋅ ), q( ⋅ ), r, s)-atoms are in Hp( ⋅ ),q( ⋅ )(Rn ,A).

Proposition 4.2 Let p, q ∈ P0 such that p(0) < q(0). Assume that max{1, q+} <
r < ∞. _ere exists s0 ∈ N such that if a is a (p( ⋅ ), q( ⋅ ), r, s0)-atom, then a ∈
Hp( ⋅ ),q( ⋅ )(Rn ,A).

Proof Let φ ∈ S(Rn). Assume that a is a (p( ⋅ ), q( ⋅ ), r, s)-atom associated with
x0 ∈ Rn and ℓ0 ∈ Z, where s ∈ N will be speciûed later. We have that

∥Mφ(a)∥p( ⋅ ),q( ⋅ ) ≤ C(∥Mφ(a)χx0+Bℓ0+w
∥p( ⋅ ),q( ⋅ )

+ ∥Mφ(a)χ(x0+Bℓ0+w)c∥p( ⋅ ),q( ⋅ ))
= I1 + I2 .

It is clear that

(Mφ(a)χx0+Bℓ0+w
)∗(t) = 0 for t ≥ ∣x0 + Bℓ0+w ∣ = bℓ0+w .

_en since 0 < p(0) = limt→0+ p(t) < q(0) = limt→0+ q(t), we can write

I1 ≤ C∥ t1/p(t)−1/q(t)(Mφ(a))∗χ(0,bℓ0+w)∥ q( ⋅ ) ≤ C∥(Mφ(a))∗χ(0,bℓ0+w)∥ q( ⋅ ) .
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By using [15, Lemma 2.2] and since r > max{1, q+}, we obtain
I1 ≤ C∥(Mφ(a))∗∥Lr(0,∞) = C∥Mφ(a)∥Lr(Rn) ≤ C∥a∥Lr(Rn)

≤ Cbℓ0/r∥χx0+Bℓ0
∥−1
p( ⋅ ),q( ⋅ ) <∞.

By proceeding as in the proof of the case r =∞ (see [4, pp. 19–21]) we get

Mφ(a)(x) ≤
C

∥χx0+Bℓ0
∥p( ⋅ ),q( ⋅ )

(MHL(χx0+Bℓ0
)(x))γ , x /∈ x0 + Bℓ0+w ,

provided that s ≥ γ−1
logb(λ−)

−1,where γ > 1 is such that γp, γq ∈ P1. _en Proposition 2.1
implies that

I2 ≤ C
∥(MHL(χx0+Bℓ0

))γ∥p( ⋅ ),q( ⋅ )
∥χx0+Bℓ0

∥p( ⋅ ),q( ⋅ )
= C

∥MHL(χx0+Bℓ0
)∥γ

γp( ⋅ ),γq( ⋅ )
∥χx0+Bℓ0

∥p( ⋅ ),q( ⋅ )
≤ C .

_us, we have shown that a ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A).

Note that the constant C in the proof of the last proposition depends on the atom
a. _is fact indicates that this next result cannot be a consequence of Proposition 4.2.
We need amore involved argument to show the following property.

Proposition 4.3 Let p, q ∈ P0 with p(0) < q(0). _ere exist s0 ∈ N and r0 > 1 such
that, for every r ≥ r0 we can ûnd C > 0 satisfying that if, for every j ∈ N, λ j > 0 and a j
is a (p( ⋅ ), q( ⋅ ), r, s0)-atom associated with x j ∈ Rn and ℓ j ∈ Z such that

∑
j∈N

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )χx j+Bℓ j

∈ Lp( ⋅ ),q( ⋅ )(Rn),

then f = ∑ j∈N λ ja j ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A) and

∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) ≤ C∥∑
j∈N

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )χx j+Bℓ j

∥
p( ⋅ ),q( ⋅ ) .

In order to prove this proposition we need to establish some preliminary proper-
ties.

Lemma 4.4 Assume that (λk)k∈N is a sequence in (0,∞), (ℓk)k∈N is a sequence inZ,
(xk)k∈N is a sequence in Rn , ν is a doubling weight, that is, νdx is a doubling measure,
(with respect to the anisotropic balls), ℓ ∈ N, ℓ ≥ 1, and 0 < p <∞. _en

(4.5) ∥∑
k∈N

λk χxk+Bℓk+ℓ
∥

Lp(Rn ,ν)
≤ Cbℓδ∥∑

k∈N
λk χxk+Bℓk

∥
Lp(Rn ,ν)

.

Here, C , δ > 0 depends only on ν.

Proof Suppose ûrst that p > 1. We follow the ideas in the proof of [55, _eorem 2,
p. 53]. We take 0 ≤ g ∈ Lp′(Rn , ν), where p′ is the exponent conjugated to p, that is,
p′ = p/(p − 1). Let y ∈ Rn and k ∈ Z. We deûne themaximal operator Mν by

Mν(h)(z) = sup
m∈Z, y∈z+Bm

1
ν(y + Bm) ∫y+Bm

∣h(x)∣ν(x)dx , z ∈ Rn .
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Since ν is doubling with respect to the anisotropic balls, for a certain δ > 0, we have
that

∫
y+Bk+ℓ

g(x)ν(x)dx ≤ bℓδ ν(y + Bk)
ν(y + Bk+ℓ) ∫y+Bk+ℓ

g(x)ν(x)dx

≤ bℓδ ∫
y+Bk

Mν(g)(x)ν(x)dx , y ∈ Rn , k ∈ Z.

We have taken into account that

Mν(g)(z) ≥
1

ν(y + Bℓ+k) ∫y+Bℓ+k
g(x)ν(x)dx , z ∈ y + Bk .

Let m ∈ N. We can write

∫
Rn

m

∑
k=0

λk χxk+Bℓ+ℓk
(x)g(x)ν(x)dx =

m

∑
k=0

λk ∫
xk+Bℓ+ℓk

g(x)ν(x)dx

≤ bℓδ
m

∑
k=0

λk ∫
xk+Bℓk

Mν(g)(x)ν(x)dx .

Hence, themaximal theorem [55,_eorem 3, p. 3] leads to

∣∫
Rn

m

∑
k=0

λk χxk+Bℓ+ℓk
(x)g(x)ν(x)dx∣

≤ bℓδ∥
m

∑
k=0

λk χxk+Bℓk
∥

Lp(Rn ,ν)
∥Mν(g)∥Lp′(Rn ,ν)

≤ Cbℓδ∥
m

∑
k=0

λk χxk+Bℓk
∥

Lp(Rn ,ν)
∥g∥Lp′(Rn ,ν) .

We conclude that

∥
m

∑
k=0

λk χxk+Bℓ+ℓk
(x)∥

Lp(Rn ,ν)
≤ Cbℓδ∥

m

∑
k=0

λk χxk+Bℓk
∥

Lp(Rn ,ν)
.

By taking m →∞, themonotone convergence theorem allows us to establish (4.5)
in this case.
Assume now that 0 < p ≤ 1. For every x0 ∈ Rn and k0 ∈ Z, we denote by δ(x0 ,k0)

the Diracmeasure in Rn+1 supported in (x0 , k0). Let m ∈ N. We have that

∫
x∈y+Bℓ+ j

m

∑
k=0

λkδ(xk ,ℓk)(y, j)

=
m

∑
k=0

λk ∫
Rn+1

χ{(y , j)∶x∈y+Bℓ+ j}(y, j)δ(xk ,ℓk)(y, j)

=
m

∑
k=0

λk χ{(y , j)∶x∈y+Bℓ+ j}(xk , ℓk) =
m

∑
k=0

λk χxk+Bℓ+ℓk
(x), x ∈ Rn .

Also, we can write

∫
x∈y+B j

m

∑
k=0

λkδ(xk ,ℓk)(y, j) =
m

∑
k=0

λk χxk+Bℓk
(x), x ∈ Rn .
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By arguing as in the proof of [55,_eorem 1, p. 52], replacing the area Littlewood–
Paley functions by our area integrals, we can prove that

∥∫
x∈y+Bℓ+ j

m

∑
k=0

λkδ(xk ,ℓk)(y, j)∥ Lp(Rn ,ν)

≤ Cbℓδ∥∫
x∈y+B j

m

∑
k=0

λkδ(xk ,ℓk)(y, j)∥ Lp(Rn ,ν)
.

By letting m →∞ and using monotone convergence theorem we conclude (4.5).

We now recall deûnitions of anisotropic Ar-weights and anisotropic weighted
Hardy spaces (see [6, 55]).

Let r ∈ (1,∞) and ν be a nonnegativemeasurable function on Rn . _e function ν
is said to be a weight in the anisotropicMuckenhoupt class Ar(Rn ,A) when

[ν]Ar(Rn ,A) =∶ sup
x∈Rn , k∈Z

( 1
∣Bk ∣ ∫x+Bk

ν(y)dy)( 1
∣Bk ∣ ∫x+Bk

(ν(y))−1/(r−1)dy)
r−1

<∞.

We say that ν belongs to the anisotropicMuckenhoupt class A1(Rn ,A) when

[ν]A1(Rn ,A) =∶ sup
x∈Rn , k∈Z

( 1
∣Bk ∣ ∫x+Bk

ν(y)dy) sup
y∈x+Bk

(ν(y))−1 <∞.

We deûneA∞(Rn ,A) = ⋃1≤r<∞Ar(Rn ,A).
_e weight ν satisûes the reverse Hölder condition RHr(Rn ,A) (in short, ν ∈

RHr(Rn ,A)) if there exists C > 0 such that

( 1
∣Bk ∣ ∫x+Bk

(ν(y))rdy)
1/r

≤ C 1
∣Bk ∣ ∫x+Bk

ν(y)dy, x ∈ Rn , and k ∈ Z.

_e classes Ar(Rn ,A) and RHα(Rn ,A) are closely connected. In particular, if ν ∈
A1(Rn ,A), there exists α ∈ (1,∞) such that ν ∈ RHα(Rn ,A) ([37,_eorem 1.3]).

Let 1 ≤ r < ∞ and ν ∈ Ar(Rn ,A). For every N ∈ N, the anisotropic Hardy space
Hr

N(Rn , ν,A) consists of all those f ∈ S′(Rn) such that MN( f ) ∈ Lr(Rn , ν). _ere
exists Nr ,ν ∈ N satisfying that Hr

N(Rn , ν,A) = Hr
Nr ,ν

(Rn , ν,A), for every N ≥ Nr ,ν .
Moreover, when N ≥ Nr ,ν , the quantities ∥MN( f )∥Lr(Rn ,ν) and ∥MNr ,ν( f )∥Lr(Rn ,ν)
are equivalent, for every f ∈ Hr

Nr ,ν
(Rn , ν,A). We denote byHr(Rn , ν,A) to the space

Hr
Nr ,ν

(Rn , ν,A).
By proceeding as in the proof of [55, Lemma 5, p. 116], we can obtain the following

property.

Lemma 4.5 Let p ∈ (0,∞) and q > max{1, p}. Assume that ν ∈ RH(q/p)′(Rn ,A).
_en there exists C > 0 such that if, for every k ∈ N, themeasurable function ak has its
support contained in the ball xk +Bℓk , where xk ∈ Rn , ℓk ∈ Z, ∥ak∥q ≤ ∥χxk+Bℓk

∥q , and
λk > 0, we have that

∥∑
k∈N

λkak∥
Lp(Rn ,ν)

≤ C∥∑
k∈N

λk χxk+Bℓk
∥

Lp(Rn ,ν)
.

If 1 < r ≤ ∞ and N ∈ N, we say that a function a ∈ Lr(Rn) is a (r,N)-atom
associated with x0 ∈ Rn and j0 ∈ Z, when a satisûes the following properties:
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Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1251

(i) supp a ⊂ x0 + B j0 ,
(ii) ∥a∥r ≤ b j0/r ,
(iii) ∫Rn a(x)xαdx = 0, for all ∣α∣ ≤ N , α ∈ Nn .

_enext result is an anisotropic version of the secondpart of [55,_eorem1, p. 112].

Lemma 4.6 Let 0 < p <∞. Assume that ν ∈ RH(q/p)′(Rn ,A)where q > max{1, p}.
_ere exists N1 ∈ N and C > 0 such that if, for every k ∈ N, ak is a (q,N1)-atom
associated with xk ∈ Rn and ℓk ∈ Z, and λk > 0, satisfying that

∥
∞
∑
k=1

λk χxk+Bℓk
∥

Lp(Rn ,ν)
<∞,

the series ∑∞
k=1 λkak converges in both S′(Rn) and Hp(Rn , ν,A) to an element f ∈

Hp(Rn , ν,A) such that

∥ f ∥Hp(Rn ,ν ,A) ≤ C∥
∞
∑
k=1

λk χxk+Bℓk
∥

Lp(Rn ,ν)
.

Proof Suppose that a is a (q,N)-atom associated with x0 ∈ Rn and ℓ0 ∈ Z. Here
N ∈ N will be speciûed later.

We choose φ ∈ S(Rn). We now estimate ∥Mφ(a)∥Lq(Rn) by considering in a sep-
arate way the regions x0 + Bℓ0+w and (x0 + Bℓ0+w)c.

Since q > 1 themaximal theorem ([4,_eorem 3.6]) implies that

(∫
Rn
χx0+Bℓ0+w

(x)∣Mφ(a)(x)∣qdx)
1/q

≤ ∥Mφ(a)∥Lq(Rn) ≤ Cbℓ0/q ≤ Cb(ℓ0+w)/q .

Hence, the function β0 = 1
C χx0+Bℓ0+w

Mφ(a) is a (q,−1)-atom associated with x0
and ℓ0 +w. _e index −1 means that no null moment condition needs to be satisûed.
By proceeding as in [4, p. 20] we get, for every m ∈ N,

Mφ(a)(x) ≤ C(bλN+1
− )−m , x ∈ x0 + (Bℓ0+w+m+1 ∖ Bℓ0+w+m).

We deûne ρm = χx0+Bℓ0+w+m+1 ,m ∈ N. It is clear that ρm is a (q,−1)-atom associated
with x0 and ℓ0 +w +m + 1, for every m ∈ N, and that

χ(x0+Bℓ0+w)cMφ(a) ≤ C ∑
m∈N

(bλN+1
− )−mρm .

Hence, we obtain

(4.6) Mφ(a) ≤ C(β0 + ∑
m∈N

(bλN+1
− )−mρm) .

Here, C > 0 does not depend on a.
Suppose that k ∈ N and, for every j ∈ N, j ≤ k, λ j > 0 and a j is a (q,N)-atom

associated with x j ∈ Rn and ℓ j ∈ Z. According to (4.6) we get

Mφ(
k

∑
j=0

λ ja j) ≤ C(
k

∑
j=0

λ j(β0, j +
∞
∑
m=0

(bλN+1
− )−mρm , j)) ,

where β0, j and ρm , j , j = 1, . . . , k, and m ∈ N have the obvious meaning and are
(q,−1)-atoms. By using Lemmas 4.4 and 4.5, and by taking p1 = min{1, p} we have
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that

∥
k

∑
j=0

λ ja j∥
p1

Hp(Rn ,ν ,A)

≤ C∥
k

∑
j=0

λ j(β0, j + ∑
m∈N

(bλN+1
− )−mρm , j)∥

p1

Lp(Rn ,ν)

≤ C( ∑
m∈N

(bλN+1
− )−mp1∥

k

∑
j=0

λ jρm , j∥
p1

Lp(Rn ,ν)
+ ∥

k

∑
j=0

λ jβ0, j∥
p1

Lp(Rn ,ν)
)

≤ C( ∑
m∈N

(bλN+1
− )−mp1∥

k

∑
j=0

λ j χx j+Bℓ j+w+m+1∥
p1

Lp(Rn ,ν)
+ ∥

k

∑
j=0

λ j χx j+Bℓ j
∥

p1

Lp(Rn ,ν)
)

≤ C( ∑
m∈N

(bλN+1
− )−mp1bδmp1 + 1)∥

k

∑
j=0

λ j χx j+Bℓ j+w
∥

p1

Lp(Rn ,ν)
,

for a certain δ > 0. Hence, if (δ − 1) ln b/ ln(λ−) < N + 1, we conclude that

∥
k

∑
j=0

λ ja j∥
Hp(Rn ,ν ,A)

≤ C∥
k

∑
j=0

λ j χx j+Bℓ j
∥

Lp(Rn ,ν)
.

Standard arguments allow us to ûnish the proof of this property.

From Lemma 4.6 we can deduce the following.

Lemma 4.7 Assume that p, q ∈ P0, p0 ∈ (0,∞), q0 > max{1, p0} and ν ∈
A1(Rn ,A)⋂RH(q0/p0)′(Rn ,A). Suppose that, for every k ∈ N, λk > 0 and ak is a
(p( ⋅ ), q( ⋅ ), q0 ,N1)-atom associated with xk ∈ Rn and ℓk ∈ Z, satisfying that

∥ ∑
k∈N

λk∥χxk+Bℓk
∥−1
p( ⋅ ),q( ⋅ )χxk+Bℓk

∥
Lp0 (Rn ,ν)

<∞.

Here, N1 is the one deûned in Lemma 4.6.
_en the series f = ∑k∈N λkak converges in Hp0(Rn , ν,A) and

∥ f ∥Hp0 (Rn ,ν ,A) ≤ C∥ ∑
k∈N

λk∥χxk+Bℓk
∥−1
p( ⋅ ),q( ⋅ )χxk+Bℓk

∥
Lp0 (Rn ,ν)

.

Here C does not depend on {λk}k∈N and {ak}k∈N.

Proof It is suõcient to note that, for every k ∈ N, ak∥χxk+Bℓk
∥p( ⋅ ),q( ⋅ ) is a

(q0 ,N1)-atom and ν is doubling with respect to anisotropic balls.

Proof of Proposition 4.3 We choose α > 1 such that αp, αq ∈ P1, so we
have (αp)′ , (αq)′ ∈ P1. We recall that the dual space (Lαp( ⋅ ),αq( ⋅ )(Rn))∗
of Lαp( ⋅ ),αq( ⋅ )(Rn) is L(αp( ⋅ ))′ ,(αq( ⋅ ))′(Rn) and the maximal operator MHL is
bounded from L(αp( ⋅ ))′ ,(αq( ⋅ ))′(Rn) into itself (Proposition 2.1).

In the sequel our argument is (as in [15]) supported in Rubio de Francia iteration
algorithm. Given a function h we deûne M0

HL(h) = ∣h∣ and, for every i ∈ N, i ≥ 1,
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M i
HL(h) = MHL ○M i−1

HL(h). We consider

R(h) =
∞
∑
i=0

M i
HL(h)

2i∥MHL∥i
(αp( ⋅ ))′ ,(αq( ⋅ ))′

.

We have that
(i) ∣h∣ ≤ R(h);
(ii) R is bounded from L(αp( ⋅ ))′ ,(αq( ⋅ ))′(Rn) into itself and

∥R(h)∥(αp( ⋅ ))′ ,(αq( ⋅ ))′ ≤ 2∥h∥(αp( ⋅ ))′ ,(αq( ⋅ ))′ ;

(iii) R(h) ∈ A1(Rn ,A) and [R(h)]A1(Rn ,A) ≤ 2∥MHL∥(αp( ⋅ ))′ ,(αq( ⋅ ))′ . Hence, there
exists β0 > 1 such that R(h) ∈ RHβ0(Rn ,A).

We choose r > max{1, q+} such that R(h) ∈ RH(rα)′(Rn ,A). It is suõcient to take
r > max{1, q+ , β0/(α(β0 − 1))}.

Suppose that k ∈ N and, for every j ∈ N, j ≤ k, λ j > 0 and a j is a
(p( ⋅ ), q( ⋅ ), r,N1)-atom associated with x j ∈ Rn and ℓ j ∈ Z. Here, N1 is the one
deûned in Lemma 4.6. We deûne fk = ∑k

j=0 λ ja j . According to Proposition 4.2,
fk ∈ Hp( ⋅ ),q( ⋅ )(Rn ,A).
By R(h) ∈ A1(Rn ,A) ∩ RH(rα)′(Rn ,A) and Lemma 4.7, fk ∈ H1/α(Rn , R(h),A)

and

(4.7) ∥ fk∥H1/α(Rn ,R(h),A) ≤ C∥
k

∑
j=0

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )χx j+Bℓ j

∥
L1/α(Rn ,R(h))

.

Let φ ∈ S(Rn). By using [15, Lemma 2.3] and [24, Lemma 2.7], we can write

∥Mφ( fk)∥1/α
p( ⋅ ),q( ⋅ ) = ∥(Mφ( fk))1/α∥αp( ⋅ ),αq( ⋅ )

≤ C sup
h
∫
Rn

(Mφ( fk)(x))1/αh(x)dx ,

where the supremum is taken over all the functions 0 ≤ h ∈ L(αp( ⋅ ))′ ,(αq( ⋅ ))′(Rn)
such that ∥h∥(αp( ⋅ ))′ ,(αq( ⋅ ))′ ≤ 1.
By the above properties (i), (ii), and (iii) and (4.7), for every

0 ≤ h ∈ L(αp( ⋅ ))′ ,(αq( ⋅ ))′(Rn)
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such that ∥h∥(αp( ⋅ ))′ ,(αq( ⋅ ))′ ≤ 1, we get

∫
Rn

(Mφ( fk)(x))1/αh(x)dx

≤ ∫
Rn

(Mφ( fk)(x))1/αR(h)(x)dx

≤ C ∫
Rn

(
k

∑
j=0

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )χx j+Bℓ j

(x))
1/α

R(h)(x)dx

≤ C∥(
k

∑
j=0

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )χx j+Bℓ j

)
1/α

∥
αp( ⋅ ),αq( ⋅ )∥R(h)∥(αp( ⋅ ))′ ,(αq( ⋅ ))′

≤ C∥
k

∑
j=0

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )χx j+Bℓ j

∥
1/α

p( ⋅ ),q( ⋅ )∥h∥(αp( ⋅ ))′ ,(αq( ⋅ ))′

≤ C∥
k

∑
j=0

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )χx j+Bℓ j

∥
1/α

p( ⋅ ),q( ⋅ ) .

Hence, we obtain

∥ fk∥Hp( ⋅ ),q( ⋅ )(Rn ,A) ≤ C∥
k

∑
j=0

λ j∥χx j+Bℓ j
∥−1
p( ⋅ ),q( ⋅ )χx j+Bℓ j

∥
p( ⋅ ),q( ⋅ ) .

We ûnish the proof by using standard arguments.

5 Finite Atomic Decomposition (Proof of Theorem 1.6)

_e proof of this result follows the ideas developed in [6,45]. Herewe only show those
points where a variable exponent Lorentz space norm appears.

(i) Assume that r0 < r < ∞ and s ∈ N, s ≥ s0, r0 and s0 being the parameters
appearing in _eorem 1.3(i). By using this result, we get that

Hp( ⋅ ),q( ⋅ ),r ,s
fin (Rn ,A) ⊂ Hp( ⋅ ),q( ⋅ )(Rn ,A)

and, for every f ∈ Hp( ⋅ ),q( ⋅ ),r ,s
fin (Rn ,A),
∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) ≤ C∥ f ∥Hp( ⋅ ),q( ⋅ ),r ,s

fin (Rn ,A) .

We now prove that there exists C > 0 such that ∥ f ∥Hp( ⋅ ),q( ⋅ ),r ,s
fin (Rn ,A) ≤ C, provided

that
f ∈ Hp( ⋅ ),q( ⋅ ),r ,s

fin (Rn ,A) and ∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) = 1.

Let f ∈ Hp( ⋅ ),q( ⋅ ),r ,s
fin (Rn ,A) such that ∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) = 1. We have that f ∈

Lr(Rn) and supp f ⊂ Bm0 for some m0 ∈ Z. For every j ∈ Z, we deûne the set
Ω j = {x ∈ Rn ∶ MN( f )(x) > 2 j}, where N ∈ N, N > max{N0 , s} (here N0 is as
in _eorem 1.1). According to the proof of _eorem 1.3 and [6, p. 3088], for every
i ∈ N and j ∈ Z there exist λ i , j > 0 and a (p( ⋅ ), q( ⋅ ),∞, s)-atom a i , j satisfying the
following properties:
(a) f = ∑i , j λ i , ja i , j , where the series converges unconditionally in S′(Rn).
(b) ∣λ i , ja i , j ∣ ≤ C2 j , i ∈ N and j ∈ Z;
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and for certain sequences {x i , j}i∈N, j∈Z ⊂ Rn and {ℓ i , j}i∈N, j∈Z ⊂ Z,
(c) supp(a i , j) ⊂ x i , j + Bℓ i , j+4ω ;
(d) Ω j = ⋃i∈N(x i , j + Bℓ i , j+4ω);
(e) (x i , j + Bℓ i , j−2ω) ∩ (xk , j + Bℓk , j−2ω) = ∅, j ∈ Z, i , k ∈ N, i /= k;
(f) ∥ ∑

i∈N, j∈Z
λ i , j∥χx i , j+Bℓ i , j+4ω∥−1

p( ⋅ ),q( ⋅ )χx i , j+Bℓ i , j+4ω∥ p( ⋅ ),q( ⋅ )
≤ C∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) = C .

_e constants C in (b) and (f) do not depend on f .
By using (b), (c), (d), and (e), we obtain

∫
Rn
∑
j∈Z
∑
i∈N

∣λ i , ja i , j(x)∣dx

≤ C∑
j∈Z
∑
i∈N

2 j ∣x i , j + Bℓ i , j+4ω ∣

≤ C∑
j∈Z

2 j∑
i∈N

∣x i , j + Bℓ i , j−2ω ∣ = C∑
j∈Z

2 j∣ ⋃
i∈N

(x i , j + Bℓ i , j+4ω)∣

≤ C∑
j∈Z

2 j ∣Ω j ∣ = C ∫
Rn
∑
j∈Z

2 j χΩ j(x)dx ≤ C ∫Rn
MN( f )(x)dx .

Note that MN( f ) ∈ L1(Rn), because f is a multiple of a (1, r, s)-atom. Let π =
(π1 , π2)∶N → N × Z be a bijection. We have that ∫Rn ∑m∈N ∣λπ(m)aπ(m)(x)∣dx <
∞. _en there exist a monotone function µ∶N → N and a subset E ⊂ Rn such
that ∑m∈N ∣λπ(µ(m))aπ(µ(m))(x)∣ < ∞, for every x ∈ E and ∣Rn/E∣ = 0. Hence,
∑m∈N ∣λπ(m)aπ(m)(x)∣ < ∞, for every x ∈ E. Since the last series has positive terms,
we conclude that the series ∑m∈N λπ(m)aπ(m)(x) is unconditionally convergent, for
every x ∈ E, and ∑m∈N λπ(m)aπ(m)(x) = ∑ j∈Z(∑i∈N λ i , ja i , j(x)), x ∈ E. Moreover,
the arguments in the proof of_eorem 1.3(ii) (see also [6, pp. 3088–3089]) lead us to

f (x) =∑
j∈Z

( ∑
i∈N

λ i , ja i , j(x)) , x ∈ E .

We have that
(5.1) MN( f )(x) ≤ C1∥χBm0

∥−1
p( ⋅ ),q( ⋅ ) , x ∈ (Bm0+4ω)c .

Indeed, let x ∈ (Bm0+4ω)c . It was proved in [6, pp. 3092–3093] that
MN( f )(x) ≤ C inf

u∈Bm0

MN( f )(u).

_en we obtain

MN( f )(x) ≤ C
∥χBm0

∥p( ⋅ ),q( ⋅ )
∥ inf

u∈Bm0

[MN( f )(u)]χBm0
∥

p( ⋅ ),q( ⋅ )

≤ C
∥χBm0

∥p( ⋅ ),q( ⋅ )
∥MN( f )χBm0

∥p( ⋅ ),q( ⋅ )

≤ C
∥χBm0

∥p( ⋅ ),q( ⋅ )
∥MN( f )∥p( ⋅ ),q( ⋅ )

≤ C1∥χBm0
∥−1
p( ⋅ ),q( ⋅ ) .
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_us, (5.1) is established.
We now choose j0 ∈ Z such that 2 j0 < C1∥χBm0+4ω∥−1

p( ⋅ ),q( ⋅ ) ≤ 2 j0+1, where C1 is
the constant appearing in (5.1). We have that

Ω j ⊂ Bm0+4ω , j > j0 .

By following the ideas developed in [45] (see also [6]), we deûne

h = ∑
j≤ j0
∑
i∈N

λ i , ja i , j and l = ∑
j> j0
∑
i∈N

λ i , ja i , j .

Note that the series converges unconditionally in S′(Rn) and almost everywhere. We
have that ⋃ j> j0 Ω j ⊂ Bm0+4ω . _en supp l ⊂ Bm0+4ω . Since supp f ⊂ Bm0+4ω , we also
have that supp h ⊂ Bm0+4ω . As above, we can see that

∫
Rn
∑
j> j0
∑
i∈N

∣λ i , ja i , j(x)xα ∣dx = ∫
Bm0+4ω

∑
j> j0
∑
i∈N

∣λ i , ja i , j(x)xα ∣dx <∞.

_en ∫Rn l(x)xαdx = 0, for every α ∈ Nn and ∣α∣ ≤ s. Since ∫Rn f (x)xαdx = 0, for
every α ∈ Nn and ∣α∣ ≤ s, we also have that ∫Rn h(x)xαdx = 0, for every α ∈ Nn and
∣α∣ ≤ s.

Moreover, by using (3.3) we get

∣h(x)∣ ≤ C ∑
j≤ j0

2 j ≤ C2 j0 ≤ C2∥χBm0+4ω∥−1
p( ⋅ ),q( ⋅ ) .

Here C2 does not depend on f . Hence, h/C2 is a (p( ⋅ ), q( ⋅ ),∞, s)-atom associated
with the ball Bm0+4ω .
As in [6, Step 4, p. 3094], we can see that if

FJ = {(i , j) ∶ i ∈ N, j ∈ Z, j > j0 and i + ∣ j∣ ≤ J} and lJ = ∑
(i , j)∈FJ

λ i , ja i , j ,

for every J ∈ N such that J > ∣ j0∣, then limJ→+∞ lJ = l, in Lr(Rn). Moreover, we can
ûnd J large enough such that l− lJ is a (p( ⋅ ), q( ⋅ ), r, s)-atom associatedwith the ball
Bm0+4ω . We have that f = h + lJ + (l − lJ) and

∥ f ∥Hp( ⋅ ),q( ⋅ ),r ,s(Rn ,A)

≤ ∥C2
χBm0+4ω

∥χBm0+4ω∥p( ⋅ ),q( ⋅ )

+ ∑
(i , j)∈FJ

λ i , j
χx i , j+Bℓ i , j+4ω

∥χx i , j+Bℓ i , j+4ω∥p( ⋅ ),q( ⋅ )
+

χBm0+4ω

∥χBm0+4ω∥p( ⋅ ),q( ⋅ )
∥

p( ⋅ ),q( ⋅ )

≤ C(C2 + 1 + ∥ ∑
(i , j)∈FJ

λ i , j
χx i , j+Bℓ i , j+4ω

∥χx i , j+Bℓ i , j+4ω∥p( ⋅ ),q( ⋅ )
∥

p( ⋅ ),q( ⋅ )) ≤ C .

_us, (i) is established.
(ii) _is assertion can be proved by using _eorem 1.3 and by proceeding as in

[6, Steps 5 and 6, pp. 3094 and 3095] (see also [45, pp. 2926–2927]).
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6 Applications (Proof of Theorem 1.7)

In this section, we present a proof of _eorem 1.7. We have been inspired by some
ideas due to Cruz-Uribe andWang [15], but their arguments have to be modiûed to
adapt them to the anisotropic setting and variable exponent Lorentz spaces.
First of allwe formulate the type of operator thatwe areworkingwith. We consider

an operator T ∶ S(Rn) → S′(Rn) that commutes with translations. It is well known
that this commuting property is equivalent to both the fact that T commutes with
convolutions and that there exists L ∈ S′(Rn) such that

T(ϕ) = L ∗ ϕ, ϕ ∈ S(Rn).
Assume that:
(i) _e Fourier transform L̂ of L is in L∞(Rn).
_is property is equivalent to that the operator T can be extended to L2(Rn) as a
bounded operator from L2(Rn) into itself.

We say that T is associated with ameasurable function K∶Rn/{0} → R when, for
every ϕ ∈ L∞c (Rn), the space of L∞(Rn)-functions with compact support,

(6.1) T(ϕ)(x) = ∫
Rn

K(x − y)ϕ(y)dy, x ∉ supp ϕ.

We assume that K satisûes the following properties: there exists CK > 0 such that
(ii) ∣K(x)∣ ≤ CK

ρ(x) , x ∈ R
n/{0},

(iii) for some γ > 0,

∣K(x − y) − K(x)∣ ≤ CK
ρ(y)γ

ρ(x)γ+1 , b2ωρ(y) ≤ ρ(x).

An operator T satisfying the above properties is usually called a Calderón–Zygmund
singular integral in our anisotropic context. _ese operators and other ones related
with them have been studied, for instance, in [4,40, 59]. In [59] some suõcient con-
ditions are given in order that ameasurable functionK∶Rn/{0}→ R deûnes by (6.1) a
principal value integral tempered distribution having a Fourier transform in L∞(Rn).

If T is an anisotropic Calderón–Zygmund singular integral, T can be extended
from L2(Rn) ∩ Lp(Rn , ν) to Lp(Rn , ν) as a bounded operator from Lp(Rn , ν) into
itself, for every 1 < p < ∞ and ν ∈ Ap(Rn ,A), and as a bounded operator from
L1(Rn , ν) into L1,∞(Rn , ν), for every ν ∈ A1(Rn ,A). Also, anisotropic Calderón–
Zygmund singular integrals satisfy the following Kolmogorov type inequality.

Proposition 6.1 Let T be an anisotropic Calderón–Zygmund singular integral. If
ν ∈ A1(Rn ,A) and 0 < r < 1, there exists C > 0 such that, for every x0 ∈ Rn and ℓ ∈ Z,

∫
x0+Bℓ

∣T f (x)∣rν(x)dx ≤ Cν(x0 + Bℓ)1−r( ∫
Rn

∣ f (x)∣ν(x)dx)
r
, f ∈ L1(Rn , ν).

Here, C = C([ν]A1(Rn ,A) , r).

Proof _is property can be proved by taking into account that the operator T is
bounded from L1(Rn , ν) into L1,∞(Rn , ν), provided that ν ∈ A1(Rn ,A). Indeed, let
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ν ∈ A1(Rn ,A) and 0 < r < 1. For every f ∈ L1(Rn , ν), we have that

∫
a+Bℓ

∣T f (x)∣rν(x)dx

= r∫
∞

0
λr−1ν({x ∈ a + Bℓ ∶ ∣T f (x)∣ > λ})dλ

≤ C ∫
∞

0
λr−1 min{ν(a + Bℓ),

∥ f ∥L1(Rn ,ν)

λ
}dλ

≤ C(ν(a + Bℓ)∫
∥ f ∥L1(Rn ,ν)

ν(a+Bℓ)

0
λr−1dλ + ∥ f ∥L1(Rn ,ν) ∫

∞
∥ f ∥L1(Rn ,ν)

ν(a+Bℓ)

λr−2dλ)

≤ Cν(a + Bℓ)1−r( ∫
Rn

∣ f (x)∣ν(x)dx)
r
.

In order to studyCalderón–Zygmund singular integrals in Hardy spaces it is usual
to require on the kernel K more restrictive regularity conditions than the above ones
(ii) and (iii).
As in [4, p. 61] (see also [35]) we say that the anisotropic Calderón–Zygmund sin-

gular integral T associated with the kernel K is of order m when K ∈ Cm(Rn/{0})
and there exists CK ,m > 0 such that for every x , y ∈ Rn , x /= y,

(6.2) ∣(∂αy K̃)(x ,A−k y)∣ ≤ CK ,m

ρ(x − y) = CK ,mb−k , α ∈ Nn , ∣α∣ ≤ m,

where k is the unique integer such that x − y ∈ Bk+1/Bk . Here K̃ is deûned by

K̃(x , y) = K(x − Ak y), x , y ∈ Rn , x − y ∈ Bk+1/Bk .

As it can be seen in [4, p. 61] this property reduces to the usual condition in the isotro-
pic setting.

In order to prove _eorem 1.7 we need to consider weighted ûnite atomic aniso-
tropicHardy spaces as follows.

Let p, q ∈ P0, r > 1, s ∈ N, p0 ∈ (0, 1) and ν ∈ A1(Rn ,A). _e space

Hp( ⋅ ),q( ⋅ ),r ,s
p0 ,ν , f in (Rn ,A)

consists of all ûnite sums of multiple of (p( ⋅ ), q( ⋅ ), r, s)-atoms and it is endowed
with the norm ∥ ⋅ ∥Hp( ⋅ ),q( ⋅ ),r ,s

p0 ,ν , f in
(Rn ,A) deûned as follows: for every

f ∈ Hp( ⋅ ),q( ⋅ ),r ,s
p0 ,ν , f in (Rn ,A),

∥ f ∥Hp( ⋅ ),q( ⋅ ),r ,s
p0 ,ν , f in

(Rn ,A)

= inf {∥
k

∑
j=1

λp0
j ∥χx j+Bℓ j

∥−p0
p( ⋅ ),q( ⋅ )χx j+Bℓ j

∥
1/p0

L1(Rn ,ν)
∶ f =

k

∑
j=1

λ ja j} ,

where the inûmum, as usual, is taken over all the possible ûnite decompositions. Note
that according to Proposition 4.2, ifmax{1, q+} < r <∞ and s ≥ s0, being s0 the same
as in Proposition 4.2, then Hp( ⋅ ),q( ⋅ ),r ,s

p0 ,ν , f in (Rn ,A) = Hp( ⋅ ),q( ⋅ ),r ,s
fin (Rn ,A) as sets.

_e following property will be useful in the sequel.
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Lemma 6.2 Let p, q ∈ P0, max{1, q+} < r < ∞ and s ∈ N. _ere exists s0 ∈ N such
that if s ≥ s0, p0 < min{p− , q−} and ν ∈ A1(Rn ,A) ∩ L(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′(Rn) we
can ûnd C > 0 such that, for every f ∈ Hp( ⋅ ),q( ⋅ ),r ,s

p0 ,ν , f in (Rn ,A),

∥ f ∥Hp( ⋅ ),q( ⋅ ),r ,s
p0 ,ν , f in

(Rn ,A) ≤ C∥ f ∥Hp0 (Rn ,ν ,A) .

Proof _e proof of this property follows the same ideas as in the proof of _eo-
rem 1.6. Let s0 be as in Proposition 4.2 and let f ∈ Hp( ⋅ ),q( ⋅ ),r ,s

p0 ,ν , f in (Rn ,A), with s ≥ s0.
_en f ∈ Hp( ⋅ ),q( ⋅ ),r ,s

fin (Rn ,A) and there exists m0 ∈ Z such that supp f ⊂ Bm0 .
Also, f ∈ Lr(Rn) and, as we proved in (5.1), MN( f )(x) ≤ C1∥χBm0

∥−1
p( ⋅ ),q( ⋅ ) when

x ∈ (Bm0+4ω)c .
Assume that ∥ f ∥Hp0 (Rn ,ν ,A) = 1. Our objective is to see that

∥ f ∥Hp( ⋅ ),q( ⋅ ),r ,s
p0 ,ν , f in

(Rn ,A) ≤ C ,

for some C > 0 that does not depend on f .
A careful reading of the proof of [6, Lemma 5.4] allows us to see that there exist a

sequence {x i ,k}i∈N,k∈Z ⊂ Rn , a sequence {ℓ i ,k}i∈N,k∈Z ⊂ Z, and a bounded sequence
{b i ,k}i∈N,k∈Z such that
(i) f = ∑k∈Z(∑i∈N 2kb i ,k),
where the convergence is unconditional in S′(Rn) and almost everywhere of Rn ;
(ii) for a certain s1 ∈ N, ∫Rn b i ,k(x)xαdx = 0, α ∈ Nn and ∣α∣ ≤ s1;
(iii) supp(b i ,k) ⊂ x i ,k + Bℓ i ,k+4ω , k ∈ Z and i ∈ N;
(iv) Ωk ∶= {x ∈ Rn ∶ MN( f )(x) > 2k} = ⋃i∈N(x i ,k + Bℓ i ,k+4ω), k ∈ Z;
(v) there exists L ∈ N forwhich ♯{ j ∈ N ∶ (x i ,k+Bℓ i ,k+2ω)∩(x j,k+Bℓ j,k+2ω) /= ∅} ≤ L,

i ∈ N and k ∈ Z.
We deûne, for every k ∈ Z and i ∈ N,

λ i ,k = 2k∥χx i ,k+Bℓ i ,k
∥p( ⋅ ),q( ⋅ ) and a i ,k = b i ,k∥χx i ,k+Bℓ i ,k

∥−1
p( ⋅ ),q( ⋅ ) .

_ere exists C0 > 0 such that C0a i ,k is a (p( ⋅ ), q( ⋅ ),∞, s1)-atom, for every k ∈ Z
and i ∈ N.

We have that

∑
i∈N

λp0
i ,k

χx i ,k+Bℓ i ,k
(x)

∥χx i ,k+Bℓ i ,k
∥p0
p( ⋅ ),q( ⋅ )

≤ C2kp0 χΩk(x), k ∈ Z and x ∈ Rn .

_en

∥ ∑
k∈Z
∑
i∈N

λp0
i ,k

χx i ,k+Bℓ i ,k

∥χx i ,k+Bℓ i ,k
∥p0
p( ⋅ ),q( ⋅ )

∥
L1(Rn ,ν)

≤ C∥ ∑
k∈Z

2kp0 χΩk∥ L1(Rn ,ν)
≤ C∥MN( f )p0∥L1(Rn ,ν)

= C∥MN( f )∥p0
Lp0 (Rn ,ν) = C∥ f ∥

p0
Hp0 (Rn ,ν ,A) .
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We now choose k0 ∈ Z such that 2k0 ≤ ∥χBm0
∥−1
p( ⋅ ),q( ⋅ ). We deûne, as in the proof of

_eorem 1.6,
h = ∑

k≤k0
∑
i∈N

λ i ,ka i ,k and l = ∑
k>k0

∑
i∈N

λ i ,ka i ,k ,

where the convergence of the two series is unconditional in S′(Rn) and almost ev-
erywhere of Rn . We have that:
(i) _ere exists C1 > 0 independent of f such that h/C1 is a (p( ⋅ ), q( ⋅ ),∞, s1)-

atom;
(ii) By deûning, for every J ∈ N, FJ and lJ as in the proof of_eorem 1.6, there exists

J1 ∈ N such that l − lJ1 is a (p( ⋅ ), q( ⋅ ), r, s1)-atom;
(iii) f = C1

h
C1
+ (l − lJ1) + lJ1 .

_en for s ≥ max{s0 , s1}, we can write
∥ f ∥Hp( ⋅ ),q( ⋅ ),r ,s

p0 ,ν , f in
(Rn ,A)

≤ ∥C p0
1

χBm0

∥χBm0
∥p0
p( ⋅ ),q( ⋅ )

+
χBm0

∥χBm0
∥p0
p( ⋅ ),q( ⋅ )

+ ∑
(i ,k)∈FJ1

λp0
i ,k

χx i ,k+Bℓ i ,k+4ω

∥χx i ,k+Bℓ i ,k+4ω∥
p0
p( ⋅ ),q( ⋅ )

∥
L1(Rn ,ν)

≤ C( 1 + ν(Bm0)
∥χBm0

∥p0
p( ⋅ ),q( ⋅ )

) = C( 1 + ν(Bm0)
∥χBm0

∥p( ⋅ )/p0 ,q( ⋅ )/p0

)

≤ C( 1 + ∥ν∥(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′) .

_e last inequality follows, because L(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′ = (Lp( ⋅ )/p0 ,q( ⋅ )/p0)′ (see
[24]), since p0 < min{p− , q−}, and then

ν(Bm0) = ∫Rn
χBm0

(x)ν(x)dx ≤ ∥χBm0
∥p( ⋅ )/p0 ,q( ⋅ )/p0∥ν∥(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′ .

Hence, ∥ f ∥Hp( ⋅ ),q( ⋅ ),r ,s
p0 ,ν , f in

(Rn ,A) ≤ C, where C does not depend on f .

We now prove a general boundedness result for sublinear operators.

Proposition 6.3 Assume that p, q ∈ P0, p(0) < q(0), 0 < p0 < min{p− , q− , 1},
max{1, q+ , } < r, and s ∈ N. _ere exist s0 ∈ N and r0 > 1 such that if s ≥ s0, r > r0 and
T is a sublinear operator deûned on span{a ∶ a is a (p( ⋅ ), q( ⋅ ), r, s)-atom}, then the
following hold.

(i) T has a (unique) extension on Hp( ⋅ ),q( ⋅ )(Rn ,A) as a bounded operator from
Hp( ⋅ ),q( ⋅ )(Rn ,A) into Lp( ⋅ ),q( ⋅ )(Rn), provided that for each

ν ∈ A1(Rn ,A) ∩ RH(r/p0)′(Rn ,A)
there exists C = C([ν]A1(Rn ,A) , [ν]RH

(r/p0)′(R
n ,A)) > 0 such that

∥Ta∥Lp0 (Rn ,ν) ≤ C
ν(x0 + Bℓ0)1/p0

∥χx0+Bℓ0
∥p( ⋅ ),q( ⋅ )

for every (p( ⋅ ), q( ⋅ ), r/p0 , s)-atom a associated with x0 ∈ Rn and ℓ0 ∈ Z.
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(ii) T has a (unique) extension on Hp( ⋅ ),q( ⋅ )(Rn ,A) as a bounded operator from
Hp( ⋅ ),q( ⋅ )(Rn ,A) into itself, provided that for each ν ∈ A1(Rn ,A)∩RH(r/p0)′(Rn ,A)
there exists C = C([ν]A1(Rn ,A) , [ν]RH

(r/p0)′(R
n ,A)) > 0 such that

∥Ta∥Hp0 (Rn ,ν ,A) ≤ C
ν(x0 + Bℓ0)1/p0

∥χx0+Bℓ0
∥p( ⋅ ),q( ⋅ )

,

for every (p( ⋅ ), q( ⋅ ), r/p0 , s)-atom a associated with x0 ∈ Rn and ℓ0 ∈ Z.

Proof (i) Suppose that for every ν ∈ A1(Rn ,A) ∩ RH(r/p0)′(Rn ,A) there exists
C > 0 such that, for every (p( ⋅ ), q( ⋅ ), r/p0 , s)-atom a associated with x0 ∈ Rn and
ℓ0 ∈ Z,

(6.3) ∥Ta∥Lp0 (Rn ,ν) ≤ C
ν(x0 + Bℓ0)1/p0

∥χx0+Bℓ0
∥p( ⋅ ),q( ⋅ )

.

Here, C can depend on [ν]A1(Rn ,A) and [ν]RH
(r/p0)′(R

n ,A).
_e set Hp( ⋅ ),q( ⋅ ),r/p0 ,s

fin (Rn ,A) is dense in Hp( ⋅ ),q( ⋅ )(Rn ,A) (see_eorem 1.6).
Hence, in order to see that there exists an extension T̃ of T to Hp( ⋅ ),q( ⋅ )(Rn ,A) as
a bounded operator from Hp( ⋅ ),q( ⋅ )(Rn ,A) into Lp( ⋅ ),q( ⋅ )(Rn), it is suõcient to
prove that, there exists C > 0 such that

∥T( f )∥p( ⋅ ),q( ⋅ ) ≤ C∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) , f ∈ Hp( ⋅ ),q( ⋅ ),r/p0 ,s
fin (Rn ,A).

Let f ∈ Hp( ⋅ ),q( ⋅ ),r/p0 ,s
fin (Rn ,A). As in the proof ofProposition 4.3,Rubio de Francia’s

iteration algorithm allows us to write,

∥T( f )∥p0
p( ⋅ ),q( ⋅ ) = ∥(T f )p0∥p( ⋅ )/p0 ,q( ⋅ )/p0 ≤ sup∫

Rn
∣T f (x)∣p0Rh(x)dx ,

where the supremum is taken over all the functions h ∈ L(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′(Rn)
such that ∥h∥(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′ ≤ 1. Also, there exists r1 > 1 such that if r > r1, we
can ûnd C > 0 such that for every h ∈ L(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′(Rn),

Rh ∈ A1(Rn ,A) ∩ RH(r/p0)′(Rn ,A) and [Rh]A1(Rn ,A) + [Rh]RH
(r/p0)′(R

n ,A) ≤ C .

Let h ∈ L(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′(Rn) such that ∥h∥(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′ ≤ 1. We are
going to estimate ∥T( f )∥Lp0 (Rn ,Rh). As it was mentioned above

Hp( ⋅ ),q( ⋅ ),r/p0 ,s
fin (Rn ,A) = Hp( ⋅ ),q( ⋅ ),r/p0 ,s

p0 ,Rh , f in (Rn ,A).

We write f = ∑k
j=1 λ ja j , where for every j ∈ N, j ≤ k, λ j > 0 and a j is a

(p( ⋅ ), q( ⋅ ), r/p0 , s)-atom associated with x j ∈ Rn and ℓ j ∈ Z. Since 0 < p0 < 1
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and T is sublinear, from (6.3) we deduce that

∥T( f )∥p0
Lp0 (Rn ,Rh) = ∫Rn

∣T( f )(x)∣p0Rh(x)dx ≤
k

∑
j=1

λp0
j ∫Rn

∣Ta j(x)∣p0Rh(x)dx

≤ C
k

∑
j=1

λp0
j

Rh(x j + Bℓ j)
∥χx j+Bℓ j

∥p0
p( ⋅ ),q( ⋅ )

= C∥
k

∑
j=1

λp0
j

χx j+Bℓ j

∥χx j+Bℓ j
∥p0
p( ⋅ ),q( ⋅ )

∥
L1(Rn ,Rh)

.

As established in the proof of Proposition 4.3,

Rh ∈ A1(Rn ,A) ∩L(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′(Rn).
According to Lemma 6.2, the arbitrariness of the representation of f leads to

∥T( f )∥Lp0 (Rn ,Rh) ≤ C∥ f ∥Hp0 (Rn ,Rh ,A) .

Since R is bounded from L(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′(Rn) into itself, we can write
∥T( f )∥Lp0 (Rn ,Rh)

≤ C∥ f ∥Hp0 (Rn ,Rh ,A) ≤ C ∫
Rn

(MN( f )(x))p0Rh(x)dx

≤ C∥(MN( f ))p0∥p( ⋅ )/p0 ,q( ⋅ )/p0∥Rh∥(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′

≤ C∥(MN( f ))p0∥p( ⋅ )/p0 ,q( ⋅ )/p0 = C∥MN( f )∥p0
p( ⋅ ),q( ⋅ ) = C∥ f ∥

p0

Hp( ⋅ ),q( ⋅ )(Rn ,A) ,

provided that h ∈ L(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′(Rn) and ∥h∥(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′ ≤ 1.
We conclude that

∥T( f )∥p( ⋅ ),q( ⋅ ) ≤ C∥ f ∥Hp( ⋅ ),q( ⋅ )(Rn ,A) ,
and the proof of (i) is ûnished.

(ii) We proceed in a similar way as in the proof of (i). Assume that φ ∈ S(Rn)
such that ∫ φdx /= 0. Let f ∈ Hp( ⋅ ),q( ⋅ ),r/p0 ,s

fin (Rn ,A), with s ≥ s0, and s0 as before.
We have that
∥T( f )∥p0

Hp( ⋅ ),q( ⋅ )(Rn ,A) ≤ C∥M
0
φ(T f )∥

p0
p( ⋅ ),q( ⋅ ) = C∥(M

0
φ(T f ))p0∥p( ⋅ )/p0 ,q( ⋅ )/p0

≤ C sup∫
Rn

(M0
φ(T f )(x))p0Rh(x)dx

≤ C sup ∥T( f )∥p0
Hp0 (Rn ,Rh ,A) ,

where the supremum is taken over all the functions h ∈ L(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′(Rn)
such that ∥h∥(p( ⋅ )/p0)′ ,(q( ⋅ )/p0)′ ≤ 1.

We now ûnish the proof in the same way as (i) provided that, for every ν ∈
A1(Rn ,A) ∩ RH(r/p0)′(Rn ,A) there exists C > 0 such that

∥Ta∥Hp0 (Rn ,ν ,A) ≤ C
ν(x j + Bℓ j)1/p0

∥χx j+Bℓ j
∥p( ⋅ ),q( ⋅ )

for every (p( ⋅ ), q( ⋅ ), r/p0 , s)-atom a associated with x j ∈ Rn and ℓ j ∈ Z. Here, the
constant C can depend on [ν]A1(Rn ,A) and [ν]RH

(r/p0)′(R
n ,A).
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We now prove_eorem 1.7 by applying the criteria established in Proposition 6.3.

Proof of_eorem 1.7(i) Assume that a is a (p( ⋅ ), q( ⋅ ), r/p0 , s)-atom associated
with x0 ∈ Rn and ℓ0 ∈ Z, and ν ∈ A1(Rn ,A)⋂RH(r/p0)′(Rn ,A). Here, p0 , r, and s
are as in Proposition 6.3. We can write

∥Ta∥p0
Lp0 (Rn ,ν) = ∫x0+Bℓ0+w

∣T(a)(x)∣p0ν(x)dx + ∫(x0+Bℓ0+w)c
∣T(a)(x)∣p0ν(x)dx

= I1 + I2 .
According to Proposition 6.1 there exits C > 0 such that

I1 ≤ Cν(x0 + Bℓ0+w)1−p0(∫
Rn

∣a(x)∣ν(x)dx)
p0

≤ Cν(x0 + Bℓ0)1−p0 ∣Bℓ0 ∣p0

× [( 1
∣Bℓ0 ∣

∫
x0+Bℓ0

∣a(x)∣r/p0dx)
p0/r

( 1
∣Bℓ0 ∣

∫
x0+Bℓ0

ν(x)(r/p0)′dx)
1/(r/p0)′

]
p0

.

We have used that ν is a doubling measure.
Taking into account that a is a (p(⋅), q(⋅), r/p0 , s)-atom and ν ∈ RH(r/p0)′(Rn ,A),

we obtain

I1 ≤ Cν(x0 + Bℓ0+w)1−p0 ∣Bℓ0 ∣p0( 1
∥χx0+Bℓ0

∥p( ⋅ ),q( ⋅ )∣Bℓ0 ∣
∫
x0+Bℓ0

ν(x)dx)
p0

≤ C ν(x0 + Bℓ0)
∥χx0+Bℓ0

∥p0
p( ⋅ ),q( ⋅ )

.

Note that C = C([ν]A1(Rn ,A) , [ν]RH
(r/p0)′(R

n ,A)).
Since a is a (p( ⋅ ), q( ⋅ ), r/p0 , s)-atom associated with x0 ∈ Rn and ℓ0 ∈ Z, by

using the condition (6.2) and by proceeding as in [4, pp. 64–65] we deduce that for
every x ∈ (x0 + Bℓ0+w+ℓ+1) ∖ (x0 + Bℓ0+w+ℓ), with ℓ ∈ N,

∣Ta(x)∣ ≤ Cb−ℓ0−ℓ sup
z∈B−ℓ

∣z∣m ∫
x0+Bℓ0

∣a(y)∣dy

≤ Cb−ℓ0−ℓ(λ−ℓ− )m ∣Bℓ0 ∣1/(r/p0)′∥a∥r/p0

≤ Cb−ℓ0b−ℓ(δ+1)bℓ0/(r/p0)′∥a∥r/p0

≤ Cb−ℓ0 p0/r(ρ(x − x0)b−ℓ0−w)−(δ+1)∥a∥r/p0 ,

where δ = m ln λ−/ ln b.
_en

∣Ta(x)∣ ≤ C bℓ0(δ+1)

ρ(x − x0)δ+1 b
−ℓ0 p0/r ∣Bℓ0 ∣p0/r

∥χx0+Bℓ0
∥p( ⋅ ),q( ⋅ )

= C ∣Bℓ0 ∣δ+1

ρ(x − x0)δ+1∥χx0+Bℓ0
∥p( ⋅ ),q( ⋅ )

, x /∈ x0 + Bℓ0+w .

_us,

I2 ≤ C
∣Bℓ0 ∣p0(δ+1)

∥χx0+Bℓ0
∥p0
p( ⋅ ),q( ⋅ )

∫(x0+Bℓ0+w)c
ν(x)

ρ(x − x0)p0(δ+1) dx .
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Since

(x0 + Bℓ0+w)c =
∞
⋃
i=0

(x0 + Bℓ0+w+i+1) ∖ (x0 + Bℓ0+w+i),

bℓ0+w+i ≤ ρ(x − x0) ≤ bℓ0+w+i+1 ,

for every x ∈ (x0 + Bℓ0+w+i+1) ∖ (x0 + Bℓ0+w+i), i ∈ N, we have that

∫(x0+Bℓ0+w)c
ν(x)

ρ(x − x0)p0(δ+1) dx

=
∞
∑
i=0
∫(x0+Bℓ0+w+i+1)∖(x0+Bℓ0+w+i)

ν(x)
ρ(x − x0)p0(δ+1) dx

≤
∞
∑
i=0
b−(ℓ0+w+i)p0(δ+1) ∫

x0+Bℓ0+w+i+1

ν(x)dx

≤ [ν]A1(Rn ,A)
∞
∑
i=0
b−(ℓ0+w+i)p0(δ+1)∣Bℓ0+w+i+1∣ ess inf

x∈x0+Bℓ0+w+i+1
ν(x)

≤ b[ν]A1(Rn ,A)
∞
∑
i=0
b−(ℓ0+w+i)(p0(δ+1)−1) ess inf

x∈x0+Bℓ0

ν(x)

≤ b[ν]A1(Rn ,A)
1

∣Bℓ0 ∣
∫
x0+Bℓ0

ν(z)dz
∞
∑
i=0
b−i(p0(δ+1)−1)b−(ℓ0+w)(p0(δ+1)−1)

= b[ν]A1(Rn ,A)
1
bℓ0

b−(ℓ0+w)(p0(δ+1)−1)

1 − b−p0(δ+1)+1 ν(x0 + Bℓ0).

Note that p0 > 1/(δ + 1).
We get

I2 ≤ C[ν]A1(Rn ,A)
ν(x0 + Bℓ0)

∥χx0+Bℓ0
∥p0
p( ⋅ ),q( ⋅ )

,

where C does not depend on ν.
Hence, for a certain C = C([ν]A1(Rn ,A) , [ν]RH

(1/p0)′(R
n ,A)),

∥Ta∥p0
Lp0 (Rn ,ν) ≤ C

ν(x0 + Bℓ0)
∥χx0+Bℓ0

∥p0
p( ⋅ ),q( ⋅ )

.

We complete the proof by applying Proposition 6.3(i).

Before proving _eorem 1.7(ii), we establish the following auxiliary result.

Lemma 6.4 Let ϕ ∈ S(Rn) such that supp ϕ ⊂ B0 and ∫ ϕ(x)dx /= 0. Assume that
L ∈ S′(Rn) and that TL is a Calderón–Zygmund singular integral of order m. _en for
every ℓ ∈ Z, the operator S(ℓ) = Tϕℓ ○ TL is a Calderón–Zygmund singular integral of
order m. Moreover, if S(ℓ) is associated with the kernel Kℓ , there exists C > 0 such that

sup
ℓ∈N

{∥Ŝ(ℓ)∥∞ ,CKℓ ,CKℓ ,m} ≤ C .

Proof Let ℓ ∈ Z. For every ψ ∈ S(Rn) we have that

S(ℓ)(ψ) = Tϕℓ(TL(ψ)) = ϕℓ ∗ (L ∗ ψ) = (L ∗ ϕℓ) ∗ ψ.
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Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1265

Hence, S(ℓ) = TL∗ϕℓ . Since ∣ϕ̂ℓ ∣ ≤ ∥ϕ∥1, the interchange formula leads to ∥Ŝ(ℓ)∥∞ =
∥L̂ϕ̂ℓ∥∞ ≤ ∥L̂∥∞∥ϕ∥1. According to [53, p. 248], L ∗ ϕℓ is amultiplier for S(Rn) and,
for every ψ ∈ S(Rn),

S(ℓ)(ψ)(x) = ∫
Rn

(L ∗ ϕℓ)(x − y)ψ(y)dy, x ∈ Rn .

Note that this integral is absolutely convergent for every x ∈ Rn . _en S(ℓ) is as-
sociated with the kernel L ∗ ϕℓ which is in C∞(Rn). We deûne, for every k ∈ Z,
Lk ∈ S′(Rn) as follows:

⟨Lk ,ψ⟩ = ⟨L,ψ(Ak ⋅ )⟩, ψ ∈ S(Rn).

It is not hard to see that, for every k ∈ Z, (L ∗ ϕℓ)k = Lk ∗ ϕℓ+k . _en (L ∗ ϕℓ)−ℓ =
L−ℓ ∗ ϕ.

Suppose that TL is associated with the kernel K, that is, for every ψ ∈ S(Rn),

(L ∗ ψ)(x) = ∫
Rn

K(x − y)ψ(y)dy, x /∈ suppψ,

and K satisûes (ii) and (iii) a�er (6.1).
Let k ∈ Z and ψ ∈ S(Rn). We have that

(Lk ∗ ψ)(x) = ⟨Lk(y),ψ(x − y)⟩ = ⟨L(y),ψ(x − Ak y)⟩
= ⟨L(y),ψ(Ak(A−kx − y))⟩
= (L ∗ ψ(Ak ⋅ ))(A−kx)

= ∫
Rn

K(A−kx − y)ψ(Ak y)dy, A−kx /∈ suppψ(Ak ⋅ ).

_en
(Lk ∗ ψ)(x) = b−k ∫

Rn
K(A−k(x − y))ψ(y)dy, x /∈ suppψ.

We are going to see that there exists C > 0 that does not depend on ℓ such that:
(i) ∣(L−ℓ ∗ ϕ)(x)∣ ≤ C/ρ(x), x ∈ Rn ∖ {0},
and, if δ = min{γ, ln λ−/ ln b},
(ii) ∣(L−ℓ ∗ ϕ)(x − y)− (L−ℓ ∗ ϕ)(x)∣ ≤ Cρ(y)δ/(ρ(x))δ+1, when b2wρ(y) ≤ ρ(x).
First, we prove (i). We have that L−ℓ ∗ ϕ ∈ L2(Rn) and L̂−ℓ ∗ ϕ = L̂−ℓ ϕ̂ ∈ L1(Rn).
_en we can write

(L−ℓ ∗ ϕ)(x) = ∫
Rn
e−2πix ⋅y L̂−ℓ(y)ϕ̂(y)dy, x ∈ Rn .

Note that the two sides in the last equalities deûne smooth functions in Rn . Since
∥L̂−ℓ∥∞ = ∥L̂∥∞, we deduce that

∣(L−ℓ ∗ ϕ)(x)∣ ≤ ∥L̂−ℓ∥∞ ∫
Rn

∣ϕ̂(y)∣dy, x ∈ Rn .

We obtain

∣(L−ℓ ∗ ϕ)(x)∣ ≤ b
1+w∥L̂−ℓ∥∞

ρ(x) ∫
Rn

∣ϕ̂(y)∣dy, x ∈ B1+w ∖ {0}.
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1266 V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

On the other hand, since ρ(x + y) ≤ bw(ρ(x) + ρ(y)), x , y ∈ Rn , we have that
ρ(x − y) ≥ b−wρ(x) − ρ(y), x , y ∈ Rn . _en if x /∈ B1+w and y ∈ B0, it follows that
ρ(x − y) ≥ b−wρ(x) − b−w−1ρ(x) = b−w(1 − b−1)ρ(x). We can write

∣(L−ℓ ∗ ϕ)(x)∣ ≤ bℓ ∫
B0

∣K(Aℓ(x − y))∣∣ϕ(y)∣dy ≤ CKbℓ ∫
B0

∣ϕ(y)∣
ρ(Aℓ(x − y))dy

≤ CK ∫
B0

∣ϕ(y)∣
ρ(x − y)dy ≤

CKbw

(1 − b−1)ρ(x) ∫B0

∣ϕ(y)∣dy, x /∈ Bw+1 .

We conclude that ∣(L−ℓ ∗ϕ)(x)∣ ≤ C/ρ(x), x ∈ Rn ∖{0}, where C > 0 is indepen-
dent of ℓ, and (i) is proved.

We now establish (ii). We can write

(L−ℓ ∗ ϕ)(x − y) − (L−ℓ ∗ ϕ)(x)

= ∫
Rn

( e−2πi(x−y)⋅z − e−2πix ⋅z) L̂−ℓ(z)ϕ̂(z)dz, x , y ∈ Rn .

_emean value theorem leads to

∣(L−ℓ ∗ ϕ)(x − y) − (L−ℓ ∗ ϕ)(x)∣ ≤ C∣y∣∥L̂∥∞ ∫
Rn

∣z∣∣ϕ̂(z)∣dz, x , y ∈ Rn .

According to [4, (3.3) p. 11] , ∣y∣ ≤ Cρ(y)ln λ−/ ln b , when ρ(y) ≤ 1. Also, by [4, (3.2)
p. 11], we get

∣y∣ ≤ Cρ(y)ln λ+/ ln b ≤ Cρ(y)ln λ−/ ln b , 1 ≤ ρ(y) ≤ b4w .

Hence,

∣(L−ℓ ∗ ϕ)(x − y) − (L−ℓ ∗ ϕ)(x)∣ ≤ Cρ(y)ln λ−/ ln b

≤ C ρ(y)ln λ−/ ln b

ρ(x)ln λ−/ ln b+1 , b2wρ(y) ≤ ρ(x) ≤ b4w .

Assume that ρ(x) ≥ b4w and b2wρ(y) ≤ ρ(x). It is clear that x /∈ supp ϕ. Also, we
have that ρ(x − y) ≥ b−wρ(x) − ρ(y) ≥ b−wρ(x) − b−2wρ(x) ≥ b3w − b2w ≥ b. _en
x − y /∈ supp ϕ. We can write

(L−ℓ ∗ ϕ)(x − y) − (L−ℓ ∗ ϕ)(x) = ∫
Rn

(K−ℓ(x − y − z) − K−ℓ(x − z))ϕ(z)dz,

where K−ℓ(z) = bℓK(Aℓz), z ∈ Rn .
Suppose that ρ(y) ≤ b−6wρ(x) and z ∈ supp ϕ. Since ρ(z) ≤ b−4wρ(x), we have

that ρ(x − z) ≥ b−wρ(x) − ρ(z) ≥ b−wρ(x) − b−4wρ(x) ≥ b6w(b−w − b−4w)ρ(y) =
b2w(b3w − 1)ρ(y) ≥ b2wρ(y). We obtain

∣(L−ℓ ∗ ϕ)(x − y) − (L−ℓ ∗ ϕ)(x)∣ ≤ ∫
B0

∣K−ℓ(x − y − z) − K−ℓ(x − z)∣∣ϕ(z)∣dz

≤ C ∫
B0

∣ϕ(z)∣ ρ(y)γ

ρ(x − z)γ+1 dz

≤ C ρ(y)γ

ρ(x)γ+1 ∫Rn
∣ϕ(z)∣dz.
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Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1267

Supposenow that b2wρ(y) ≤ ρ(x) ≤ b6wρ(y). It follows that ρ(x−y) ≥ b−wρ(x)−
ρ(y) ≥ (b−w − b−2w)ρ(x). From (i) we deduce

∣(L−ℓ ∗ ϕ)(x − y) − (L−ℓ ∗ ϕ)(x)∣ ≤ C( 1
ρ(x − y) +

1
ρ(x)) ≤ C

ρ(x) ≤ C ρ(y)γ

ρ(x)γ+1 .

We conclude that, if δ = min{γ, ln λ−/ ln b},

∣(L−ℓ ∗ ϕ)(x − y) − (L−ℓ ∗ ϕ)(x)∣ ≤ C ρ(y)δ
ρ(x)δ+1 , b2wρ(y) ≤ ρ(x),

where C > 0 does not depend on ℓ, and (ii) is proved.
Since L ∗ ϕℓ = (L−ℓ ∗ ϕ)ℓ , from (i) and (ii) we infer that

(i’) ∣(L ∗ ϕℓ)(x)∣ ≤ C/ρ(x), x ∈ Rn ∖ {0},
and, if δ = min{γ, ln λ−/ ln b},
(ii’) ∣(L ∗ ϕℓ)(x − y) − (L ∗ ϕℓ)(x)∣ ≤ Cρ(y)δ/(ρ(x))δ+1, when b2wρ(y) ≤ ρ(x),
and C > 0 does not depend on ℓ.

We are going to prove the m-regularity property for the kernel

Hℓ(x , y) = (L ∗ ϕℓ)(x − y), x , y ∈ Rn .

We have to show that if α ∈ Nn , ∣α∣ ≤ m, and x , y ∈ Rn , x − y ∈ Bk+1 ∖ Bk , with
k ∈ Z, then

∣(∂αy H̃ℓ)(x ,A−k y)∣ ≤ C
ρ(x − y) = C

bk ,

where H̃ℓ(x , y) = Hℓ(x ,Ak y) and C > 0 is independent of ℓ. In order to prove this,
we proceed as in [4, pp. 66–67].

We have that

Hℓ(x , y) = ∫
Rn

K(x − z, y)ϕℓ(z)dz, x − y ∈ Bℓ ,

whereK(x , y) = K(x − y), x , y ∈ Rn ∖ {0}.
Suppose that x0 , y0 ∈ Rn and x0 − y0 ∈ B j+2w+1 ∖ B j+2w , where j ∈ N, j ≥ ℓ. By

[4, (2.11), p. 68] it follows that x0 − y0 − z /∈ B j+w and x0 − y0 − z ∈ B j+3w+1, for every
z ∈ Bℓ . By using the regularity ofK,we deduce (see [4, (9.29), p. 66]), for every α ∈ Nn ,
∣α∣ ≤ m,

∣(∂αy [K( ⋅ ,A j+2w ⋅ )])(x0 − z,A− j−2w y0)∣ ≤ Cb− j−2w , z ∈ Bℓ .

Diòerentiating under the integral sign we get

∣(∂αy H̃ℓ)(x0 ,A− j−2w y0)∣ ≤ Cb− j−2w , α ∈ Nn , ∣α∣ ≤ m,

where C > 0 does not depend on {ℓ, j}.
Assume that x0 , y0 ∈ Rn , and x0 − y0 ∈ B j+1 ∖B j , is j < ℓ+2w. Let α ∈ Nn , ∣α∣ ≤ m.

We can write

H̃ℓ(x , y) = ∫
Rn
e−2πiz⋅(x−A j y)L̂(z)ϕ̂ℓ(z)dz

= ∫
Rn
e−2πiz⋅(x−A j y)L̂(z)ϕ̂((A∗)ℓz)dz, x , y ∈ Rn ,

where A∗ denotes the adjoint matrix of A.
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A�er making a change of variables, we get

H̃ℓ(x , y) = b−ℓ ∫
Rn
e−2πi(A∗)−ℓ z⋅(x−A j y)L̂((A∗)−ℓz)ϕ̂(z)dz

= b−ℓ ∫
Rn
e−2πiz⋅(A−ℓx−A−ℓ+ j y)L̂((A∗)−ℓz)ϕ̂(z)dz, x , y ∈ Rn .

_en diòerentiating under the integral sign, we obtain

∣∂αy H̃ℓ(x , y)∣ ≤ Cb−ℓ ∫
Rn

∣z∣α ∣ϕ̂(z)∣dz, x , y ∈ Rn , x − y ∈ B j+1 ∖ B j ,

because j − ℓ < 2w. Here, C > 0 does not depend on {ℓ, j}.
Hence,

∣(∂αy H̃ℓ)(x0 ,A− j y0)∣ ≤ Cb−ℓ = Cb−ℓ+ jb− j ≤ Cb2wρ(x0 − y0)−1 .

We conclude that there exists C > 0 such that for every α ∈ Nn , ∣α∣ ≤ m, and x , y ∈ Rn ,
x − y ∈ Bk+1 ∖ Bk , k ∈ Z,

∣(∂αy H̃ℓ)(x ,A−k y)∣ ≤ C
ρ(x − y) .

_us, the proof of the property is ûnished.

Proof of_eorem 1.7(ii) Consider r, p0 and s as in Proposition 6.3. Assume that a is
a (p( ⋅ ), q( ⋅ ), r/p0 , s)-atom associatedwith x0 ∈ Rn and ℓ0 ∈ Z, and ν ∈ A1(Rn ,A)∩
RH(r/p0)′(Rn ,A). We take φ ∈ S(Rn) such that ∫ φ(x)dx /= 0 and suppφ ⊂ B0.

We can write

∥Ta∥p0
Hp0 (Rn ,ν ,A)

≤ C(∫
x0+Bℓ0+w

(M0
φ(Ta)(x))p0ν(x)dx + ∫(x0+Bℓ0+w)c

(M0
φ(Ta)(x))p0ν(x)dx)

= J1 + J2 .

_e Hardy–Littlewood maximal function satisûes Kolmogorov inequality (see [30,
p. 91]). _en since M0

φ(Ta) ≤ CMHL(Ta), we get

J1 ≤ Cν(x0 + Bℓ0+w)1−p0(∫
Rn

∣T(a)(x)∣ν(x)dx)
p0

.

Here, C = C([ν]A1(Rn ,A)) > 0.
By splitting the last integral in the same way, we obtain

∫
Rn

∣Ta(x)∣ν(x)dx = ∫
x0+Bℓ0+w

∣Ta(x)∣ν(x)dx + ∫(x0+Bℓ0+w)c
∣Ta(x)∣ν(x)dx .
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Since T is a bounded operator in Lr/p0(Rn) (see Proposition 6.3) and we have ν ∈
RH(r/p0)′(Rn ,A), it follows that

∫
x0+Bℓ0+w

∣Ta(x)∣ν(x)dx

≤ (∫
x0+Bℓ0+w

∣Ta(x)∣r/p0dx)
p0/r

(∫
x0+Bℓ0+w

ν(x)(r/p0)′dx)
1/(r/p0)′

≤ C∥a∥r/p0 ∣Bℓ0+w ∣1/(r/p0)′−1ν(x0 + Bℓ0+w) ≤ C
ν(x0 + Bℓ0)

∥χx0+Bℓ0
∥p( ⋅ ),q( ⋅ )

.

Here, C = C([ν]A1(Rn ,A) , [ν]RH
(r/p0)′(R

n ,A)). We have used that ν deûnes a doubling
measure.

Proceeding as in the estimation of I2 in the proof of_eorem 1.7(i), we get

∫(x0+Bℓ0+w)c
∣Ta(x)∣ν(x)dx ≤ C ∣Bℓ0 ∣δ+1

∥χx0+Bℓ0
∥p( ⋅ ),q( ⋅ ) ∫(x0+Bℓ0+w)c

ν(x)
ρ(x − x0)δ+1 dx

≤ C ∣Bℓ0 ∣δ+1

∥χx0+Bℓ0
∥p( ⋅ ),q( ⋅ )

ν(x0 + Bℓ0)∣Bℓ0 ∣−(δ+1)

= C ν(x0 + Bℓ0)
∥χx0+Bℓ0

∥p( ⋅ ),q( ⋅ )
,

where C = C([ν]A1(Rn ,A)) > 0 and δ = m ln λ−/ ln b.
We conclude that

J1 ≤ C
ν(x0 + Bℓ0)

∥χx0+Bℓ0
∥p0
p( ⋅ ),q( ⋅ )

.

Here, C = C([ν]A1(Rn ,A) , [ν]RH
(r/p0)′(R

n ,A)) > 0.
According to Lemma 6.4, for every k ∈ Z, the convolution operator Sk deûned by

S(k)(ψ) = φk ∗ (Tψ), ψ ∈ S(Rn),
is a Calderón–Zygmund singular integral of order m and this property is uniformly
in k ∈ Z; that is, the characteristic constant does not depend on k.

If k ∈ Z, by proceeding as in the proof of_eorem 1.7(i), we get

∣S(k)(a)∣ ≤ C
∣Bℓ0 ∣δ+1

ρ(x − x0)δ+1
1

∥χx0+Bℓ0
∥p( ⋅ ),q( ⋅ )

, x /∈ x0 + Bℓ0+w ,

where C > 0 does not depend on k.
_en

∣M0
φ(Ta)(x)∣ ≤ C

∣Bℓ0 ∣δ+1

ρ(x − x0)δ+1
1

∥χx0+Bℓ0
∥p( ⋅ ),q( ⋅ )

, x /∈ x0 + Bℓ0+w .

We conclude that
J2 ≤ C([ν]A1(Rn ,A))

ν(x0 + Bℓ0)
∥χx0+Bℓ0

∥p0
p( ⋅ ),q( ⋅ )

.

_e proof of this theorem can be completed by putting together the above estimates.
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Remark 6.5 In order to prove the boundedness of an operator T deûned on Hardy
type spaces (or ûnite atomic Hardy type spaces) and that takes values in a Banach
(or quasi-Banach) space, it is usual to add the following condition: T is uniformly
bounded on atoms. As it can be seen (for instance, in [6, pp. 3096–3097], the last
condition implies the boundedness of T , roughly speaking, proceeding as follows: if
f = ∑k

j=1 λ ja j , then

(6.4) ∥T f ∥X ≤
k

∑
j=1

∣λ j ∣∥Ta j∥X ≤ C
k

∑
j=1

∣λ j ∣ ≤ C∥ f ∥Hp .

In our case, for the anisotropic Hardy–Lorentz spaces with variable exponents, we
do not know if the last inequality in (6.4) holds. In _eorem 1.3 we establish our
atomic quasinorm. _e condition in Proposition 6.3 is adapted to the quasinorms on
the anisotropic Hardy–Lorentz spaces with variable exponents and they replace the
uniform boundedness on atoms condition.

Remark 6.6 As is well known, Lorentz and Hardy–Lorentz spaces appear related
with interpolation. Feòerman, Rivière, and Sagher ([25]) proved that if 0 < p0 < 1,
then (Hp0(Rn), L∞(Rn))η ,q = Hp,q(Rn), where 1/p = (1 − η)/p0, 0 < η < 1
and 0 < q ≤ ∞. Recently, Liu, Yang, and Yuan ([40, Lemma 6.3])) established an
anisotropic version of this result. By using a reiteration argument in [40,_eorem 6.1]
the interpolation spaces between anisotropic Hardy spaces are described. Kempka
andVybíral ([36,_eorem 8]) proved that (Lp( ⋅ )(Rn), L∞(Rn))θ ,q = L p̃( ⋅ ),q ,where
0 < θ < 1, 0 < q ≤ ∞ and 1/p̃( ⋅ ) = (1 − θ)/p( ⋅ ). It is clear that a similar property
cannot be expected for the Lorentz space Lp( ⋅ ),q( ⋅ )(Rn), since in the deûnition of
Lp( ⋅ )(Rn), p is a measurable function deûned in Rn while in the deûnition of the
Lorentz space Lp( ⋅ ),q( ⋅ )(Rn), p and q are measurable functions deûned in (0,∞).
_en the arguments used in [40] to study interpolation in anisotropic Hardy spaces
do not work in our variable exponent setting. New arguments must be developed in
order to describe interpolation spaces between our anisotropicHardy–Lorentz spaces
with variable exponents.
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