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Abstract

Nanopore science, the study of individual nanoscale pores within thin membranes, is
a fast-growing field which presents numerous interesting problems for physicists and
applied mathematicians. Nanopores are most commonly applied to resistive pulse
sensing (RPS) of individual particles suspended in aqueous electrolyte. The form of a
resistive pulse is dependent on an array of experimental variables, including electrolyte
characteristics, electrophoretic and convective transport, and (especially) pore and
particle geometry. The level of analysis required depends on the application, but any
broadly useful approach should be simple and flexible, due to the requirement for high
data throughput and variations between different experimental systems and specimens.
Here we review analytic methods for interpreting RPS experiments for particles in the
approximate range 100 nm to 1 µm, focusing on calculation of resistance change as a
function of the particle’s position. We detail a recently developed semi-analytical model
and compare the modelled electric field with finite element results. The model can also
be used to calculate particle motion, so that the experimental current–time history can be
reconstructed. This approach is useful for a wide range of pore and particle geometries,
and includes consideration of entrance effects. Tunable elastomeric pores with truncated
linear cone geometry are used as a model system.

2010 Mathematics subject classification: 70G99.
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1. Introduction

Nanopores—individual nanoscale holes in thin membranes—are simple geometric
building blocks, which are likely to find many uses in nanoscience and
nanotechnology. To date, they have usually been used for resistive pulse sensing (RPS,
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Figure 1. (a) An experimental resistive pulse event caused by a single 955 nm polystyrene sphere passing
through a tunable elastomeric pore, filled and surrounded with 0.1 M electrolyte, with 0.12 V applied
across the membrane. The pulse magnitude ∆I, measured relative to the baseline current I0, corresponds
to a resistance magnitude ∆R. Event asymmetry arises from the pore geometry. (b) A schematic section
of a pore, with V applied across the membrane. Geometric parameters are defined in the text.

Figure 1(a)), in which pores are filled with and surrounded by aqueous electrolyte.
When a potential V is applied across the membrane, an ionic current I0 flows between
the electrodes, and if a particle then passes (or is driven) through the pore, there is
a brief change in the pore resistance. This change, usually observed in experimental
current–time histories, is known as a resistive pulse and has magnitude ∆R. Extracting
information about the particle from this resistive pulse presents a challenge for
physicists and applied mathematicians.

Nanopores come in many shapes and sizes. Biological ion channels [4, 9, 10, 14,
32], silicon-based pores [3, 18, 20, 35, 60] and even thin carbon sheets [53] are used
for single-molecule sensing, particularly of DNA. However, a wide range of nanopore
research, and research problems, fall into the larger submicron range between single
molecules and 1 µm [36]. Many drug delivery technologies, viruses, synthetic beads,
blood constituents, emulsions and bioparticles fall into this range. Corresponding
nanopores can be made from large carbon nanotubes [28, 29], glass [2, 37, 57, 58, 63],
polymers [26, 48, 52, 66] and elastomers [31, 36, 41, 42, 46, 47, 56, 61, 62, 67–71, 73].
When the size of the electrical double layer adjacent to surfaces (1–10 nm for typical
electrolytes) is relatively small, the electrolyte can be considered to be homogeneous.
This is known as the high salt limit.

The applied nature of nanopore science is self-evident in the research reported using
these pores, which results in exciting and interdisciplinary experiments. However,
nanopore experiments have often encouraged speculative interpretations based on
qualitative observations of the resistive pulse sizes and shapes, or intuition. For
quantitative interpretations of RPS, the size and shape of the resistive pulse should
be understood on the basis of the corresponding experimental parameters. The range
of interacting considerations, such as electrokinetics, fluid mechanics, rigid body
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dynamics, electrolyte and surface chemistries, pore geometry, and so on—appears
daunting when detailed analysis is required. On the other hand, real-world applications
of pores often involve high particle throughput, requiring an efficient and flexible
approach.

In this paper we discuss efforts to understand RPS in the submicron range using
mathematical models with particular focus on modelling the size of the pulse. Kozak
et al. [36] and Qin et al. [43] have recently compiled good summaries of similar
material, but whereas past workers have usually attempted to find ∆R for simple
particle and pore geometries (especially a sphere in a long cylinder), we emphasize
methods where the resistance change can be calculated as a function of particle
position, and the pore and particle geometries are not strongly restricted. This is
important for RPS using conical pores for detection of clusters [71], or when a particle
is near the entrance of a pore, for example. We then discuss particle transport, which
is required to reconstruct the full shape of a current–time history, and determine its
duration. The transport and resistance calculations can be considered independently,
when an instantaneous current measurement is independent of particle motion, for
example, the quasi-static case. A semi-analytic model for RPS has recently been
developed using these principles [42, 61, 62, 70–72], and we compare this model with
new finite element results, addressing its strengths and weaknesses.

Figure 1(b) introduces the generic geometry and variables used in this paper.
Although the figure shows a truncated linear cone, much of the discussion applies
to any pore of radius RP(z) (when sections are circular and centred on the z-axis), or
more generally of sectional area A(z). We refer to two specific geometries: firstly,
the truncated linear cone which has opening radii a and b in a membrane of thickness
d; and secondly, a cylinder of radius a0. When a spherical particle is present, it has
radius a′. The truncated linear cone geometry is relevant to tunable elastomeric pores
[31, 36, 41, 42, 46, 47, 56, 61, 62, 67–71, 73], which is our model experimental system.
Tunable pores are made by puncturing an elastomeric membrane with a sharpened tip,
producing a conical shape pore [56, 67]. The membrane can be reversibly actuated
on macroscopic scales in order to stretch and relax the micro- to nanoscale conical
pore geometry [68], so that the ionic current passing through the pore varies by at
least an order of magnitude [69]. Although sensing of single-molecule DNA has been
reported [56], tunable pores are typically used to investigate particles from around
70 nm up to approximately 1 µm. Due to membrane stretching, individual pore
specimens can measure particles over a range of sizes, including multimodal particle
size distributions [46, 67].

2. The electric field and current through a pore

2.1. Models for an open pore The electric field distribution is an important
parameter in nanopore experiments, determining the resistance of an open pore
(therefore, the background current I0) and the change in resistance when a particle
is present within the pore, so that a resistive pulse of magnitude ∆R is observed. For
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efficient, flexible analysis of RPS with nanopores, it has proved useful to consider the
analytic electric field E, as governed by the Laplace equation in electrostatics,

∇2v = 0, (2.1)

where the electric potential v is a function of position, and Ohm’s law gives E = −∇v =

−I∇R where I and R are current and resistance, respectively. Here the electrolyte
is assumed to be homogeneous, which is effectively the case in the high salt limit.
Equation (2.1) can be solved for a specific nanopore geometry of interest, noting that
the pore membrane is usually insulating. The electrodes used to apply the fixed voltage
V can be important for this calculation. Here, we assume that a semi-infinite half-space
exists above and below the membrane, so that the voltage drop between electrodes
occurs entirely within the pore and its immediate surroundings. This assumption is
reasonable when the length scales associated with the pore are small compared to
the electrode surface areas, and the distance from each electrode to the pore. For
tunable pores, this condition is satisfied: the electrodes are wires, several millimetres
long and approximately 1 mm in diameter, located several millimetres away from the
pore, whereas the larger pore opening diameter is approximately 50 µm. Polarization
potential at the electrodes [30, 34, 55] is assumed negligible.

Exact analytic solutions of the Laplace equation have been used for calculation
of the electric field in and around a pore for some specific geometries. Beyond the
simplest case of a long cylinder [3, 59], Kowalczyk et al. [35, 72] recently found
the electric field for a double-hyperboloid geometry, appropriate for their hourglass-
shaped silicon-based nanopores. However, pores with various cross-sections (usually
near-conical) often arise from manufacturing processes such as laser heating [75],
track etching [26] and in glass [2, 38, 58]. Mechanically punctured tunable pores are
also conical [62, 70, 73], and moreover their geometry varies when stretch is applied
to the membrane. The exact solutions available are not applicable for most pore types,
and they do not work when a particle is near the entrance of a pore.

A common method for more general geometry is to find the incremental resistance
of the pore across a slice of thickness dz perpendicular to the pore’s central
z-axis (Figure 1(b)). Using this series resistance methodology (often applied to wire
conductors) with electrolyte resistivity ρ, the incremental resistance is

R ≈ ρ
∫

dz
A(z)

, (2.2)

where we use approximate equality to indicate a mathematical model of a physical
system. This method has the clear benefit that the pore shape defined by A(z) is not
restricted to any particular geometry, although there is an additional assumption that
A(z) is slowly varying with respect to z. A consequence of this assumption is that the
radial component of the electric field is zero, or insignificant compared to the vertical
component. Pore slices taken perpendicular to the z-axis are equipotential surfaces,
and the electric field is the same at any particular value of z. Resistance calculations
converge with full solutions to Laplace’s equation, such as the hyperboloid model
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[72], when the radius is slowly varying. This approach has been proved useful for
studying open-pore conductance [26, 33, 35, 40]. Use of equation (2.2) can yield
simple functional forms, for example, if the resistance between the ends of a pore is
Rin, then the result for a truncated linear conical pore of length d with opening radii a
and b is

Rin,cone ≈
ρd
πab

,

an expression used in various studies [26, 58, 62, 70].
The electric field near the ends of the pore (entrance effects) is especially important

when the membrane is thin, when the pulse shape is of interest, or when the
constriction is near one-membrane surface (for example, conical pores). Model pore
geometries typically include an abrupt transition at the pore entrance. When modelling
the resistance change between the pore entrance and an electrode (Rout), there is
a known solution for a circular disc entrance (radius a) and a semi-infinite half-
space [23],

Rin,disc ≈
ρ

4a
. (2.3)

The resistance drop from a circular pore opening to an adjacent half-space is equivalent
to Rin,disc, when there is an equipotential across the surface of the opening, as is the case
when using equation (2.2) to find Rin. Therefore, Rin,disc can be added to Rin to give
a piecewise solution for E, which is continuous between the ends of the pore and the
pore interior. This method has often been used in pore analyses [17, 24, 28, 58, 73],
and for the special case of the truncated conical pore, the total resistance with no
particle present is

Rcone ≈
ρ

πab

[
d +

π

4
(a + b)

]
,

where a value of 0.8 is sometimes used in place of the factor π / 4 ≈ 0.785.
The resistance between a hemispherical surface and the infinite half-space can

also be calculated analytically [46]. When the hemisphere is an equipotential of
radius equal to the pore opening, the calculated resistance (ρ/2πa) can be treated as
a lower bound for Rout, because resistance between the disc and the hemisphere has
been omitted. The hyperboloid geometry used by Kowalczyk et al. [35] generated
an equipotential surface protruding from the pore entrance, so that Rout was bounded
between the results for the disc as in equation (2.3) and the hemisphere.

2.2. Addition of an insulating particle Once the open-pore resistance is known,
the change in resistance when a particle is added can be determined. DeBlois et al. [15]
described several methods for this calculation, starting with an approach (attributed to
Maxwell) in which the fractional resistance change is equal to the ratio of the particle
and pore volumes. For a spherical particle of radius a′ within a cylindrical pore of
radius a0, the resistance change is

∆RMaxwell ≈
2ρa′3

πa4
0

. (2.4)
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This expression is valid when a′ � a0, and when the pore is long enough that end
effects are not important. Note that there is no dependence on the pore length in
equation (2.4), and no provision for specification of the pore geometry local to the
particle. It follows that the volumetric approach is unsuitable when RP(z) is not
constant. However, the principle that ∆R is proportional to the particle volume is
observed more widely. For example, it is the basis of a method for sizing particles
using a conical pore, as long as the particle remains small relative to the pore [62].

Using equation (2.2), Gregg and Steidley [21] calculated ∆R for a sphere, again
assuming that a′ � d and RP(z) is constant, but allowing for relatively large particles.
For this method, the area of the pore increment excludes the insulated area obstructed
by the particle. The closed analytic solution is

∆RGS ≈
2ρ
πa0

[ sin−1(a′/a0)
(1 − (a′/a0)2)1/2 −

a′

a0

]
. (2.5)

Although this equation describes a specific geometry, a major advantage of Gregg
and Steidley’s method is that it can be applied to any particle and pore geometry.
For example, Heins et al. [26] were able to obtain a similar analytic result for a
truncated linear cone, albeit without consideration of end effects. Equation (2.5)
gives good agreement with experiments for large spheres [15], because the curvature
ensures relatively slow variation of the conducting cross-section along the z-axis.
This condition is similar to the assumption noted above when using equation (2.2) to
calculate the open-pore resistance in the noncylindrical case. However, the assumption
that the electric field is uniform across the pore width gives rise to two practical
drawbacks. Firstly, there is no accounting for differences between on- and off-
axis particles. Secondly, ∆RGS is a lower bound for the total resistance, because
nonuniformity in the field will always increase the overall resistance. In the limit
a′ � a0, ∆RGS is a factor of two-thirds smaller than ∆RMaxwell [15], so calculated
results can be multiplied by an empirical correction factor of 1.5 when modelling small
particles.

DeBlois et al. [15] further suggested using the solution to the Laplace equation for
a sphere in a uniform field, with the assumption that the bulging electric field lines
did not extend far beyond the edges of the pore. The resulting expression agrees with
Maxwell’s solution in the small sphere limit, and with Gregg and Steidley’s as the
particle size approaches the pore size. Numerical methods were also used to solve the
problem of a sphere within a cylinder [54], prompting DeBlois et al. to summarize [16]
that the resistance change can be written as

∆RNum ≈
2ρa′3

πa4
0

S
( a′

a0

)
, (2.6)

where, if the function S is

S
( a′

a0

)
=

1
1 − 0.8(a′/a0)3 ,
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then the variation with the numerically calculated values does not exceed 1% for
a′/a0 ≤ 0.8. The simple form of equation (2.6) works well for cylindrical pores,
where the pore length is larger than the pore width, and the particle size is much
smaller than the pore size. However, neither does it allow consideration of variable
pore and particle geometry nor of entrance effects. To account for different particle
geometries, an arbitrary shape factor can be added to equation (2.6) [36]. Qin et al. [43]
have modelled RPS for ellipsoidal particles, while also considering entrance effects.
Using cylindrical pores, Qin et al. and Berge et al. [5] also modelled RPS for off-axis
particles. The hydrodynamic drag on a particle is altered when the particle is off-axis,
or large in comparison with the pore width [25].

The semi-analytic method we have recently used [42, 61, 62, 70–72] applies
equation (2.2) with the particle area excluded from the integral, as used for equation
(2.5). The main advantage of this method is that it can be applied to any pore and
particle geometry, as long as it is slowly varying along the pore length. Consideration
of geometry is paramount, because it is a first-order effect—note the dependence
of ∆R on geometric parameters in equations (2.4)–(2.6). The geometric flexibility
enables the resistance change to be calculated with the particle at any position along
the length of the pore, and at any orientation. For smooth functions, the calculation
of Rin using equation (2.2) can be achieved efficiently using a standard numerical
solver (for example, the Matlab quad function). As mentioned above, the important
disadvantages are: (i) forced electric field uniformity across the pore width, so that
the particle should be assumed to lie near the central axis of the pore; (ii) the need to
consistently use the empirical correction factor of 1.5 when the particle size is much
smaller than the pore width, as is usually the case for RPS. Therefore, the method is
best applied to comparative studies of similar experiments, an approach successfully
applied to particle sizing [28, 58, 62] and resistive pulse asymmetry [58, 70] rather
than calculation of absolute values.

To complete the description of the semi-analytic method, we revisit entrance
effects. Although the resistance between the pore opening and a half-space is known,
calculation of the electric field in the half-space with a particle present is not trivial. It
is, therefore, difficult to analytically find the correction to the total resistance, when a
particle is close to the end of the pore. One way of estimating this effect is to create an
artificial cone within the half-space (Figure 1(b)). The pitch of this cone can be set to
tan θ = 0.8, so that the resistance between the pore and the half-space calculated using
equation (2.2) agrees with the analytic value in equation (2.3). Any particle in the half-
space is then treated as a particle within a constriction defined by the artificial cone, so
that Rout can be numerically calculated in the same way as Rin, using equation (2.2).
This approach is clearly inaccurate off-axis (for example, outside the artificial cone)
and a comparison with finite element solutions is presented below. However, entrance
effects have seldom been analytically addressed for RPS, despite their importance,
which is demonstrated in Figure 2 [70]. Here, the maximum deviation from the
baseline current (which defines ∆R) occurs when the particle protrudes from the pore
into the half-space.
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Figure 2. A current simulation (reproduced from [70]), plotted against the z-axis position of the centre
of a sphere (z0) using the semi-analytic model with truncated linear cone geometry. Here a′ = 110 nm,
a = 450 nm, b = 20 µm, d = 150 µm and 0.3 V was applied using electrolyte of resistivity ρ = 0.86 Ω m.
Inset: A magnification near the membrane surface, with the sphere (depicted at the scale of the horizontal
axis) located at the value of z0 where the current is minimized.

3. Comparison with finite element results

The finite element method (FEM) has been used to calculate the electric field in a
pore for comparison with the semi-analytic modelling approach outlined above. The
Laplace equation was solved numerically for pores of a specific geometry, assuming
that the electrolyte is homogeneous, and that the pore and particle are insulators.
The electric field normal to these insulating surfaces is zero, and the other boundary
condition is the applied potential difference V far from the pore on either side of the
membrane. Calculations used Comsol Multiphysics 3.3 with a triangular mesh and
∼60 000 degrees of freedom. A finite radius of curvature was applied at the sharp lip
of the pore to avoid numerical instability. Results are shown in Figure 3.

Comparison between the semi-analytic and FEM results for the open-pore
conductance is shown in Figure 3(a). On-axis, the two methods differ by less than
35% everywhere, with the most significant deviations (>10%) only occurring in the
region 149.8 ≤ z ≤ 151.5 µm at the discontinuous pore entrance. FEM confirms that
Er � Ez for the typical tunable pore geometry used. Even the largest values of Er

(near the cone edge) only reach a reasonable fraction of Ez very close to the pore
entrance. Previously, finite element simulations of electric fields have been carried out
for conical pores [38, 39, 58], and for a DNA-sensing pore [27], for example. For
conical pores, these results qualitatively agree with our work.

Figure 3(a) also shows the variation in Ez across the width of the pore as a function
of z. When using the semi-analytic method, there is no variation. The FEM results
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Figure 3. Comparison of finite element method results with the semi-analytic method for the electric
field in a truncated conical pore with a = 450 nm, b = 20 µm and d = 150 µm, with 0.3 V applied across
the membrane. (a) Plot of electric field components (as shown by Willmott and Smith [72], but with
greater spatial resolution), including variation of Ez across three radial positions. In the half-spaces, the
cone edge is defined by the artificial cone. Inset: a magnification of the same plot near the membrane
surface, with individual mesh points plotted. (b) and (c) Intensity plots of the axial and radial electric
fields, respectively, in a radial slice through the pore, where white areas indicate insulating material. In
each case, the five images correspond (from left to right) to: (i) an open pore, and with the sphere centre
positioned; (ii) one radius above the surface; (iii) at the surface; (iv) one radius below the surface; (v) one
pore diameter below the surface.

https://doi.org/10.1017/S1446181114000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181114000066


206 G. R. Willmott and B. G. Smith [10]

reveal that through most of the pore, the field half way between the central axis and the
edge of the pore is slightly smaller than on-axis, and the field at the pore edge is smaller
still. At the pore entrance, the electric field becomes concentrated near the sharp lip
of the pore, so that the field at the edge is much greater than on-axis. As expected,
the artificial cone construction in the half-space is only suitable for describing the on-
axis field, and the off-axis values for the semi-analytic and FEM results do not agree
well. The radial field intensity plot (Figure 3(c)) demonstrates that the radial field is
significant near the pore lip, and on either side of a sphere within the pore.

4. Particle transport

For full reconstruction of a current–time resistive pulse, there remains the challenge
of combining resistance calculations with nano- and microfluidic transport properties.
By calculating the particle position as a function of time, the experimental pulse can
be simulated under the assumption that the electric field is quasi-static. The starting
point for determining the transport properties of a particle within a micro- or nanopore
is the Nernst–Planck equation, which simply sums contributions to the particle flux J,
that is, the number of particles passing through a unit area per unit time. For example,
taking the summation of (from left to right) diffusion, electrophoresis, electro-osmosis
and pressure-driven transport, we have

J ≈ Jdiff + Jeph + Jeo + Jpd.

Further mechanisms, for example, magnetophoresis [71] can be added in some
circumstances. Together, electrophoresis and electro-osmosis comprise electrokinetic
transport, while electro-osmotic and pressure-driven mechanisms are convective,
because transport of particles is due to the motion of fluid rather than the motion of
particles relative to the fluid.

Considering first the motion of a relatively large particle within homogeneous
electrolyte, we can discard diffusive transport, because there is no ionic concentration
gradient. The sum of electrokinetic fluxes is

Jeph + Jeo ≈
Cε
η

(ζparticle − ζpore)E. (4.1)

Here, C is the particle concentration, ζ refers to the zeta potential of the subscripted
surface, and η, ε are the viscosity and absolute permittivity of the electrolyte,
respectively. As written, these terms apply when the extent of the electrical double
layers at the particle and pore surfaces is small in comparison with the particle size (for
Jeph) and pore width (for Jeo), respectively. Construction of electrical double layers is
well studied [34, 45, 51], and the characteristic double layer thickness is unlikely to
exceed 10 nm for typical electrolytes [22], so equation (4.1) is applicable for sensing
of particles in the 100 nm to 1 µm range. In this range, it is interesting that the
electrophoretic mobility of a spherical particle is proportional to ζparticle, implying that
ζparticle is proportional to σa′, where σ is the charge per surface area, so ζparticle scales
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in proportion to a′. The electro-osmotic flow velocity in equation (4.1) is independent
of radial position (plug flow), and is derived for a cylindrical tube. However, this
expression can be used for long, thin tubes [34] and is more generally applicable
in many cases [12, 50]. The expression in equation (4.1) can also be applied to
the semi-analytic resistive pulse model, because E has been determined as described
above. Methods such as dynamic light scattering (for particles) [6] and electro-osmotic
flow velocity measurements (for pore walls) [19, 34] can be used to determine zeta
potentials.

If the pressure across the membrane ∆P is known, then the pressure-driven term Jpd
can be determined using Stokes’s equation for laminar flow. The Hagen–Pouseuille
result for a cylinder can be applied to a general cylindrical increment of length dz and
radius RP(z) (Figure 1(b)), so that

dP
dz
≈

8ηQ
π(RP(z))4 , (4.2)

where dP and Q = CJpd,z are the pressure drop and the flow rate across the increment,
respectively. Note the dependence of flow rate on the fourth power of pore width; when
using tunable pores, for example, a small microfluidic pressure head can dominate
the flow of particles through a micron-sized pore, whereas electrokinetic effects are
significant and compete with pressure for pore sizes approaching 100 nm [61].

Equation (4.2) can be integrated along the length of any pore with circular cross-
sections to determine the flow rate if the overall pressure drop is known. As with
the electric field, entrance effects should be considered, and in this case Sampson’s
solution for the flow rate through a thin circular orifice applies [49]. This solution has
been validated numerically for tubes of nonzero [13] and semi-infinite [64] length.

The model given in equation (4.2) also forms the basis for the semi-analytical
model used in recent work involving particle transport [61, 70, 71], with entrance
effects included. Figure 4 demonstrates use of the model [71]. Firstly, the modelled
pore geometry and applied pressure were calibrated, so that the baseline current, pulse
height, duration and asymmetry were consistent with average resistive pulses caused
by standard polystyrene particles. When different superparamagnetic particles were
used with the same pore, the modelled events agree well with experimental pulse
heights and shapes. Moreover, clustered particles can be identified and their pulses
reproduced using this model. As with the electric field, an artificial cone is used to
estimate the on-axis flow rate in the half-space. For our model geometry of a truncated
linear cone, the analytical result is [37, 47, 61]

∆P ≈ Q
[8ηd

3π
(a−3 − b−3)

(b − a)
+

3η
2

(a−3 + b−3)
]
.

Pressure-driven flow is useful for determining particle concentration, when Jpd
dominates, so that the rate of resistive pulses is simply proportional to C [47, 73, 74].
Lan et al. [37] recently analysed and simulated pressure-driven flow through a
nanopore in some detail, while precise control of pressure could allow determination
of particle mobility and, therefore, zeta potential [61].
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Figure 4. Part of an experimental current history (reproduced from [71]) for 1 µm superparamagnetic
beads passing through a tunable pore, some of which are clustered due to application of a magnetic field.
The semi-analytic model has earlier been calibrated using standard particles. Simulated traces are overlaid
on the experimental data, aligned so that the baseline currents and peak times coincide. The peak denoted
by the red arrow corresponds to a simulation of a dimer passing through the same pore.

So far, all our detailed considerations of resistive pulse height and particle transport
have assumed that the electrolyte is homogeneous, which is a practical assumption in
the high salt limit. However, the rigour of the analysis could be improved by including
ionic species distributions, the hydrodynamics of the double layers, and formation
of an asymmetric charge cloud around the particle. Detailed consideration of ionic
transport should account for co-dependency between local electrolyte resistivity and
the electric field, because electrophoretic motion of ions in the field will alter the
resistivity. When a steady state is reached, the net motion of ions will determine the
current passing through the pore. An additional level of complication is introduced
if the particle is moving fast enough that the steady state does not dominate, so that
dynamic effects are important. For meaningful detailed modelling of ionic species
near the pore wall, the surface charge must be well known.

To obtain steady-state solutions, Poisson–Nernst–Planck (PNP) theory is usually
used [38, 65], as described by Rice and Whitehead [45] for the base case of an open,
cylindrical pore with no radial variation of the electric field. In PNP theory, a spatial
density of each ionic species i is considered. Ions near a charged surface, such as
pore walls, follow Poisson’s equation in electrostatics, which allows the double layer
to be defined. The Nernst–Planck equation is then applied to determine the current
density carried by each species Ji. For example, considering only diffusion and
electrophoresis,

Ji ≈ −Di∇Ci +
zie

kBT
DiCiE,

where Di is the diffusion coefficient, Ci is concentration, zie is the charge of an ion,
kB is Boltzmann’s constant and T is temperature. Lan et al. [38] recently presented
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a hybrid approach, in which a finite element simulation of the electric field and
ion fluxes was performed simultaneously with a simple dynamic calculation for the
nanoparticle motion. For extending PNP theory to pores with nontrivial geometries
and distributions of surface and ionic charge, recent work concerning small, solid-
state pores of reasonably well-defined geometry is instructive [1, 7, 8, 11, 44]. Specific
distributions of surface charge give rise to diode-like behaviour of the ionic current,
which is also observed experimentally. Pressure-driven flow is not significant in such
work due to pore size.

5. Conclusions

Although nanopore-based RPS processes have been well studied, development
of practical methods for experimental analysis remains a challenge. For many
applications, high throughput is an important consideration. The requirement for fast
data analysis introduces restrictions on the processing time available, and possibly the
amount of information available from a digitally sampled signal. Different levels of
details are required for the analysis of different experiments. With these considerations
in mind, flexible analysis methods that address the most obvious metrics are appealing.
In this article, as in the development of our semi-analytic model, we have emphasized
high utility analytic methods that go beyond the simplest models.

There remain some interesting questions for submicron RPS, particularly regarding
hydrodynamic transport. Particles entering a pore will tend to be flow-focused along
the central pore axis, and aspherical particles should also be preferentially aligned with
respect to this axis. However, the extent to which this is realized in comparison with
kinetics, steric interactions and Brownian motion is often unclear in experiments. For
off-axis particles, or spheres which are large relative to the velocity profile across the
pore, corrections to the hydrodynamic drag can be considered. Another interesting
recent observation is that aggregated particles tend to become slightly separated in
the pore constriction [71], suggesting the presence of relatively strong hydrodynamic
forces. These may also have an interesting effect on soft particles, such as emulsions.
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