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MODELING FMRI DATA: CHALLENGES AND OPPORTUNITIES
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We offer an introduction to the five papers that make up this special section. These papers deal with
a range of the methodological challenges that face researchers analyzing fMRI data—the spatial, multi-
level, and longitudinal nature of the data, the sources of noise, and so on. The papers all provide analyses
of data collected by a multi-site consortium, the Function Biomedical Informatics Research Network. Due
to the sheer volume of data, univariate procedures are often applied, which leads to a multiple compar-
isons problem (since the data are necessarily multivariate). The papers in this section include interesting
applications, such as a state-space model applied to these data, and conclude with a reflection on basic
measurement problems in fMRI. All in all, they provide a good overview of the challenges that fMRI data
present to the standard psychometric toolbox, but also to the opportunities they offer for new psychometric
modeling.
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Since its introduction in the early 1990s, functional magnetic resonance imaging (fMRI) has
become one of the hottest research tools in Psychology, and more generally in the Neurosciences.
The purpose of fMRI is to draw conclusions about neural activation in an individual at a single
time point or across time points, across individuals, or across groups. Other techniques such as
event-related brain potentials (ERPs) also provide a noninvasive, high resolution way to “look at
the human brain in action” (Donchin, 2006). However, an MRI has a higher spatial resolution
than ERPs; it has become the method of choice for looking at the human brain in action as it
provides attractive, colorful, graphical representations of brain activity.

In a typical fMRI study, data are gathered on a set of individuals while they perform a task.
Most fMRI studies use the Blood Oxygenation Level Dependent (BOLD) signal as a proxy for
neural activity. The BOLD signal is physiologically complex, reflecting changes in blood flow,
blood volume, and oxygen metabolism at a particular location due to altered behavioral and
cognitive processes. It is assumed that behavioral and cognitive processes cause neurons in a
small area to become active, which increases blood flow to that area to a degree that is out of
proportion to the increased metabolic demand of the neural activity. The more intense the neural
activation, the larger the relative increase in blood flow will be. The greater increase in blood
flow than in metabolism raises the washout rate of the paramagnetic deoxyhemoglobin molecule
from the area, which in turn increases the magnetic resonance signal. The analysis strategy is to
correlate the BOLD waveform with the known time course of stimulation. Brain areas engaged in
the task will have a BOLD signal that is correlated with the task; brain areas that are not engaged
in the task will be uncorrelated. This makes it possible to locate the brain region engaged in a
particular task.
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In an fMRI study, the purpose may be to compare BOLD levels across populations (e.g.,
individuals diagnosed with schizophrenia vs. controls). Or, the purpose of the analysis may be
to examine BOLD levels within individuals over time (for instance, to investigate the effects
of aging). Of course, these different objectives can be combined in a single study, so that task
(or treatment) effects are combined with between-population effects, and with within-individual
effects. Greve, Brown, Mueller, Glover, and Liu (2012) provides a gentle introduction to how
fMRI is generally analyzed at each of these levels. As is immediately apparent from Greve et
al.’s article, fMRI data present a series of characteristics; many of which present a challenge to
current psychometric modeling tools. fMRI data are best thought of as a 3D movie. The movie
consists of shots, typically 2 seconds apart, each consisting of 122,880 data points (in the case of
Greve et al.’s study) organized in a three-way array. Each of these data points is a measurement
from a small box called a voxel. As described by Greve et al., typically, a generalized linear model
(GLM) is applied to each voxel and the resulting parameter estimates or t-statistics are displayed
graphically in a Beta-map or T-map, which may be used for subsequent analysis (Calhoun &
Allen, 2012).

Independent component analysis (ICA: Comon, 1994) is often used as the method of choice
in the analysis of this “second level” data. It appears that principal components analysis is ill-
suited to analyze fMRI data, since the largest components are typically associated with motion, or
other physiological noise (characteristics that are not of interest in the study). However, ICA may
also be applied to the original fMRI data, and Calhoun and Allen (2012) describe a comparison
of ICA modeling of the primary vs. secondary level data.

When reading Calhoun and Allen (2012) and Greve et al. (2012), psychometricians will
find certain themes that have appeared in the past in the psychometric literature (and continue
to reappear) such as how many components to retain (now in ICA), or how to control for the
multiple comparisons used in the voxel-by-voxel GLM analysis. We believe psychometricians
can offer important contributions in these areas. But many interesting questions remain open:
Should not we be doing a multivoxel analysis from the onset? Should not we take into account the
multilevel nature of the data? Camara, Marco-Pallarés, Münte, and Rodríguez-Fornells (2009)
provided an overview of the quantitative techniques used for fMRI data and Greve et al. (2012)
presented a survey of the sources of noise in these data and the challenge they represent.

Two other papers in this section address a question that might occur to many readers of the
papers just mentioned. Can we apply our toolbox to these data? And if so, how? Often times
fMRI studies are performed at different sites, and between-sites differences can be found due
to differences in equipment, teams, and so on. Zhou, Konstorum, Duong, Tieu, Wells, Brown,
Stern et al. (2012) illustrate the magnitude of this problem when aggregate results are desired
and apply a multilevel model to account for these between-site differences. In the other paper,
Janoos, Brown, Mórocz, and Wells (2012) use a state-space model to study working memory in
schizophrenia. We hope these two papers will inspire the psychometric community to apply the
methods in our toolbox to these challenging data.

And if the characteristics of fMRI data were not sufficiently challenging, the last paper in
this special section forces us to think about measurement issues. Liu, Glover, Mueller, Greve,
and Brown (2012) questions the validity of using the BOLD signal and asks whether it should
be normalized (and if so how) or calibrated (and if so how). Liu et al. spell out some of the
strong assumptions used in fMRI modeling and point out how existing attempts to improve the
measurement of neural activity have yielded mixed results.

In closing, we feel that fMRI data offer interesting modeling opportunities to a wide array
of psychometric researchers including, but not limited to, those interested in 3-way data, longi-
tudinal processes, multilevel modeling, experimental design, cluster analysis, network analysis,
and a long etcetera.
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