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Floating-point numbers have an intuitive meaning when it comes to physics-based
numerical computations, and they have thus become the most common way of
approximating real numbers in computers. The IEEE-754 Standard has played a
large part in making floating-point arithmetic ubiquitous today, by specifying its
semantics in a strict yet useful way as early as 1985. In particular, floating-point
operations should be performed as if their results were first computed with an infinite
precision and then rounded to the target format. A consequence is that floating-point
arithmetic satisfies the ‘standard model’ that is often used for analysing the accuracy
of floating-point algorithms. But that is only scraping the surface, and floating-point
arithmetic offers much more.
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In this survey we recall the history of floating-point arithmetic as well as its
specification mandated by the IEEE-754 Standard. We also recall what properties
it entails and what every programmer should know when designing a floating-point
algorithm. We provide various basic blocks that can be implemented with floating-
point arithmetic. In particular, one can actually compute the rounding error caused
by some floating-point operations, which paves the way to designing more accurate
algorithms. More generally, properties of floating-point arithmetic make it possible
to extend the accuracy of computations beyond working precision.
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1. Introduction
Floating-point arithmetic has a long history. In one respect, as advocated by Knuth
(1998), it can be traced back to the Babylonian base-60 number system, invented
around 2000 BC, with which (due to the lack of a digit for zero) only the floating-
point significands of numbers were represented, that is, the numbers 0, 0/60 and
0 · 605 had the same representation (Iffrah 1999). The invention of the exponents
took place in several stages. A kind of exponential notation for representing huge
numbers was described by Archimedes (c. 287–212 BC) in his treatise The Sand
Reckoner (Hirshfeld 2009). It seems that the first person to consider zero or
negative exponents was Nicolas Chuquet (c. 1450–1488) (Flegg, Hay and Moss
1985). Some of the first computers, designed from the 1940s on, provided a
floating-point arithmetic. Notably enough, Konrad Zuse’s Z3 computer, completed
by the end of 1941, had a binary floating-point arithmetic far ahead of its time, with
special representations for undefined results and infinities (Ceruzzi 1981). Many
very different solutions (various bases – 2, 8, 16, 10, even 3 – various precisions,
various ways of rounding the inexact operations and handling the exceptional cases
such as forbidden operations, overflows and underflows, etc.) were introduced in the
1950s, 1960s and 1970s, resulting in the total chaos well described byKahan (1981)
in his paper ‘Why do we need a floating-point arithmetic standard?’ Sometimes
writing portable software required magic tricks only known by old programming
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wizards, such as inserting, at well-chosen places, multiplications by 1, or adding
0.5 twice instead of adding 1. One could check that a variable I is non-zero and
despite this obtain a ‘zero divide’ error when attempting to divide some number
by I.
The IEEE-754 Standard for Floating-Point Arithmetic, adopted in 1985, put an

end to the chaos. It greatly facilitated the design and portability of numerical
software. The reader interested in the history of the birth of the Standard can read
the interview with William Kahan by Severance (1998). A significant revision of
IEEE-754 was published in 2008, and a minor revision of the 2008 version was
released in 2019 (IEEE 2019). Since 2012, the IEEE Standards have had only a 10-
year validity period;1 a new revision is therefore expected to be published around
2029. It will likely be a thorough revision since the domain has been drastically
evolving in recent years.
Today, most FPUs are compliant with IEEE-754. The first generations of GPUs

were not compliant, but the situation has improved substantially and one can
perform IEEE-754 arithmetic on most of them. In contrast, machine learning cores
are nowhere near this state, as the frequent lack of clear documentation on their
arithmeticmakes it very difficult to prove anything on the behaviour of an algorithm.
To mitigate this difficulty and guess what the arithmetic operators do exactly, one
must craft carefully designed numerical tests (Fasi, Higham, Mikaitis and Pranesh
2021). This is reminiscent of the first days of the IEEE-754 era, when one had to
run software such as PARANOIA (Karpinsky 1985) to check for compliance with
the Standard.
It is commonplace that computers are much faster today than 35 years ago.

However, the pace of this impressive performance increase has not been the same for
all parts of ourmachines. Between 1986 (i.e. just after the release of the first version
of the IEEE Standard for Floating-Point Arithmetic) and 2000, the improvement
factor per year has been around 1.52 in processor performance, and 1.07 in memory
latency (Hennessy and Patterson 2012, Chapter 2). As a consequence, the ratio

time to read/write in memory
time to perform +,×,÷,√

has increased by a factor of around 140 between 1986 and 2000. It has continued
to increase since 2000, but at a somewhat slower pace. Figure 1.1 presents typical
current latencies of arithmetic operations and access to cache or main memory.
Due to this drastic evolution the current situation of numerical computing is quite

different from the situation at the time of the birth of IEEE-754. The challenge
is no longer (or, at least, not only) to design fast arithmetic operators, but to be
able to feed them with data at a very high rate, so that they do not become idle too
often. All of this has led to the implementation of many new architectural concepts:
multiple levels of cache, pipelining, vector instructions, branch prediction, and so

1 https://standards.ieee.org/faqs/maintenance/
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Figure 1.1. Typical current latencies (in number of cycles) of various floating-
point (FP) operations and cache/memory access (beware: the scale is logarithmic).
These figures vary from one processor to another, but the orders of magnitude
remain similar. With a 2 GHz processor, one cycle is 0.5 nanoseconds.

on. The impact of these changes on floating-point computing is very important, as
heavy pipelining makes division and square root significantly slower than addition
or multiplication, and may make branching very costly, unless some regularity in
the branching patterns allows for a very efficient branch prediction. It also makes
checking the IEEE-754 flags (overflow, inexact, etc.) without losing too much
performance an almost hopeless task. Numbers represented in very small formats
(e.g. 16-bit numbers) are processed faster than the ‘usual’ binary32 or binary64
numbers (in the delay required to transfer one 128-bit number to/from memory,
one can transfer eight 16-bit numbers), so one is tempted to use these small formats
whenever possible, and hence do mixed-precision arithmetic (Higham and Mary
2022). An example is digital neural network training, which requires a huge amount
of calculations, that are performed on numbers of very small widths (16-bit, 8-bit or
even less). This, however, requires considerable care. Whereas catastrophic events
such as overflow, underflow and total loss of accuracy are relatively rare when
computing in binary64/double-precision arithmetic, they can occur very quickly
when using small formats. And, with many different arithmetics emerging, there
is the fear of going back to the pre-1985 chaos . . .
Another significant change in the last 40 years lies in the applications of floating-

point computing. Whereas most users of 1985 were safely running numerical
simulation programs on the ground, embedded computing is now ubiquitous, with
numerical calculations being performed on board trains, aircraft and partly auto-
mated cars, with potential risks to human lives if something goes wrong. Rigorous
validation of critical numerical software is now essential. As pointed out by Dem-
mel and Riedy (2021), at a high level, one significant change is the burgeoning
demand for reliability. This is especially true of the basic arithmetic software, since
all of numerical computing is built upon it. The use of formal proof techniques has
become more and more important since the years following the Pentium FDIV bug
(Moore, Lynch andKaufmann 1998, Harrison 1999, Cornea-Hasegan, Golliver and
Markstein 1999). This is especially true given that the proofs of some arithmetic
algorithms are rather long and tedious, with the consequence that they are seldom
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Figure 2.1. The FP numbers between 1/2 and 8 in the toy system V = 2, ? = 3 and
infinite 4min and 4max.

read and therefore an error may remain unnoticed. See the book by Boldo and
Melquiond (2017) for a thorough presentation, and the work by Muller and Rideau
(2022) for recent examples in double-word arithmetic.
Throughout the history of floating-point arithmetic, useful material has been

published describing what needs to be known by an applied mathematician, a com-
puter scientist or an engineer. Still of great interest are the article by Goldberg
(1991), ‘What every computer scientist should know about floating-point arith-
metic’, the books by Overton (2001) and Higham (2002), and the notes of Kahan
(1997, 2004a). More recently, some of us contributed to a Handbook of Floating-
Point Arithmetic (Muller et al. 2018). Much useful information on floating-point
arithmetic (especially for C programmers) and IEEE-754 can be found in Beebe
(2017, Chapter 4). Finally, a very useful overview was given recently by Higham
(2021a).

2. Formats, roundings and operations
Let us first define the floating-point numbers. We choose the definition given by
Muller et al. (2018), inspired by the IEEE-754-2019 Standard for Floating-Point
Arithmetic. We assume in the following that V ≥ 2, ? ≥ 2, 4min and 4max are
integers, with 4min < 0 < 4max (in all practical cases, 4min = 1 − 4max).

Definition 2.1. The set FV,?,4min,4max of the base-V, precision-? floating-point
numbers with extremal exponents 4min and 4max is the set of the real numbers G for
which there exists at least one representation (", 4) such that

G = " · V4−?+1, (2.1)

where " and 4 are integers satisfying

|" | ≤ V? − 1, (2.2)

and
4min ≤ 4 ≤ 4max. (2.3)

" and 4 are called the integral significand and the exponent of the representation
of G, respectively.

Figure 2.1 shows where the FP numbers sit on the real line on a toy system. Note
that the distance between consecutive FP numbers is multiplied by V each time a
power of V is crossed over (see e.g. around the value 4 in the figure).
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Figure 2.2. The positive FP numbers in the toy system V = 2, ? = 3, 4min = −2,
4max = 2.

In the following, the set FV,?,4min,4max will be denoted by F whenever the values
of V, ?, 4min and 4max are unambiguous. We also define F = F ∪ {−∞, +∞} and
R = R∪{−∞, +∞}. For a given non-zero floating-point number G, several possible
values of" and 4may satisfy (2.1), (2.2) and (2.3). The normalized representation
of G is the one for which |" | is maximal (or equivalently 4 is minimal). The number
zero is rather special, and in practice a special representation is reserved for it. The
integral significand of the normalized representation of G is called the integral
significand of G, denoted "G , and the exponent of the normalized representation
of G is called the exponent of G, denoted 4G . We say that a non-zero number G ∈ F
is a normal number if |G | ≥ V4min , and a subnormal number otherwise (according
to IEEE-754-2019, zero is neither normal nor subnormal). Without difficulty, we
find that if G ∈ F is normal then |"G | ≥ V?−1. The number V4min is sometimes
called the underflow threshold.

The largest element of F is 
 = V4max+1 − V4max−?+1. The smallest positive
element of F is U = V4min−?+1. All elements of F are integer multiples of U. We call
the set [−
,−V4min] ∪ [V4min ,
] the normal domain and the set (−V4min , V4min) the
subnormal domain. There are 2 · (V? − V?−1) · (4max − 4min + 1) normal numbers
and 2 · (V?−1 − 1) subnormal numbers.

Figure 2.2 shows where all the positive FP numbers of a toy binary system sit
on the real line. The difference from Figure 2.1 lies in the given values for 4min
and 4max. The smallest positive value is U = 24min−?+1 = 2−4 = 1/16 and the largest
is
 = 7. The subnormal numbers are 1/16, 1/8 and 3/16 and the smallest normal
number is 24min = 1/4.

The following property immediately follows from Definition 2.1.

Property 2.2. If a real number G is an integer multiple of V: , with : ≥ 4min− ?+1
and |G | ≤ min{
, V:+?}, then G ∈ F.

In all cases of interest for a numerical analyst,2 V is equal to 2, but base 10 is
provided in any case on most systems (mostly for accounting applications). Other
bases (such as 4 or 8) were used in the early days of computer arithmetic, but
studies performed in the 1970s showed that they are of little interest (Brent 1973,
Kuki and Cody 1973). As a consequence, from now on, unless stated otherwise,
we assume a binary floating-point arithmetic, that is,

V = 2.

2 A possible exception is the decimal arithmetic of the computer algebra system Maple.
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Table 2.1. Main parameters of the binary interchange formats specified by the
IEEE-754-2019 Standard (IEEE 2019), and of the bfloat16 format (Intel 2018).

binary16 binary32 binary64 binary128 bfloat16

Former name single precision double precision
? 11 24 53 113 8
4max +15 +127 +1023 +16383 +127
4min −14 −126 −1022 −16382 −126

One of the advantages of base 2 is that the leftmost digit of the significand of a
floating-point number is necessarily a 1 if it is normal and a 0 if it is subnormal.
Since normality can easily be encoded in the exponent field of the representation,
the leftmost bit of the significand does not need to be stored. This is the ‘hidden
bit’ or ‘implicit bit’ convention of IEEE-754. This saving of one bit is especially
precious in small formats.
The IEEE-754 Standard for Floating-Point Arithmetic (IEEE 2019) specifies

several binary and decimal formats. Among these, of special importance are the
interchange formats, whose encodings are fully specified as bit strings, which
allows for lossless data interchange between platforms. The parameters of the
binary interchange formats are given in Table 2.1, along with those of the bfloat16
format (Intel 2018).
The binary32, binary64 and binary128 formats are named basic formats in the

Standard. IEEE-754 also recommends, for the widest available basic format, the
support of an extended format with a wider precision and wider range (IEEE 2019,
Table 3.7). The underlying idea is that the availability of the extended format
greatly facilitates the implementation of functions for the corresponding basic
format that are both very accurate and free of spurious underflows or overflows (see
Section 2.2). In practice, the extended format that our readers might well encounter
is the Intel double-extended format (? = 64, 4max = 16383, 4min = −16382), used
in the x86 instruction set.
Let us say a few words about the very small floating-point formats. Among

the binary formats specified by IEEE-754 since its 2008 version, only binary32,
binary64 and binary128 are called basic formats, whichmeans that for the designers
of the Standard, only these ones were intended to be used for arithmetic. The
binary16 format was meant to be used for storage only. However, it became evident
in the years thereafter that 16-bit floating-point arithmetic was useful for the huge
amount of computation required when training neural networks. Furthermore, for
these applications the small exponent range of binary16 was a clear penalty. For
example, experiments performed at Google (Wang and Kanwar 2019) suggest that
such training computations are more sensitive to the exponent range than to the
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Table 2.2. Dynamic range of several FP formats: U is the smallest positive FP
number, 24min is the smallest positive normal FP number and 
 is the largest finite
FP number. Beware: in bfloat16 arithmetic, subnormal numbers are not necessarily
supported.

Format U = 24min−?+1 24min 
 = 24max (2 − 2−?+1)

binary16 5.960 · 10−8 6.104 · 10−5 6.550 · 10+4
bfloat16 9.184 · 10−41 1.175 · 10−38 3.390 · 10+38

binary32 1.401 · 10−45 1.175 · 10−38 3.403 · 10+38

binary64 4.941 · 10−324 2.225 · 10−308 1.798 · 10+308

Intel ‘double-extended’ 3.645 · 10−4951 3.362 · 10−4932 1.190 · 10+4932

binary128 6.475 · 10−4966 3.362 · 10−4932 1.190 · 10+4932

precision. This motivated the introduction of the bfloat16 (or BF16) format (Intel
2018, Henry, Tang and Heinecke 2019, Osorio et al. 2022) and of the DLFloat (or
DLFLT-16) format (Agrawal et al. 2019, Lichtenau et al. 2022). Smaller 8-bit or
9-bit floating-point formats (with 2-bit or 3-bit significands) (Chung et al. 2018),
or even 4-bit formats (Sun et al. 2020), have been suggested for AI applications.
In particular, 8-bit floating-point formats recently received specific attention from
several major companies (Noune et al. 2022, Micikevicius et al. 2022). At the time
of writing, a working group is being set up to prepare a standard on arithmetic
formats for machine learning.3 For experimenting with very low precisions even if
they are not yet available in hardware, several simulation strategies and tools have
been designed (Lefèvre 2013, Rump 2017, Higham and Pranesh 2019, Fasi and
Mikaitis 2020).
To help the reader get an intuition about these numerous formats, Table 2.2

presents the dynamic range of the most supported floating-point formats.

2.1. Rounding and standard model

In general, the sum, product or quotient of two elements of F is not an element
of F: it must be rounded. With some of the early computers, this just meant that the
returned value was ‘not too far’ from the exact result. One of the most fruitful ideas
popularized by IEEE-754 is the notion of correct rounding, although the term was
already mentioned by Wilkinson (1960). One chooses a rounding function ◦ from
R to F (see below), and each time an arithmetic operation 0Δ1 is called, what is
returned is ◦(0Δ1). If the computer implementation of Δ satisfies this requirement,
Δ is said to be correctly rounded. IEEE-754 requires correct rounding of the four

3 See https://sagroups.ieee.org/p3109wgpublic/.
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arithmetic operations, the square root and the fusedmultiply-add (FMA) instruction,
defined for 0, 1, 2 ∈ F as

FMA(0, 1, 2) = ◦(01 + 2). (2.4)

That instruction first appeared in 1990 in the IBM POWER instruction set (Cocke
andMarkstein 1990), and was incorporated into the 2008 version of IEEE-754. Be-
sides making the evaluation of polynomials and the computation of inner products
faster and, in general, more accurate, it greatly facilitates the software imple-
mentation of correctly rounded division and square root (Markstein 1990, Cornea-
Hasegan et al. 1999), in part thanks to Properties 2.13 and 2.14 below. In some
cases it also makes possible correctly rounded multiplication by real constants
(Brisebarre and Muller 2008). The IEEE-754 Standard also recommends (but does
not require4) correct rounding of a small set of algebraic and transcendental func-
tions. In some instruction sets, e.g. Intel AVX512F (Anderson, Zhang and Cornea
2018), the rounding function can be encoded in the opcode of the floating-point
instruction.
Let us now give a more formal definition of a rounding function, inspired by

Kulisch (1971).

Definition 2.3. A function ◦ from R to F is a rounding function if

• it is monotone: for all 0, 1 ∈ R, 0 ≤ 1 ⇒ ◦(0) ≤ ◦(1);
• for all 0 ∈ F, ◦(0) = 0.

A function ◦ that satisfies Definition 2.3 is such that for any real number C, if
C ∉ F then ◦(C) is one of the two elements of F that surround C (i.e. it is a special case
of what we call a faithful rounding; see below). In practice we seldom use ‘general’
rounding functions such as the ones specified by Definition 2.3, because they lack
useful properties such as simple relations between ◦(C) and ◦(−C), or between ◦(C)
and ◦(2: C) for some integer : , etc.
The classical rounding functions that are of practical interest in floating-point

arithmetic are as follows.

• Directed rounding functions.

– Round towards −∞: RD(C) is the largest element of F less than or equal
to C.

– Round towards +∞: RU(C) is the smallest element of F greater than or
equal to C.

– Round towards zero: RZ(C) = RD(C) if C ≥ 0 and RU(C) otherwise.

4 This requirement was thought complicated because of the Table Maker’s Dilemma. See Sec-
tion 3.3.1.
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Figure 2.3. The FP numbers between 1/2 and 8 in the toy system V = 2, ? = 3 (i.e.
u = 1/8).

• Round-to-nearest functions. RN(C) is the element of F nearest to C, with the
following possible tie-breaking choices if C is halfway between two consec-
utive finite FP numbers; in the following, such halfway numbers are called
midpoints.

– Round-to-nearest, ties-to-even: RN4(C) is the one of these twoFP numbers
whose integral significand is even.

– Round-to-nearest, ties-to-away: RN0(C) is the onewith largest magnitude.
– Round-to-nearest, ties-to-zero: RN0(C) is the one with smallest mag-
nitude.

They are called rounding direction attributes in the IEEE-754 Standard. See also
Figure 2.3 for an illustration of the rounding functions.
To that listwe should add amore complex rounding ‘function’ that does not follow

the requirements of Definition 2.3 but is slowly gaining importance: stochastic
rounding (SR). If G ∈ F, then SR(G) = G, otherwise SR maps the real number G to
RD(G) with probability P(G) and to RU(G) with probability 1 −P(G). Two choices
for P(G) have been considered in the literature. The first is a constant function (in
general equal to 1/2), and the second is

P(G) =
RU(G) − G

RU(G) − RD(G)
.

Stochastic rounding can be traced back to the first years of electronic computing
(Barnes, Cooke-Yarborough and Thomas 1951, Forsythe 1959). It is not determin-
istic (which makes calculations difficult to reproduce) and it is significantly more
complex to implement than the other rounding functions, but (especially when
we consider the second choice for P) it has many interesting properties. More
precisely, it prevents some correlation of errors, avoids the phenomenon of stag-
nation,5 and gives much better error bounds on common algorithms such as sums
or inner products. This active topic is covered by a recent survey by Croci et al.

5 An example of stagnation is the computation of B= =
∑=
8=1(1/8) in the obvious way in rounded-

to-nearest arithmetic. We all know that the exact value of B= goes to +∞ as = → +∞; however,
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(2022). Stochastic rounding has also been suggested to obtain probabilistic es-
timates of the round-off error of a calculation (La Porte and Vignes 1974, Parker,
Pierce and Eggert 2000).
In the IEEE-754 Standard, for the round-to-nearest, ties-to-even or ties-to-away

rounding functions, the rules presented above are slightly modified for huge argu-
ments. If |C | is larger than or equal to 24max+1 − 24max−?, then∞ (with the same sign
as C) is returned. Equivalently this can be viewed as if we first applied the above
rules with an unbounded above exponent range before replacing all results of mag-
nitude larger than
 by ±∞. The designers of the Standard correctly estimated that
if the exact result of a calculation is huge (i.e. of magnitude much larger than 
),
returning an infinity makes more sense than returning ±
.
The default rounding function in the IEEE-754 Standard is RN4(C). The ‘ties-

to-even’ tie-breaking rule may look strange, but it has the double advantage of
being unbiased (which may matter in long summations) and straightforwardly
implementable.6 The directed roundings RD, RU and RZ are useful for getting
certain upper or lower bounds on a result, and more generally for implementing
interval arithmetic (see Section 4.1). RN0 is used in accounting; the IEEE Standard
requires its availability in base-10 arithmetic only. RN0 is usedwith the ‘augmented
operations’ (see Section 4.2.3) and is needed particularly in some reproducible
summation algorithms (Riedy and Demmel 2018). In the following, RN means
any of RN4, RN0 or RN0 unless stated otherwise, and RU

D is RN, RZ, RU or RD.
Although it is not a rounding in the sense expressed by Definition 2.3, an

important notion is that of faithful rounding. We will say that - ∈ F is a faithful
rounding of G ∈ [−
, +
] if - is either RD(G) or RU(G). Note that any of the
previously defined roundings is a faithful rounding by definition.
Now, let us define the following parameters.

Definition 2.4 (unit round-off, ulp and ufp).

• The unit round-off is the number

u = 2−? .

Let C ∈ R, |C | ≤ 
.

• The unit in the last place of C ≠ 0 is the number

ulp(C) = 2max{4min, blog2 |C | c }−?+1.

• The unit in the first place of C, for C ≠ 0, is the number

ufp(C) = 2 blog2 |C | c .

the computed value of B= remains constant when = is larger than some threshold =0 that depends
on the precision ?.

6 Ties-to-away would be slightly simpler to implement, but it has the disadvantage of being biased
in the relatively frequent case where one performs summations of numbers that all have the same
sign; an example is the numerical integration of a function in a domain where its sign is constant.
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By a simple extension by continuity we can also define ulp(0) = 24min−?+1 and
ufp(0) = 0. In the normal domain, the ulp and ufp functions can be interchanged
(with the adequate scaling factor) in all formulas, since ufp(C) = 2?−1 ulp(C). But
in the subnormal domain, they behave very differently. Indeed, all non-zero reals
in the subnormal domain have the same ulp, equal to U, while their ufp can take
? − 1 distinct values.
The unit round-off was already appearing in a paper by Wilkinson (1960), and

that notion is now widespread in rounding error analysis of numerical algorithms.
The acronym ‘ulp’ for unit in the last place was coined by Kahan. Several slightly
different definitions of the ulp function appear in the literature (Goldberg 1991,
Harrison 1999, Kahan 2004a, Overton 2001), they differ near powers of 2. The ufp
function seems to have appeared for the first time in a paper by Rump, Ogita and
Oishi (2008).
Let C ∈ R, |C | ≤ 
. Then RN(C) is a multiple of ulp(C). The number ulp(C) is the

distance between the two consecutive FP numbers 0 and 1 that satisfy 0 ≤ |C | < 1.
It follows that |C − RN(C)| ≤ 1

2ulp(C). Therefore:

• if C is in the normal domain (i.e. 24min ≤ |C | ≤ 
) then ulp(C) = 2u · ufp(C), so

|C − RN(C)| ≤ u · ufp(C) ≤ u · |C |
and

|C − RN(C)| ≤ u · ufp(C) ≤ u · |RN(C)|;
• if C is zero or a subnormal number (i.e. |C | < 24min) then

|C − RN(C)| ≤ 24min−? .

From this, we deduce that, provided the arithmetic operations are correctly rounded,
if 0 ∈ F, 1 ∈ F, op ∈ {+,−,×, /} and 24min ≤ |0 op 1 | ≤ 
, then there exist real
numbers Y1 and Y2 such that

RN(0 op 1) = (0 op 1)(1 + Y1), |Y1 | ≤ u, (2.5a)
= (0 op 1)/(1 + Y2), |Y2 | ≤ u. (2.5b)

Identity (2.5a), already used by Wilkinson (1960) for analysing some problems of
linear algebra, is sometimes called the standard model of floating-point arithmetic.
Most rounding error analysis is based on it (Higham 2002). Several modifications
of this model are possible.

• First, if the result of an operation is subnormal, one cannot in general guarantee
a relative error bound such as (2.5a) or (2.5b), but the absolute error is
bounded by U/2 = 24min−?.
• Second, since all FP numbers are multiple of U, the exact sum (or difference)
of two elements of F is a multiple of U too. It follows from Property 2.2 that
if such a sum has absolute value less than or equal to 2?U = 24min+1, it is an
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element of F. In particular, when the result of a floating-point addition or
subtraction is in the subnormal range, that addition or subtraction is exact.
That property is sometimes called Hauser’s theorem (Hauser 1996).

• Finally, the bound u on |Y1 | in (2.5a) can be replaced by the slightly smaller
u/(1 + u), which is attained for example at the midpoint 1 + u; see Knuth
(1998, p. 232). This may seem a very small change, but it suffices to get
simpler values for the error bounds on the evaluation of arithmetic expressions
such as sums, dot products and Euclidean norms (Rump 2019).

From all this, the following hold.

• When |0 op 1 | < 24min and op ∈ {+,−}, (2.5a) and (2.5b) still hold (indeed,
with Y1 = Y2 = 0).

• If op ∈ {×, /} and underflow may occur, then (2.5a) and (2.5b) are modified
as follows: there exist Y1 and Y2, with |Y1 | ≤ u/(1 + u) < u and |Y2 | ≤ u and
[1 and [2, with |[1 |, |[2 | ≤ U/2, such that

RN(0 op 1) = (0 op 1)(1 + Y1) + [1 (2.6a)
= (0 op 1)/(1 + Y2) + [2, (2.6b)

and Y1[1 = Y2[2 = 0.

Finally, for some specific arithmetic operations, the relative error bounds u
or u/(1 + u) can be slightly improved. More precisely, Jeannerod and Rump
(2018) prove the optimality of the bound u/(1 + u) for addition, subtraction and
multiplication. They also show that in binary FP arithmetic the optimal bound is
u − u2 for division and 1 − 1/√1 + 2u for square root.
The standard model can also be used with directed (and faithful) roundings.

Indeed, if RN is replaced by RU, RD or RZ, (2.5a), (2.5b), (2.6a) and (2.6b) still
apply, with the bounds on |Y1 | and |Y2 | now equal to 2u and the bounds on |[1 | and
|[2 | replaced by U.
Table 2.3 summarizes the notation introduced in this section, and Figure 2.3

illustrates parts of it in the case of the toy system V = 2 and ? = 3.
One should not underestimate the importance of the standard model. Indeed,

the fact that the individual arithmetic operations have a bounded relative error
has been at the heart of all of numerical error analysis since the pioneering work
of Wilkinson (1960). It is very unwise to perform critical calculations using a
computer number system that does not obey the standard model.7

7 At least in ‘large’ formats. With ‘small’ formats, and when the calculation depends on a few input
values only, the analysis is sometimes straightforward. For instance, the best way to check an
implementation of a 32-bit function of one variable or a 16-bit function of two variables is to test
all possible input values.
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Table 2.3. Notation for the most important FP parameters and functions.

Notation Numerical value Explanation


 24max · (2 − 2−?+1) largest finite FP number

U 24min−?+1 smallest positive FP number

24min 24min smallest positive
normal FP number

u 2−? unit round-off

ulp(G) (G ∈ R, G ≠ 0) 2max{ blog2 |G | c,4min }−?+1 unit in the last place

ufp(G) (G ∈ R, G ≠ 0) 2 blog2 |G | c unit in the first place

RD(G) max{- ∈ F, - ≤ G} round towards −∞

RU(G) min{- ∈ F, - ≥ G} round towards +∞

RZ(G) RU(G) if G < 0, RD(G) otherwise round towards 0

RN4(G) sign(G) · ∞ if |G | ≥ 24max+1 − 24max−? ,
otherwise - ∈ F such that:
(i) for all . ∈ F, |. − G | ≥ |- − G |,
(ii) if there is . ∈ F, . ≠ - such that
|. − G | = |- − G |, then - has an even
integral significand

round-to-nearest,
ties-to-even

RN(G) ‘generic’ round-to-nearest
(arbitrary tie-breaking rule)

‘generic’ round-to-nearest

RU
D(G) any of RD(G), RU(G), RZ(G), RN(G) ‘generic’ rounding function

FMA(0, 1, 2) RU
D(0 · 1 + 2) fused multiply-add
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2.2. Underflow and overflow

We will say that an operation underflows if its result is of absolute value less than
24min and inexact. This is the condition for raising the underflow flag in the default
exception handling of the IEEE-754 Standard.8 At first glance that choice may look
strange, but it makes sense. Indeed, since the underflow flag is a warning that the
computed result may be less accurate than expected (because we are outside of the
domain of validity of the standard model), there is no point in giving that warning
when the result is exact.
An operation overflows if the rounded result we would obtain if the exponent

range were unbounded has a magnitude strictly larger than 
. For instance, with
the round-to-nearest, ties-to-even or ties-to-away rounding function, an operation
overflows when the exact result has absolute value larger than or equal to 24max+1 −
24max−?. Still with the RN function, when an operation overflows, the returned
result is ±∞with the correct sign. With the other rounding functions, it will be ±

or ±∞, according to the definition of these rounding functions given in Section 2.3.
As the IEEE-754 Standard specifies two infinities, it also specifies two zeros, +0

and−0. The idea of having signed zeros may sound strange, but it greatly facilitates
the handling of branch cuts when implementing complex functions (Kahan 1987).
One of themajor difficulties when designing function software that is supposed to

work in all cases is to avoid spurious underflows or overflows. These are underflows
or overflows that occur in an intermediate operation, resulting in inaccurate or
infinite results, whereas the exact value of the function is in the normal domain. A
simple example is the ‘naive’ calculation of hypot(G, H) =

√
G2 + H2. In binary64

arithmetic, with G = 1.5 × 2511 and H = 2512 we obtain an infinite result because
the computation of H2 overflows, whereas the exact result is 5 · 2510, which is much
smaller than 
. Similarly, with G = H = (45/64) × 2−537, the computed result is 0,
whereas the exact result is around 1.9887 × 2−538, i.e. much larger than 24min . To
overcome this difficulty, two strategies have been suggested over the years.

(1) Start with the simple, straightforward and fast algorithm. Check with the
IEEE-754 flags if an exception has occurred (Hull, Fairgrieve and Tang 1994).
If this is the case (which hopefully should not happen frequently), redo the
calculation with an alternative (and in general significantly slower) algorithm.

(2) Scale the operands, i.e. multiply them by a well-chosen value (Beebe 2017,
§8.2). In the case of function hypot(G, H) a typical scaling factor is
1/max(|G |, |H |), or even better, 2− where  = blog2(max(|G |, |H |))c.

8 The Standard does not specify if the comparison to 24min must be done after or before rounding.
For instance, the rounded-to-nearest computation of sin(24min )would underflow in the second case
but not in the first.
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2.3. Not a Number (NaN)

With some early floating-point systems the occurrence of a ‘forbidden’ or ‘un-
defined’ operation such as

√−7 or ∞/∞ (with any signs) would halt the compu-
tation. In general this is a poor decision, as the result of a complex calculation
is rarely just one number. Imagine a long computing process that would have
generated thousands of meaningful outputs and that is stopped because an error
occurred during the calculation of just one, possibly unimportant, parameter.

The IEEE-754 Standard introduced a special floating-point value, NaN, for
representing the result of such operations. NaN stands for ‘Not a Number’ or
‘Not any Number’ (Kahan 1997). More precisely, the Standard distinguishes
two different kinds of NaNs: signalling NaNs (sNaN) and quiet NaNs (qNaN).
Signalling NaNs do not appear as the result of an arithmetic operation (the Standard
suggests that they can be used to represent uninitialized inputs), and the reader will
seldom encounter them in practice.
On the contrary, under the default exception handling of the Standard, a quiet

NaN is delivered when performing one of the following arithmetic operations:√
negative number, 0×∞, 0/0,∞/∞ (with any signs),∞−∞ (when both signs are

equal), Remainder(anything, 0) and Remainder(±∞, anything). Moreover, when at
least one of the inputs of an arithmetic operation is a quiet NaN, a quiet NaN is
returned.
There is an exception, though. If a multivariate function always delivers the

same value once some of its inputs are set, then that same value is returned even
if the remaining inputs are a quiet NaN. For instance, the Standard suggests that
an implementation of hypot(G, H) =

√
G2 + H2 should satisfy hypot(±∞, qNaN) =

+∞.

2.4. Beyond the standard model

The standard model (2.5a) is simple and powerful, and, interestingly, floating-point
arithmetic is not the only kind of arithmetic that satisfies it. Logarithmic number
systems (Swartzlander and Alexpoulos 1975) also guarantee a bounded relative
error for rounding functions, so an error analysis that only uses the standard model
also applies to computations using these systems.
However, some useful algorithms and properties of floating-point arithmetic

require more than just the standard model to be analysed and proved. The simplest
(and maybe the most useful) example is a simple subtraction of two floating-point
numbers that are close enough to each other.

Theorem 2.5 (Sterbenz 1974). Let 0, 1 ∈ F. If 0/2 ≤ 1 ≤ 20 then 0 − 1 ∈ F.
This implies that the subtraction will be computed exactly in FP arithmetic,
whatever the chosen rounding function.

Clearly the standardmodel does not suffice to deduceTheorem2.5, as logarithmic
number systems do not satisfy that property. We will not give many proofs in this
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survey, but, following Rump et al. (2008), let us quickly prove Theorem 2.5 to give
an idea of the kind of reasoning that frequently appears in FP arithmetic. Since 0
and 1 play a symmetric role we can assume 0 ≥ 1. The two FP numbers 0 and
1 are multiples of ulp(1), so 0 − 1 is a (positive) multiple of ulp(1). From the
hypothesis 0/2 ≤ 1, we deduce 0 − 1 ≤ 1. Since 1 ∈ F, 1 < 2? ulp(1). Let
: = log2(ulp(1)) ≥ 4min − ? + 1. Since 0 − 1 is a multiple of 2: less than 2:+?, it
is an FP number by Property 2.2.
Two important things must be said concerning Theorem 2.5.

• It remains true in base-V FP arithmetic. Beware: the ‘2’ that appears in the
expressions ‘0/2’ and ‘20’ in Theorem 2.5 must remain a ‘2’, as the theorem
no longer holds if it is replaced by V.
• There is no contradiction between Theorem 2.5 and the traditional (and right-
ful!) rule that says subtracting two numbers very close together is dangerous.
Indeed, 0− 1 is computed exactly, but if 0 approximates a real number 0∗ and
1 approximates a real number 1∗, even if these approximations have a very
small relative error, 0 − 1 may be a very loose approximation to 0∗ − 1∗, as
the relative errors between 0 and 0∗ and 1 and 1∗ may be magnified.

Another useful example that cannot be analysed just by using the standard model
is the Fast2Sum algorithm (Møller 1965, Dekker 1971), i.e. Algorithm 1. If the
floating-point exponents 40 and 41 of 0 and 1 are such that 40 ≥ 41, and if the
first operation does not overflow, then C is the error of the floating-point addition
RN(0 + 1), i.e. B + C = 0 + 1, as shown by Knuth (1998) and later formally proved
by Daumas, Rideau and Théry (2001); see also the work by Lange and Oishi
(2020) for further extensions and applications. If we make the stronger assumption
|0 | ≥ |1 |, the proof becomes a straightforward consequence of the Sterbenz theorem
(Theorem 2.5). We will see some other similar algorithms in Section 4.2.

Algorithm 1 Fast2Sum(0, 1)
B← RN(0 + 1)
I ← RN(B − 0)
C ← RN(1 − I)
return (B, C)

2.5. Errors in ulps vs relative errors

The errors of numerical programs are in general expressed either in terms of relative
error or in ulps. The two ways of expressing the errors do not convey the same
amount of information. Let us now examine that difference. First, note that in
general when we talk about the error in ulps of a program, we implicitly mean
‘error in ulps of the exact result’, as expressing an error in ulps of the computed
resultmight result in dubious conclusions. Assume for instance that the exact result
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is the real G = 1 + u and consider two (quite poor) computed floating-point results:
0 = 2 − 2u and 1 = 2 + 4u. Since G < 0 < 1, it would make no sense to consider
that 1 is a better approximation to G than 0. And yet G is within (2?−1 − 3/2) ulp(0)
from 0, and within (2?−2 + 3/4) ulp(1) from 1.

Suppose a program is written to approximate a function 5 : R→ R. For the sake
of simplicity, assume that the rounding function is RN. A ‘perfect’ program, when
called with input G ∈ F, will return RN( 5 (G)). The error in ulps of this program9

will be bounded by 0.5 ulp, and (assuming that the output is in the normal range),
the relative error will be bounded by u. The converse is almost true for the error
in ulps. Indeed, if a program has an error bounded by 0.5 ulp then, when called
with an input G ∈ F, it always returns one of the FP numbers nearest 5 (G). But the
result is not necessarily equal to RN( 5 (G)), in particular if 5 (G) is a midpoint and
the error is exactly 0.5 ulp.
On the other hand, a program may have a relative error bounded by u and deliver

results that are quite far from being correctly rounded. For example, if the exact
result is 2 − 2u + 5u2 and the computed result is 2, then the relative error is about
u − 3

2u2 (and thus less than u) and, at the same time, correct rounding is not
achieved, since the exact result is much closer to the FP number 2 − 2u than to the
computed result 2.

The reason for this difference is that the bound (2.5a) is tight only when C is just
above a power of 2. The local maximum relative error wobbles between u/2 and u,
as illustrated in Figure 2.4. With a base-V floating-point arithmetic, the situation
would be worse, as the ‘wobbling factor’ would be V instead of 2.10
From that point of view, an error expressed in ulps conveys more information

than a relative error. This explains why the error of ‘atomic’ calculations (e.g. the
elementary functions: sine, cosine, logarithm, etc.) are in general expressed in ulps;
see for instance a very useful analysis of the quality of current elementary function
software by Innocente and Zimmermann (2022). On the contrary, manipulating
ulps in large algorithms is almost infeasible, whereas relative errors are rather
easily manipulated. For instance, one easily deduces a relative error bound on
5 × 6 from the relative error bounds on 5 and 6, and the relative error bound u
of the multiplication. As a consequence, relative errors are favoured for larger
computations.
Finally, in the normal domain, one can always deduce an error bound in ulps

from a relative error bound, and conversely, using Property 2.6 below. Note that we
may lose information during these conversions. It shows when using Property 2.6
twice, to convert an error in ulps to relative error, and then back to error in ulps,
we end up with twice the initial bound.

9 As mentioned above, unless stated otherwise, ‘error in ulps’ means ‘error in ulps of the exact
result’.

10 This wobbling factor and the implicit bit convention are the main reasons why the best base for
numerical computing is 2.
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Figure 2.4. The relative error due to rounding G to nearest, i.e. |G −RN(G)|/G, for G
between 0 and 1, assuming an FP system of base 2 and precision 6. The local
maximum value of the relative error wobbles between u/2 and u.

Property 2.6 (link between error in ulps and relative errors). If G ∈ R and Ĝ ∈ F
are in the normal domain, then

• |G − Ĝ | ≤ Y · ulp(G)⇒
����G − ĜG ���� ≤ 2uY = 21−?Y;

•
����G − ĜG ���� ≤ Y ⇒ |G − Ĝ | ≤ Yu ulp(G) = 2?Y · ulp(G).

If G ∈ R lies in the subnormal domain, i.e. |G | < 24min , the situation is quite
different, as ulp(G) is now the constant 24min−?+1. Even if an error bound in ulps
is small, the corresponding relative error can be very large. For example, if Ĝ = 0
and G = Y · 24min−?+1 with Y > 0, then the error in ulps is Y while the relative error
is 1. On the other hand, if |(G − Ĝ)/G | ≤ Y, then |G − Ĝ | ≤ Y · 24min = 2?−1Y · ulp(G).
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1
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{
H ∈ R : |H − 1| < 1

2ulp(1)
}

{
H ∈ R : |H − G | < 1

2ulp(G)
}

1 2

Figure 2.5. Correct rounding and ulp in the toy system V = 2, ? = 3, given
G = 1 − u + u2.

2.6. Errors in ulps and correct or faithful rounding

It is common to read that ‘correct rounding’ is equivalent to ‘error less than half an
ulp’, and that ‘faithful rounding’ is equivalent to ‘error less than one ulp’. This is
almost true but not entirely. First, ulp is not a constant but a function, and it must
be clearly stated whether we consider the ulp of the exact result or the ulp of the
computed result (as mentioned above, the latter choice is a dubious one). Second,
the ulp function is discontinuous at the powers of 2. Properties 2.7 and 2.8 clarify
the slight differences.

Property 2.7 (links between error in ulps and correct rounding). Assume that
G ∈ [−
, +
] and Ĝ ∈ F. We have:

• if Ĝ = RN(G) then |G − Ĝ | ≤ 1
2ulp(G) ≤ 1

2ulp(Ĝ);

• if |G − Ĝ | < 1
2ulp(G) then Ĝ = RN(G).

Beware: in rather infrequent cases, we may have |G − Ĝ | < 1
2ulp(Ĝ) and Ĝ ≠

RN(G). An example is G = 1 − u + u2 as shown in Figure 2.5, for which we have
|G − 1| < 1

2ulp(1) and yet RN(G) = 1− u ≠ 1. The situation is worse in bases larger
than 2. Indeed, if V = 10 and ? = 4, consider the real number G = 1.0002. We
have11 ulp(G) = 0.001 and therefore the FP number Ĝ = 0.9998 is within 0.5 ulp(G)
from G, and yet it is not equal to RN(G). In fact there are even two floating-point
numbers between G and Ĝ.

Property 2.8 (links between error in ulps and faithful or directed rounding).
Assume that G ∈ [−
, +
] and Ĝ ∈ F. If Ĝ ∈ {RD(G),RU(G)} (or equivalently if Ĝ
is a faithful rounding of G), then |Ĝ − G | < ulp(G) ≤ ulp(Ĝ).

Near powers of 2, the converse is not true. Indeed, if G is any real number in the
interval (1, 1 + u) and Ĝ = 1 − u, then |G − Ĝ | < ulp(G) = 2u, whereas RD(G) = 1
and RU(G) = 1 + 2u.

11 We have not defined the ulp function in the case of non-binary bases, but in the case considered
here it is the distance between the two FP numbers that surround G.
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2.7. Various properties

When analysing numerical programs, we often have to compute bounds iteratively
on the possible values of variables.12 For example, assume we have previously
shown that 0 ≤ �0 and 1 ≤ �1, and we want to bound the possible values of a
variable B after execution of the program line

s = a + b

Since 0 + 1 ≤ �0 +�1, if �0 +�1 is in the normal domain, the standard model tells
us that B ≤ (�0 + �1) · (1 + u). However, it is often the case that �0 + �1 ∈ F. In
such a case, we have B = RU

D(0 + 1) ≤ RU
D(�0 + �1) = �0 + �1. The corresponding

(straightforward!) property is

Property 2.9. If Ĝ ∈ F, then C ≤ Ĝ ⇒ RU
D(C) ≤ Ĝ and C ≥ Ĝ ⇒ RU

D(C) ≥ Ĝ.
The following property is frequently used in proofs for bounding rounding errors.

Property 2.10. If G ∈ R, |G | ≤ 2: + 2:−1−? with 4min ≤ : ≤ 4max, then |G −
RN(G)| ≤ 2:−1−?.

2.8. Exact correcting terms

Although, as explained before, the sum, product or quotient of two floating-point
numbers is not, in general, a floating-point number and hence must be rounded,
Dekker (1971) and Pichat (1976) remarked early on that a correcting term can
very often be represented by a floating-point number. We will see below that such
correcting terms can be computed quite easily in floating-point arithmetic (with
the same precision), which makes it possible to use them later on in a calculation,
to at least partly compensate for the rounding error. A systematic study of these
correcting terms was done by Bohlender, Walter, Kornerup and Matula (1991),
with the assumption that no underflow occurs. Subsequently, this assumption was
removed by Boldo and Daumas (2003). We give the main results of that paper
below, adapted to the notation of this article.

Property 2.11. Let 0, 1 ∈ F and B = RN(0 + 1). If the FP addition of 0 and 1
does not overflow (i.e. |B | ≤ 
), then B − (0 + 1) ∈ F.

Note that Property 2.11 does not necessarily hold with rounding functions dif-
ferent from RN. For example, if 0 = 1 and 1 = u3, then B ≔ RU(0 + 1) = 1 + 2u,
so that B − (0 + 1) = 2u − u3 ∉ F. (For RD, the same can be observed by simply
negating these values of 0 and 1.)

12 Let us give an example with function hypot(G, H) =
√
G2 + H2 assuming that G and H are normal FP

numbers and the rounding function is RN. Without loss of generality, we can assume 1 ≤ G < 2
and 0 ≤ H ≤ G. To tightly bound the error in ulps of the addition of G2 and H2 we need to show
that the computed values of G2 and H2 are less than 4.
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Now, for multiplication such a restriction on the rounding function is not neces-
sary, and we can thus state the next property using the ‘generic’ rounding function
RU

D ∈ {RN,RD,RU,RZ}.
Property 2.12. Let 0, 1 ∈ F and c = RU

D(01). If the FP multiplication of 0
and 1 does not overflow (i.e. |c | ≤ 
), then c − 01 ∈ F if and only if there exist
integers :0, #0, :1 and #1, with |#0 |, |#1 | ≤ 2? − 1 and :0, :1 ≥ 4min such that
0 = #0 · 2:0−?+1, 1 = #1 · 2:1−?+1 and :0 + :1 ≥ 4min + ? − 1.

In particular (and this will be the most useful application of Property 2.12), if
the exponents 40 and 41 of 0 and 1 satisfy 40 + 41 ≥ 4min + ? − 1, then c − 01 ∈ F,
but Property 2.12 is more general.13
Let us give two examples. Assume binary32 arithmetic (? = 24, 4min = −126)

and round-to-nearest, ties-to-even. Note that 4min + ? − 1 = −103.
Let us first choose 0 = 16777215 · 2−10−23 (i.e. #0 = 16777215 and :0 = −10)

and 1 = 16777213 · 2−95−23 (i.e. #1 = 16777213 and :1 = −95). Observe that
:0 + :1 < 4min + ? − 1; the condition of Property 2.12 is not satisfied. We easily
find that c = RN(01) = 4194303 · 2−125, so that c − 01 = −3 · 2−151. This cannot
be a floating-point number since it is not a multiple of U = 2−149.
If we choose the same 0 as previously and 1 = 8388611 ·2−80−23 (the condition of

Property 2.12 is now satisfied), an elementary calculation shows that RN(01)−01 =
−8388605 · 2−136 ∈ F.
For division, an exact relationship is obtained by considering not the absolute

error itself (whose bit string can be infinitely long) but the associated residual. This
fact was already noted by Pichat (1976, p. 43), and a general statement is as follows.

Property 2.13. Let 0, 1 ∈ F, 1 ≠ 0 and @ = RU
D(0/1). If the FP division does

not overflow, then 0 − 1@ ∈ F if and only if there exist integers :1, #1, :@ and
#@, with |#1 |, |#@ | ≤ 2? − 1 and :1, :@ ≥ 4min such that 1 = #1 · 2:1−?+1 and
@ = #@ · 2:@−?+1, and
• :1 + :@ ≥ 4min + ? − 1, and
• |@ | ≠ U or U/2 ≤ |0/1 |.
Again, 0 − 1@ ∈ F holds when the second condition is satisfied and the first is

replaced by 41 +4@ ≥ 4min+ ?−1, where 41 and 4@ are the floating-point exponents
of 1 and @, but Property 2.13 is more general. If the FP division does not underflow
(i.e. |@ | ≥ 24min) then the second condition is satisfied.
Let us give an example in binary32, round-to-nearest, ties-to-even arithmetic.

Consider 0 = 8388609·2−128 and 1 = 8388611·2−100−23. The number @ = RN(0/1)
is equal to 4194303 · 2−27 = 4194303 · 2−4−23. The largest :1 and :@ such that one

13 This can be useful when the significand of 0 (or 1) has some trailing zeros, which occurs in
particular when performing splitting operations; see Section 4.3. In such a case, we know that
0 has representation #0 · 2:0−?+1 with |#0 | ≤ 2? − 1 and :0 > 40 , so that the conditions of
Property 2.12 may be satisfied even if 40 + 41 < 4min + ? − 1.
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can write 1 = #1 ·2:1−?+1 and @ = #@ ·2:@−?+1 are−100 and−4 (because 8388611
and 4194303 are odd integers). Therefore :1 + :@ ≤ −104 < 4min + ? − 1 and the
condition of Property 2.13 is not satisfied. We easily observe that 0−1@ = 3 ·2−150

is not a floating-point number.
Now, with the same value of 1, if 0 = 8388609 · 2−127, then @ is twice as large

as previously, so that 0 − 1@ = 3 · 2−149 = 3 · 24min−?+1 ∈ F.
Property 2.13 is one of the main motivations for implementing an FMA in-

struction, as defined in (2.4). Indeed, when 0 − 1@ ∈ F, it is computed exactly
with just one FMA. This makes it possible, with some care, to deduce RN(0/1)
from a faithful rounding of 0/1, that is, from a value @ equal to either RD(0/1)
or RU(0/1). In turn, this makes it possible to efficiently implement floating-point
division in software (Cornea-Hasegan et al. 1999).

Finally, a similar property holds for square root as well, but under the restriction
that rounding is to nearest.

Property 2.14. Let 0 ∈ F≥0 and B = RN
(√
0
)
. The term 0−B2 belongs to F if and

only if there exist integers :B and #B, with #B ≤ 2? − 1 such that B = #B · 2:B−?+1
and 2:B ≥ 4min + ? − 1.

Note that Boldo and Daumas (2003) give an additional condition, equivalent
in our notation to :B ≥ 4min. It is not needed here since, as we have assumed
4min < 0, it is a consequence of the assumption 2:B ≥ 4min + ? − 1. Again, if the
floating-point exponent 4B of B satisfies 24B ≥ 4min + ? − 1, then 0 − B2 ∈ F, but
Property 2.14 is slightly more general.
Note also that unlike multiplication and division (but similarly to addition), this

property of square root does not always hold if rounding is not to nearest. For
example, if 0 = 1−4u then B ≔ RD(

√
0) = 1−3u, so that 0− B2 = 2u−9u2 ∉ F; if

0 = 1−3u then B ≔ RU(
√
0) = 1−u, fromwhich it follows that 0−B2 = −u−u2 ∉ F.

2.9. Playing with the exceptions

The default exception handling of IEEE-754 arithmetic was designed so that it
should frequently allow us to obtain a usable result, even when an exception occurs.
For instance, for a huge value of G, the calculation of 3 + 1/G5 with rounded to
nearest arithmetic still delivers the very accurate result 3, even if G5 is infinite due
to overflow. However, one should be cautious. Consider the following example
by Lynch and Swartzlander (1992): 5 (G) = G2/

√
G3 + 1. For large G, 5 (G) ≈ √G.

However, if G is large enough for G3 to overflow but not so large as to make G2

overflow, the computed value will be 0. A typical example in binary64 arithmetic
is with G = 2400 ≈ 2.5822 · · · × 10120: the computed value of 5 (G) is 0 whereas the
exact value is around 1.6069 × 1060.

For arithmetic operations, what should be returned in exceptional cases is in
general rather intuitive.14 There is no debate on the fact that (+∞) · (−∞) should

14 An exception is
√−0 = −0.
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be −∞. When it comes to more complex functions, things become less clear, and
from time to time somebody reopens the debate on what should be returned when
computing (±1)+∞ or 00; see an interesting discussion by Kahan (1997) and the
choices suggested by the Standard (IEEE 2019, §9.1). Take as an example the
function cospi(G) = cos(c · G) for G = ±∞. The mathematical function cospi(C) has
no limit as C → ±∞, hence it is natural to suggest that cospi(±∞) should be NaN
(this is the choice suggested by IEEE-754). However, since any sufficiently large
floating-point number is an even integer, one may arguably claim that the choice
cospi(±∞) = 1 would maintain consistent behaviour of the numerical program
when the input variable G becomes infinite because of an overflow. These debates
are interesting, and it is of course important tomaintain the consistency and correct-
ness of our calculations as much as possible, even in extreme cases. Nevertheless,
despite the cleverness of the arithmetic of infinities, NaNs and zeros in IEEE-754,
it does not automatically solve all problems, so we need a case-by-case analysis of
any critical program that is supposed to work even when variables become infinite.

2.10. When more than one floating-point format is available

There is seldom only one floating-point format available on a given platform.
There is even more diversity now than 20 years ago. In general, we used to have
only binary32/single precision, binary64/double precision, and the 80-bit Intel
‘double-extended’ format. Now we still have these formats, plus binary128/quad
precision, at least one 16-bit ‘half-precision’ format (binary16 or bfloat16), and
sometimes even an 8-bit format. This diversity gives usmore control when finding a
compromise between speed and accuracy, and allowsmixed-precision computations
(Higham and Mary 2022), but it also brings the following difficulties.

2.10.1. Underflows/overflows due to change of formats
As Table 2.2 shows, the various floating-point formats in current use have con-
siderably different ranges. Hence, to avoid underflows and overflows, conversion
to a narrower format requires much care, that is, scaling data before conversion
is often necessary. This is especially true when the target format is binary16.15
Scaling strategies in LU factorizations algorithms are presented by Higham and
Mary (2022, §7.4).

2.10.2. Double roundings
Double rounding occurs in round-to-nearest arithmetic when a result is first com-
puted with a larger precision than the target precision. This was very frequent with
the x86 instructions, as all arithmetic operations would first be performed using
‘double-extended’, precision-64, arithmetic operators, and then converted to the

15 The very narrow range of the binary16 format was the major motivation for the introduction of
bfloat16 for machine learning applications.
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target binary64 format. In fact, to prevent double rounding, a control register al-
lows us to set the floating-point precision so that the results are not first rounded to
double-extended precision, but setting it is a very costly operation, since it triggers
a flush of the processor pipeline (Boldo and Melquiond 2008).
If the intermediate result is a midpoint of the target format, one cannot guarantee

that the final result is a floating-point number of the target format nearest the exact
result. Let us give an example. Assume that RN is round-to-nearest, ties-to-even,16
and suppose that the target precision is 9 and the intermediate precision is 14.
Consider the real number

G = 1.0010110101111111110101 · · · .
The floating-point number of the target precision nearest G is Gcorrect = 1.00101101.
When rounding G to intermediate precision, we obtain

Gext = 1.0010110110000,

and then, when rounding Gext to target precision, we obtain

Gfinal = 1.00101110,

which is different from Gcorrect. Indeed, we have rounded G up, whereas it should
have been rounded down. Figueroa (1995) and Roux (2014) showed that, when the
intermediate precision is large enough, double rounding is innocuous for the basic
arithmetic operations.
A solution to avoid double rounding would be to have the operations of the

‘larger’ format performed with the ‘round-to-odd’ rounding function RO, defined
as follows. If C ∈ F then RO(C) = C, otherwise RO(C) is the one of the two
consecutive FP numbers that surround C whose integral significand is an odd integer.
Unfortunately, RO is not among the rounding functions specified by IEEE-754. A
variant of round-to-odd (for which RO(C) is always odd, which implies that when
C ∈ F is even, RO(C) ≠ C) was first considered by von Neumann when designing
the arithmetic unit of the EDVAC. A recent use of round-to-odd to avoid double
roundings is in the decimal-to-floating-point conversion of the GCC compiler.17
This rounding and its propertieswere also formally studied byBoldo andMelquiond
(2008).

2.10.3. Portability/reproducibility issues
When an arithmetic operation I = G op H is performed, even if G, H and I do not
have the same floating-point format, the IEEE-754 Standard is clear about what
must be returned: the exact result rounded (with the chosen rounding function) to
the format of I. The problem is that there is often no such thing as ‘the format of I’.

16 Double rounding also occurs with the other tie-breaking rules.
17 https://www.exploringbinary.com/gcc-avoids-double-rounding-errors-with-round-to-odd/
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This occurs whenever I is not an explicit variable but an implicit one, such as the
result of (0 + 1) when evaluating the expression (0 + 1) · (2 + 3).
Several choices may make sense: the widest format available in hardware (this

would preserve accuracy and minimize the risk of spurious underflow or overflow
but might sometimes slow down the calculation considerably), the maximum of
the width of the operands, the format chosen for the variable that stores the final
result of the expression evaluation, a ‘preferred format’ chosen by the programmer
through some mechanism, etc.
Different choices made by compiler designers may result in different behaviours

of the same program, which would result in portability and reproducibility issues.
Even with the same choice we may meet reproducibility problems, as ‘the widest
format available in hardware’ may not mean the same thing on different platforms.
In its appendix (Section 10), the IEEE-754-2019 Standard recommends (yet does
not require) ‘preferred width’ mechanisms to at least partly alleviate this problem.

2.10.4. Design of function libraries: need to consider many programs
A large number of floating-point formats is a challenge for the designers of libraries
for the elementary (cos, sin, exp, arctan, etc.) or special functions. If one wishes
to implement a library of around 30 functions (which is not that many – physicists
and statisticians would like to have more; see Beebe 2017 for examples of functions
that are frequently needed in numerical computing), the library designer needs to
provide real and possibly complex functions for each of the FP formats. This is
already a large number but in practice many variants are needed for each of the pairs
function/format: one optimized for accuracy, one for latency, one for throughput.
Beyond that, it will be interesting, for each of these combinations, to have a ‘generic’
version that works reasonably well on every platform, and specialized versions that
are optimized for each widely distributed architecture. One may easily end up with
thousands of programs to maintain, improve, keep mutually consistent, etc. The
medium-term solution is presumably to (at least partly) automate the generation
of function libraries (Brunie, de Dinechin, Kupriianova and Lauter 2015), and
the long-term solution might well be to generate the function approximations at
compilation time.

2.11. Problems related to the decimal input or output of numerical values

Numerical constants in a program, input values entered on a keyboard or read
from a file, and output values displayed or written into a file are often represented
in decimal. Base conversions are therefore a very frequent operation. It is well
known that some numbers that have a finite decimal representation do not have
a finite binary representation (a typical example is 1/10). Although the numbers
with a finite binary representation do have a finite decimal representation, that
decimal representation may be too long to be convenient for most purposes. For
instance, the smallest positive normal number in the binary64 format, i.e. 2−1022,

https://doi.org/10.1017/S0962492922000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000101


Floating-point arithmetic 229

once converted into decimal, is
2.2250738585072013830902327173324040642192159804623318305533274168872044348139181958542831590125110205640673397310358110051
524341615534601088560123853777188211307779935320023304796101474425836360719215650469425037342083752508066506166581589487204
911799685916396485006359087701183048747997808877537499494515804516050509153998565824708186451135379358049921159810857660519
924333521143523901487956996095912888916029926415110634663133936634775865130293717620473256317814856643508721228286376420448
468114076139114770628016898532441100241614474216185671661505401542850847167529019031613227788967297073731233340869889831750

67838846926092773977972858659654941091369095406136467568702398678315290680984617210924625396728515625 × 10−308.

As a consequence, inexact conversions between decimal and binary are very
frequent. While this is harmless in general, the reader should be aware of a few
issues, listed below.

2.11.1. Constants expressed in decimal in programs
When a constant such as 0.1 appears in a program, it is converted to a floating-point
number. The format of that floating-point number is not obvious and depends on
the specification of the programming language. For instance in C it will be double
– i.e. binary64 – unless an f, F, l or L suffix is appended to the constant, whereas in
Fortran it will be binary32 by default – although compiler options18 may allow this
to be changed. Numerical programmers should always explicitly declare the type
of their constants. An even better solution, though less readable, is to express the
constants in the hexadecimal representation of FP numbers specified by IEEE-754
(IEEE 2019, §5.12.3), which completely avoids conversion errors.

2.11.2. Roundtrip conversions
An intermediate result, computed in binary floating-point arithmetic, may be stored
in decimal in a file, or displayed in decimal on a screen, and later on reread to
carry on a calculation. The consequence is a roundtrip base conversion: first
from binary to decimal and then from decimal to binary. Ideally, one would
like that roundtrip conversion to be errorless, i.e. the initial binary FP number
is recovered. Assuming that the binary format has precision ?2, the decimal
input/output format has precision ?10, and both conversions are to a nearest value,
the condition that ensures that, at least in the absence of underflow and overflow,
all roundtrip conversions are identity (Matula 1968, Goldberg 1967) is

10?10−1 > 2?2 . (2.7)

Table 2.4 gives the smallest value of ?10, say ?∗10, that satisfies (2.7) for the most
common binary precisions. The IEEE-754 Standard (IEEE 2019, §5.12.2) requires
that correctly rounded conversions to and from decimal formats of precision up to
at least ?∗10 + 3 are provided.
For a given binary number G, a good binary-to-decimal conversion choice is

to use the smallest value of ?10 that allows for an errorless roundtrip conversion
(Steele Jr and White 2004).

18 Such as fpconstant with the Intel Fortran compiler.
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Table 2.4. Minimal decimal precision ?∗10 that allows for an error-free roundtrip
conversion, depending on the precision ?2 of the binary floating-point format.

Format bfloat16 binary16 binary32 binary64 double-extended binary128

?2 8 11 24 53 64 113
?∗10 4 5 9 17 21 36

2.12. Exotic yet standard operators

Beyond the usual arithmetic operations, the IEEE-754 Standard specifies some
‘operations’ that can be extremely useful in practice. Let us now present the most
important of them.

2.12.1. scaleB and logB operations
If they are implemented efficiently, the following functions are extremely useful
when one needs to scale a calculation to avoid spurious underflow or overflow.
Typical examples are the calculation of Euclidean norms, complex square roots,
etc. They are specified by IEEE (2019, §5.3.3).

• scaleB(G, :) returns (in a binary format, which is the case considered in this
paper) G · 2: (where G is an FP number and : is an integer).
• logB(G) returns

⌊
log2 |G |

⌋
(where G is an FP number).

In the C programming language, they are called scalbn and logb in binary64
arithmetic, and scalbnf and logbf in binary32 arithmetic.

2.12.2. min, max and copysign operations
In pipelined calculations, branchings can considerably hinder performance. The
following instructions (if implemented efficiently) make it possible in some cases
to avoid them. They are specified by IEEE (2019, §9.6) and IEEE (2019, §5.5.1).

• minimum(G, H) and minimumNumber(G, H) are equal to G if G ≤ H
and H otherwise. If one of the operands is −0 and the other one
is +0 then −0 is returned. The difference between the two instruc-
tions is that minimum(G,NaN) = minimum(NaN, G) = NaN, whereas
minimumNumber(G,NaN) = minimumNumber(NaN, G) = G. The availabil-
ity of these instructions is only recommended (i.e. not required) by IEEE-754.
• maximum(G, H) and maximumNumber(G, H) are equal to H if G ≤ H
and G otherwise. If one of the operands is −0 and the other one
is +0 then +0 is returned. The difference between the two instruc-
tions is that maximum(G,NaN) = maximum(NaN, G) = NaN, whereas
maximumNumber(G,NaN) = maximumNumber(NaN, G) = G. The availabil-
ity of these instructions is only recommended (i.e. not required) by IEEE-754.
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• minimumMagnitude(G, H) is H if |G | > |H |, G if |H | > |G |, otherwise
minimum(G, H). The availability of this instruction is only recommended.
• maximumMagnitude(G, H) is G if |G | > |H |, H if |H | > |G |, otherwise
maximum(G, H). The availability of this instruction is only recommended.
• copysign(G, H) returns sign(H) × G.

3. Execution environment
While the IEEE-754 Standard precisely specifies what floating-point numbers are
and how arithmetic operators handle them, this should be taken with a grain of
salt, as the execution environment might not comply with it. Indeed, for per-
formance reasons, some corners might have been cut. This might happen at the
hardware level (Section 3.1) or in programming languages and compilers (Sec-
tion 3.2). Moreover, when it comes to mathematical libraries, the Standard is
much more permissive, and various trade-offs between accuracy and performance
exist (Section 3.3). Finally, considerations related to parallelism can also lead to
non-reproducible computations (Section 3.4). Monniaux (2008) explored some of
these issues in more detail.

3.1. Hardware

The IEEE-754 Standard does not mandate that a compliant environment has to be
implemented in hardware. A pure software library would be just as compliant (and
indeed there are such libraries, such as Hauser’s excellent Berkeley SoftFloat19)
but this would have a major impact on the performance. Let us explore what a
hardware implementation entails, in order to understand which features are likely
to be provided in hardware.

3.1.1. Subnormal numbers
Consider the rounded product of two binary floating-point numbers "1 · 241−?+1

and "2 · 242−?+1, i.e. RN(("1 × "2) · 241+42−2?+2). At first glance this is a simple
operation: we compute the integer product of "1 and "2 and then truncate it to fit
the target format, possibly adjusting it by one unit when rounding toward infinity.
Let us assume that both inputs are positive normal numbers, i.e. 2?−1 ≤ "1 < 2?
and 2?−1 ≤ "2 < 2?. Thus the integer product has either 2? − 1 or 2? bits.
This means that if the result is also a normal number, the truncation position is
almost known statically. One can systematically drop the ? − 1 least significant
bits, and possibly one more, if the most significant bit of the product is non-zero.
Thus, in the normal range, the hardware design for the floating-point product is
straightforward (Muller et al. 2018, §8.4.1).

19 http://www.jhauser.us/arithmetic/SoftFloat.html
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But if the result is in the subnormal range, the truncation position is no longer
known beforehand, so the circuit has to be able to perform a large shift to the right.
This increases the area of the floating-point unit, and more importantly, it might
increase the pipeline depth by a few cycles. Subnormal numbers are also an issue
when they appear as inputs, as some circuits are designed with normal inputs in
mind. In that case the inputs need to be renormalized beforehand, which again
incurs the use of shifters and hence an additional delay.
Thus processor designers might consider that supporting subnormal numbers

in hardware is not worth the cost. Several options then appear, the first of which
is simply to forsake both gradual underflow and compliance with the IEEE-754
Standard. In that case, subnormal inputswill be silently interpreted as floating-point
zeros, while subnormal outputs will be flushed to zero. Note that the behaviour
might vary depending on the operator. For example, it is possible to design a
floating-point adder in such a way that subnormal inputs and outputs are handled
at no extra cost, in contrast to the multiplier (Muller et al. 2018, §7.3.3).
Since the IEEE-754 Standard does not mandate any hardware support, another

approach is to emulate subnormal numbers using either some microcode or a
software library. As a consequence, performance will be optimal in general (i.e.
in the normal range), but might plummet as soon as a computation encounters a
subnormal number (Lawlor et al. 2005). To avoid this pitfall, the hardware might
give the programmers the choice, either globally or on a per-instruction basis, to
disable subnormal handling. In that case, the floating-point unit does not have to
request any kind of software emulation to complete the operation. In other words,
the floating-point environment is no longer compliant, but the decision to drop
compliance is put in the user’s hands.

3.1.2. Rounding directions
Subnormal numbers are not the only part of the Standard that are an impediment
for hardware. Rounding directions are also an issue. This time there is no difficulty
at the level of the floating-point unit. If it supports round-to-nearest, supporting
the other directions does not incur any extra cost. The issue lies instead in the way
the information about the rounding direction reaches the floating-point unit.
A first approach would be to encode this direction in the opcode of the floating-

point instruction, but space is usually at a premium there. So hardware designers
might decide that it is not worth wasting several bits on it to support the few
programs that might need to round in another direction than to nearest (mainly
users of interval arithmetic). These programs might thus have to rely on software
emulation.
Another approach is to dedicate a control register to dynamically inform the

floating-point unit about the current rounding direction. This time all the compu-
tations are performed in hardware. Unfortunately, on some architectures, changing
the value of control registers might have a drastic impact. For example, it might
stall the processor pipeline, so that all the floating-point operations in flight can
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complete before the rounding direction is effectively changed. Thus routinely
switching from round-to-nearest to another direction and back might considerably
degrade performance.

3.1.3. FMA, division and square root
Another impediment to hardware design is the FMA operation (defined in (2.4)).
Since there is no rounding after the multiplication, the subsequent addition needs
to be much wider than usual (e.g. 106 bits for binary64) and so is the shifter to
normalize the result. But that might not be the main issue. Indeed, the FMA
operation might actually be the only opcode in the whole instruction set that needs
to read three registers at once. As a consequence, supporting it in hardware might
require a complete redesign of the entire processor architecture just for that purpose.
Division and square root are two other operations that come with their share of

difficulties. Indeed, rather than having some costly dedicated hardware for them, it
might be cheaper to use an iterative algorithm that computes a few bits of the result
every cycle. Another approach is to implement a variant of the Newton–Raphson
iteration using an FMA, which roughly doubles the number of bits of the result at
each iteration, and performs a final correction essentially based on Property 2.13
(Cornea-Hasegan et al. 1999). In both cases, division and square root no longer fit
inside the traditional pipeline; they might instead be handled by a microcode loop,
thus impacting other operations around them.
Useful and detailed tables of latencies and throughput of instructions for the most

common processors are regularly updated by Agner Fog.20 In terms of latency as
well as in terms of throughput, the cost of floating-point division is between 3
and 10 times the cost of floating-point addition or multiplication, and the cost of
square root is similar or worse. This must be taken into account, for instance,
when hesitating between approximating some function by a polynomial or by a
rational function. There is a chicken-or-egg issue here: since division is slower,
programmers of numerical applications tend to avoid using it, and since it is less
used, computer manufacturers do not make the necessary efforts to significantly
accelerate it.

3.1.4. Decimal arithmetic
While binary arithmetic is most often used when it comes to numerical computa-
tions, the revised IEEE-754 Standard also describes what a decimal floating-point
arithmetic ‘shall’ comply with. Most of the previous considerations apply equally
to binary and decimal arithmetic. Subnormal numbers, however, are much less of
an issue as inputs. Indeed, there is not a unique representation of a given decimal
number but a cohort of them: any number of most significant digits can be zero,
as long as no information is lost (IEEE 2019, §3.5.1). In other words, any decimal
number has a subnormal representation, in essence.

20 See https://www.agner.org/optimize/instruction_tables.pdf.
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Another peculiarity of decimal arithmetic is that the IEEE-754 Standard did not
succeed in mandating a single encoding of the interchange formats for decimal
floating-point numbers (IEEE 2019, §3.5.2). Indeed, two encodings of the signi-
ficand are proposed.21 When using the binary encoding of decimal floating-point
numbers, the significand is mostly stored as a binary integer, whichmakes it simpler
for software implementations to read andwrite floating-point numbers. When using
the decimal encoding, the significand is mostly stored by groups of three decimal
digits (hence ten bits), which makes it simpler for hardware implementations to
perform shifts on the representation. Both encodings fortunately represent the
same set of floating-point values, so they have no impact on the computed results.
But they might introduce some portability issues, when accessing or transmitting
decimal numbers.

3.2. Systems, languages, and compilers

Hardware is not the only factor one has to take into consideration when devising
floating-point programs. Programming languages and compilersmight also impede
portability and reproducibility, even when the code seems to have a deterministic
semantics according to the IEEE-754 Standard.

3.2.1. Java
Let us illustrate the issue with the Java programming language. The original
language aimed at reproducibility of floating-point computations, and to do so, it
was mostly sticking to the semantics of the IEEE-754 Standard. Unfortunately,
few processors at the time were complying to the Standard, thus crippling the
implementation of the Java Virtual Machine. In particular, the legacy floating-
point unit of the x86 architecture was using 80-bit registers but made it possible
to emulate binary32 and binary64 operations by setting a control register. This
support, however, was only partial; the significand was rounded at the specified
precision, but the exponent range was left unchanged. As a consequence, the
floating-point result would always comply with the IEEE-754 Standard, except in
the subnormal range where it might rarely be off by one, due to double rounding.
The inability to have both hardware support and reproducible results led the

developers to weaken the language in the late 1990s. Starting from Java SE 1.2,
reproducibility of floating-point computations would no longer be guaranteed by
the language, unless the Java methods were explicitly annotated with the strictfp
keyword. In that case the Java Virtual Machine would fall back to software
emulation on hardware that was not compliant with the IEEE-754 Standard. Today
non-compliant hardware has been sufficiently phased out to restore the original
Java semantics and make strictfp unnecessary (Darcy 2017).

21 Note that, unlike for binary floating-point numbers, the exponent and significand fields are not
cleanly separated. Indeed, a variable number of bits of the exponent field of decimal floating-point
numbers act as the most significant bits of the significand.

https://doi.org/10.1017/S0962492922000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000101


Floating-point arithmetic 235

3.2.2. C and Fortran
In contrast to Java, languages such as C and Fortran predate the IEEE-754 Standard
and reproducibility was hardly a concern at the time. Instead, in the case of
Fortran, the semantics of floating-point operations was motivated by the usage
of the language, e.g. numerical simulation. So, floating-point numbers were just
an approximation of real numbers. This led the Fortran standard to mandate
that ‘the processor may evaluate any mathematically equivalent expression’ (ISO
Fortran 2008, §7.1.5.2.4). Here, mathematically equivalent expressions should be
understood as having the same values when rounding, underflow and overflow are
ignored. For example, if the original program evaluates the expression - − . + / ,
the compiler can rewrite it into - − (. − /), regardless of any consideration for
catastrophic cancellation.
The authors of the Fortran standard did, however, provide an escape hatch, i.e.

parentheses. Indeed, the transformation is only allowed if ‘the integrity of the
parentheses is not violated’. In other words, while a Fortran compiler can rewrite
- − . + / into - − (. − /), it cannot perform the converse transformation, as
the input expression now contains parentheses. This also means that parentheses
are not just used to disambiguate the parsing of arithmetic expressions: they are
semantically relevant. For example, a compiler can factorize - × . + - × / into
- × (. + /) but it cannot factorize (- × . ) + - × / . It can, however, use an FMA
to evaluate both expressions.
Regarding floating-point computations, the C language is stricter than Fortran.

Thus compliant compilers cannot perform this kind of algebraic rewriting, even in
the absence of parentheses.22 However, compilers still have some leeway. Indeed,
except for assignment and cast, the C11 standard states that ‘the values yielded
by operators with floating operands . . . are evaluated to a format whose range and
precision may be greater than required by the type’ (ISO C 11, §5.2.4.2.2). The
main consequence is that even if the type of an expression is float, it might
be evaluated as a binary64 number rather than a binary32 number. This excess
precision can in turn cause double rounding issues and thus lower the accuracy in
some rare cases.
A less obvious consequence is that it allows C compilers to make use of FMA

operations. Consider the expression -×. +/ . Irrespective of the type of -×. , this
product could be virtually performed with an infinite precision and thus fused with
the subsequent addition into a single FMA operation. To prevent this optimization,
the user has to explicitly cast the product - × . to its target type or to assign its
result to a variable, before proceeding with the sum.
Note that the ability of C and Fortran compilers to fuse multiplication and

addition can lead to some unintuitive behaviours. Indeed, given the expression

22 This assumption only holds if compiler options that break compliance with the C Standard, e.g.
-ffast-math, are not in use.
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- × - − - × - , the language standards allow the compilers to produce a code that
actually computes FMA(-, -,−RN(-2)), whose result is often non-zero.

3.3. Mathematical libraries

Previous sections dealt with basic arithmetic operators. Let us nowmove to mathe-
matical functions. While processors might provide some primitives and compilers
might know about them, floating-point approximations of mathematical functions
are, for the most part, handled in software libraries. These libraries provide various
trade-offs. The reader interested in mathematical function algorithms can con-
sult the books by Beebe (2017) and Muller (2016). Tests of recent mathematical
libraries can be found in Innocente and Zimmermann (2022).
We do not address here the problem of generating random FP numbers, but it is

an important topic, and the naive solutions can be deceptive (Goualard 2022).

3.3.1. The table-maker dilemma
First of all, in contrast to the situation with basic arithmetic operators, correct
rounding is no longer a given. Indeed, correct rounding in round-to-nearest (resp.
directed rounding) requires the ability to decide on which side of the midpoint
between two consecutive floating-point numbers (resp. which side of a floating-
point number) lies an infinitely precise mathematical value. This might require a
library to perform its internal computations with very high precision. For example,
consider sin(G) = sin(G − 2c:) for some integer : . By choosing a large enough
dyadic number G, one can make G − 2c: arbitrarily close to any real number in
[−c, c], which in turn makes sin(G) arbitrarily close to a floating-point midpoint.
Fortunately, as a finite floating-point number, G has both a bounded precision and a
bounded range, so there is an actual limit to how close sin(G) can be to a midpoint.
This limit gives an indication regarding the accuracy needed when approximating
sin(G) in order to round it correctly. This issue is not specific to the periodic nature
of the trigonometric functions. It also impacts other mathematical functions. For
example, there are a few inputs G in the binary64 range such that ln(G) is at a relative
distance ∼ 2−117 of a floating-point number or a midpoint, which means that ln(G)
has to be approximated with an accuracy of about 117 bits in order to compute its
correctly rounded binary64 value. An example by Lefèvre and Muller (2001) is
the binary64 number

G = 6239214722492854 × 2626,

whose logarithm (with the significand expressed in binary) is equal to

53 bits︷                                                                                    ︸︸                                                                                    ︷
1.1101011001000111100111101011101001111100100101110001

000000000000000000 · · · 000000000000000000︸                                                           ︷︷                                                           ︸
65 zeros

111001 · · · × 28.
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In the case of the natural logarithm in binary64, the hard-to-round results are
known, which means that one can bound the time and space complexities of an
algorithm that computes its correctly rounded approximation. But for some other
functions, e.g. sin in binary64, this is not yet the case. For such a function, the
algorithm has to compute increasingly accurate approximations of the infinitely
precise result until it can decide what the correctly rounded result is. Thus, while
the time and space complexities are necessarily bounded for a given floating-point
format, our inability to put upper bounds on them means that correct rounding
of these functions is not yet advisable for critical real-time systems. Hopefully
this inability will be temporary: progress is being made on the topic (Brisebarre,
Hanrot and Robert 2017).
Despite performance issues, correct rounding has some important properties.

Indeed, its uniqueness guarantees portability and reproducibility. Moreover, its
accuracy guarantees that monotony properties of the mathematical functions are
also satisfied by their approximation. Thus it would be unfortunate to drop correct
rounding entirely. For example, while sin is not yet fully understood on the whole
binary64 range, we know its hard-to-round cases for some useful input intervals,
e.g. [−2c, 2c]. So, a trade-off can be reached: even if a mathematical library does
not provide correct rounding everywhere, it can still document the functions and
the input intervals for which it is guaranteed. This is the approach followed by
the IEEE-754 Standard. Let us mention the important current effort around the
CORE-MATH library23 of very efficient correctly rounded functions (Sibidanov,
Zimmermann and Glondu 2022).

3.3.2. Rounding directions
Considering correct rounding is only meaningful when a rounding direction is de-
cided. Most correctly rounded libraries at least support the default rounding mode,
i.e. round-to-nearest, ties-to-even. The situation regarding directed rounding is
more diverse. First, a library might only support round-to-nearest. Second, a lib-
rary might provide alternative implementations of all the mathematical functions,
one for each rounding mode. Third, a library might provide only one implementa-
tion of each function, but written in such a way that the behaviour of the function
respects the dynamic rounding mode of the processor, as the hardware arithmetic
operators do. Conversely, it should be noted that libraries that fall into the first two
categories are usually not resilient to the dynamic rounding mode and will work
correctly only when set to round-to-nearest.

3.3.3. Trade-off between accuracy and performances
Let us now assume that a given mathematical library has forsaken the optimality
of correct rounding on some input ranges. This opens the way to a wide range of
potential implementations, with a trade-off between speed and guaranteed accuracy.

23 See https://core-math.gitlabpages.inria.fr/.
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For example, a mathematical library could promise that the computed results are
at a distance of 0.5+ Y ulp of the infinitely precise results for round-to-nearest. For
Y small enough, e.g. 10−4, this would allow for correct rounding in most of the
cases. By decreasing Y even further, at the expense of a larger computation time,
one could even make the probability of an incorrectly rounded result negligible. At
the other end of the spectrum, some applications might not even need an accuracy
close to the precision of the format: they could live with only faithfully rounded
results, or even worse.

Up to now, we have considered a single evaluation of sin(G) in isolation. But
some applications might need to perform numerous evaluations in parallel. Some
mathematical libraries hence provide implementations that, through careful use of
pipelined or vector floating-point units, can perform such parallel computations.
This severely constrains the kind of algorithms that can be implemented, and might
thus limit the accuracy of such implementations (Shibata and Petrogalli 2020). Con-
sider the use of a width-= vector floating-point unit to evaluate sin(G1), . . . , sin(G=)
in parallel. The = evaluations need to have the same control flow as often as
possible, which means that conditional branching has to be avoided. Instead, the
algorithm will use predicated instructions to control whether a given floating-point
operation is performed on a given sin(G8) lane.24 As a consequence, the latency
for producing sin(G1), . . . , sin(G=) is at least the latency of the slowest lane. When
the predication varies widely between the = lanes, it could even end up being as
slow as if the = evaluations had been performed sequentially. Thus algorithms have
to be simple and short to benefit from the use of a vector unit, which limits the
accuracy. Mathematical libraries for graphical processing units suffer from similar
shortcomings.

3.4. Reproducible computations

Except for Not-a-Number floating-point data, the principles of the IEEE-754 Stand-
ard, especially correct rounding, guarantee the reproducibility of floating-point
computations across several program executions. These principles could even
ensure the portability of floating-point results across various environments. Unfor-
tunately, for larger systems, some other factors have to be taken into account, most
prominently parallelism.

Let us consider the example of a large sum of floating-point numbers, e.g. an
inner product as commonly encountered in matrix computations. If the order of
floating-point additions is set once and for all, then reproducibility and portability
are guaranteed. But setting this order statically might hinder performances. Indeed,
assuming that several computation cores are available, one might want to split this
large sum into smaller blocks of numbers and dispatch them to the various cores, so
that all the blocks can be summed in parallel. The final sum can then be performed

24 Conditional moves can also be used, in which case the floating-point operation is performed on
all the lanes, but its result might be discarded on some of them.
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by adding the partial sums. While this approach is sensible in an infinitely precise
setting, the lack of associativity of floating-point addition makes the results non-
reproducible when the size of the blocks is set dynamically, depending on the
availability, speed and bandwidth of the cores.
Even if only one core is available, computations might still be performed per

block, for performance reasons. For instance, matrix multiplication might be
subdivided into smaller blocks (hence partial inner products) in order to best benefit
from cache locality. Such an algorithm would thus have non-portable results, as
they would depend on the size of the cache. Another cause for divergence is the
availability of a floating-point vector unit. This is quite similar to the previous
instances, except that the number of blocks then depends on the width of the vector
unit, and the blocks are interleaved instead of contiguous. Even if there is no vector
unit, performancesmight still benefit from interleaving floating-point computations
depending on the length of the instruction pipeline.
While some of these choices can be decided statically at compilation time rather

than dynamically at execution time, they still impact the portability of something
as simple as matrix multiplication, when performances matter. An illustration of
these considerations lies in the ATLAS implementation of the BLAS routines.25
As explained byWhaley, Petitet and Dongarra (2001), its routines take into account
the size of the L1 cache, whether the FMA instruction is available, the pipeline
depth, the number of registers (for loop unrolling), and so on.
To improve reproducibility, various solutions have been proposed. Most of them

come down to performing only exact operations, so as to completely ban the issue
of floating-point addition not being associative once rounded. For the binary64
format, Kulisch (2013) proposed using a long accumulator that would cover the
whole range of floating-point numbers or, in the case of the scalar product, the
whole range of products of floating-point numbers. This 4288-bit register requires
some expensive hardware (Uguen and de Dinechin 2017) but offers a correctly
rounded result by not losing any bit of information during computation. Software
implementation of the long accumulator usually does not fare well, due to the
indirect memory access it entails. However, if the dynamic range of the inputs
is not too large, a careful implementation of the summation can get close to the
optimal performance of the non-associative floating-point addition, as shown by
Collange, Defour, Graillat and Iakymchuk (2015).
If correct rounding is not needed, one does not need the whole accumulator:

only the most significant bits of the sum need be kept. For the performed additions
to be exact, all the inputs can be split according to a given boundary (Section 4.3),
ensuring that their significands are aligned. In the case of a distributed computation,
it might be difficult to find a suitable boundary in a reproducible way. Demmel and
Nguyen (2015) have proposed that every core should compute its partial sum as
a triple of floating-point numbers aligned on boundaries of the form 28 ·, , where

25 https://math-atlas.sourceforge.net/
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, is 40 for the binary64 format (see Section 5.3). The final reduction can then
keep only the relevant most significant parts of the triples and sum them, in order
to obtain the same triple that would have been obtained if there had been only
one core.

4. Taming rounding errors
Most prominently, floating-point arithmetic is used as a cheap way of performing
computations on real numbers. As a consequence, the main issue is the rounding
error that taints the result of every operation. This raises the question: How does
one make sure that the computed result is close to the real one? Interval arithmetic
answers by enclosing the real result between two floating-point bounds instead of
approximating it with only one floating-point number, as shown in Section 4.1.
In some cases, one can recover the rounding error as a floating-point number,

thus making it possible to propagate it along computations. That is the purpose
of the error-free transformations presented in Section 4.2. Splitting floating-point
numbers is another way of controlling rounding errors, by making sure only exact
operations will be performed, as shown in Section 4.3.
Whenwe are able to bound the error of a calculation (for instance using the stand-

ard model), we can use floating-point filters to avoid long-precision calculations in
many situations. This is described in Section 4.4.
In the same way floating-point numbers are used to approximate real numbers,

pairs of floating-point numbers are used to approximate complex numbers. The
rounding error can then be considered from two different perspectives: norm-
wise or componentwise. Section 4.5 provides accurate algorithms for both cases.
Section 4.6 then considers rounding errors in higher dimensions.
Finally, Section 4.7 presents a few tools that make it possible to accurately

approximate functions using floating-point polynomials.

4.1. Interval arithmetic

Given an expression 4 over the real numbers, it can be mechanically translated into
an expression 4̃ over the floating-point numbers. Replacing exact operations with
their rounded counterparts introduces rounding errors in general, but evaluating
4̃ will hopefully give a result sufficiently close to 4. Guaranteeing this property
requires an error analysis of the algorithm.
Rather than approximating 4 by 4̃, a slightly different approach consists in

enclosing 4 by an interval e. This can be donemechanically by replacing every exact
operation with its counterpart given by interval arithmetic (Moore 1979, Neumaier
1990, Moore, Kearfott and Cloud 2009, Rump 2010, IEEE 2015). Indeed, interval
operators are defined in a way that guarantees the containment property. For
instance, the difference of two intervals v and w satisfies the following property:

for all E, F ∈ R, E ∈ v ∧ F ∈ w⇒ E − F ∈ v − w.
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Thus, by induction on the expression 4, we get the enclosure e of 4.
Intervals are usually implemented as pairs of floating-point numbers. These can

represent either the lower and upper bounds of the interval, or its centre and radius.
Directed rounding functions are especially useful when it comes to implementing
an interval operation. For instance, the difference v − w of two intervals given
by their floating-point bounds v = [E, E] and w = [F, F] can be implemented as
follows:

v − w = [RD(E − F),RU(E − F)] .
The monotonicity properties of subtraction and rounding, as well as the correct
handling of infinities in the case of overflow, guarantee that the resulting interval
indeed satisfies the containment property above. Note that even seemingly straight-
forward operations such as computing the midpoint of an interval require some care
(Goualard 2014).
The containment property guarantees that the mathematical result 4 lies in the

computed interval e. Thus, as long as the resulting interval is narrow, this com-
pletely alleviates the need for an error analysis, at the expense of a computation
that is roughly twice as slow. Another way to see it is that the error analysis that
would be performed on 4̃ is performed at run-time by the code of e.

Even disregarding the performance issue, interval arithmetic is not a panacea for
rounding errors, though. Indeed, there is no guarantee that the interval e is narrow
enough for a given application. For example, if one needs to decide whether 4 ≥ 0,
one could compute its enclosing interval e and check whether it contains only
non-negative values (or only non-positive values). But what if it straddles zero? In
the worst case, one might even end up with e = [−∞,∞], which trivially satisfies
the containment property but is utterly pointless.
The main reason for this issue is the dependency problem, also known as the

wrapping effect in the context of dynamical systems (Lohner 2001). Indeed, naive
interval arithmetic does not remember how sub-expressions are correlated; it has
to assume that they are completely independent from each other. As soon as two
sub-expressions depend on the same input variables, this assumption no longer
holds, which implies that the resulting interval may be overly pessimistic. The
archetypal example is the subtraction G − G:

G − G ∈ x − x = [RD(G − G),RU(G − G)] .
Unless the interval x that encloses G is a singleton, the resulting interval cannot be
the optimal interval [0, 0].
The example G − G might seem artificial but it is representative of various al-

gorithms. For example, consider the Newton–Raphson iteration used to find the
root of a function 5 :

G=+1 = G= − 5 (G=)
5 ′(G=)

.
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If we let Y= = G= − G denote the distance between G= and the target root G, we hope
that the quotient 5 (G=)/ 5 ′(G=) is close to Y=, so that G=+1 is close to the root G. In
other words, the code is expected to compute a difference akin to (G+Y=)−Y=. This
is bound to fail with interval arithmetic. While the floating-point iteration usually
converges toward G, the following interval iteration would compute an ever larger
interval:

x=+1 = x= − f(x=)
f ′(x=)

.

Thus we should be careful not to blindly replace floating-point operations with
interval operations. An analysis of the original algorithmmight be needed to reduce
correlations and hence to ensure useful results. For instance, there is an interval
version of the Newton–Raphson iteration given by Moore (1979, equation (5.16)),
but it is slightly different from a naive translation. In particular, it involves the
centre <(x=) of the input interval x= in some select places:

x=+1 = xn ∩
(
<(xn) − f(<(x=))

f ′(x=)

)
.

If the initial interval x0 is large enough to contain the root G, any subsequent interval
x= is guaranteed to contain G too, thanks to a combination of both the containment
property and the mean-value theorem applied to 5 around <(x=):

0 = 5 (G) = 5 (<(x=)) + (G − <(x=)) · 5 ′(b) with b ∈ x=.

4.2. Error-free transformations

An immediate consequence of the properties of Section 2.8 about correcting terms
is that, more often than not, the error is also an FP number that can be computed
with FP operations, with no need for multiple-precision software. The sequence of
operations that returns both the result of a floating-point operation and the error of
that operation is called an error-free transformation (EFT). The first ideas seem to
go back to Gill (1951), in the context of fixed-point arithmetic.
Algorithms 1 (page 219) and 2 (below) are explicitlymentioned byMøller (1965).

Algorithm 1 also appears in the summation algorithm of Kahan (1965), which is
Algorithm 20 (page 274). Several EFTs are given and used in the seminal article
by Dekker (1971). The term error-free transformation was introduced by Ogita,
Rump and Oishi (2005). We will now review the various error-free transformations
and their specifics.
Note that some of these EFTs are given below with the rounding function RN.

With other rounding functions, these transformations will not always be error-
free. In particular, when discussing Property 2.11 we have given the example
of an addition with a directed rounding function, whose error is not a floating-
point number. However, under conditions discussed by Boldo, Graillat and Muller
(2017), the various EFTs of addition and subtraction in any case return a value close
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to the exact error,26 so their results can still be useful for designing compensated
algorithms (see Section 5.3). In all cases, the availability of subnormal numbers is
needed for the EFTs to return a correct result.

4.2.1. EFT for addition
When rounding is to nearest, the error of an FP addition is an FP number (this is
Property 2.11), and algorithms for computing that error have been available since
at least the 1960s (Møller 1965).
A first such algorithm is Fast2Sum, i.e. Algorithm 1 described in Section 2.4.

The two input FP numbers 0 and 1 are transformed into two FP numbers B and C such
that, exactly, 0 + 1 = B + C with B = RN(0 + 1). But it requires their floating-point
exponents to satisfy 40 ≥ 41 (which is implied by |0 | ≥ |1 |, a condition easier to
check in practice). This condition is important, since C can be very far from the
error of the FP addition of 0 and 1 when it is not satisfied. A simple example in
binary64 arithmetic is 0 = 1 and 1 = 255, for which the algorithm returns C = 0
instead of 1.

In the general case, when we do not know beforehand whether |0 | ≥ |1 |, we
can rely on the 2Sum algorithm (Møller 1965, Knuth 1998), i.e. Algorithm 2. As
before, the inputs are FP numbers 0 and 1 and the outputs are FP numbers B and C
such that 0 + 1 = B + C exactly and B = RN(0 + 1), but unlike in Algorithm 1, no
assumption has to be made on 0 and 1.

Algorithm 2 2Sum(0, 1)
B ← RN(0 + 1)
0′ ← RN(B − 1)
1′ ← RN(B − 0′)
X0 ← RN(0 − 0′)
X1 ← RN(1 − 1′)
C ← RN(X0 + X1)
return (B, C)

Of course, the floating-point addition of 0 and 1 can overflow (Section 2.2).
However, if it does not, then 2Sum almost never overflows,27 while Fast2Sum is
fully immune to spurious overflow. Indeed, if the first addition does not overflow,
then none of the other operations overflow either (Boldo et al. 2017). Furthermore,
2Sum is ‘optimal’ in the following sense. If an algorithm made up of floating-point
additions and subtractions always returns the same results as 2Sum (i.e. the result
and the error of the FP addition of 0 and 1), then it takes at least the same number
of operations as 2Sum (Kornerup, Lefèvre, Louvet and Muller 2012).

26 The same holds for square root, as we shall see that its FMA-based EFT is a sequence of only two
floating-point operations.

27 If |0 | ≠ 
, it cannot overflow.
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Priest (1991) has given an algorithm for addition that does almost the same thing
as 2Sum, even when the rounding function ◦ is not RN (in fact, it only needs to be a
faithful rounding). It returns a pair (B, C) such that B + C = 0 + 1, with the guarantee
that the floating-point exponent of C is at most the floating-point exponent of B
minus ?; however, B is not guaranteed to be ◦(0 + 1).

4.2.2. EFTs for multiplication, division and square root
If two FP numbers 0 and 1 satisfy the condition of Property 2.12, then the error of
their floating-point product can be obtained very simply using the 2Prod algorithm
shown below. It is also called Fast2Mult (Kahan 1997, Nievergelt 2003, Muller
et al. 2018). Note that it requires an FMA instruction to compute RU

D(01 − c).

Algorithm 3 2Prod(0, 1)
c ← RU

D(01)
d ← RU

D(01 − c)
return (c, d)

Algorithm 3 provides the exact rounding error, or the rounding of it in the case of
underflow when computing d. Note the use of the ‘generic’ rounding function RU

D

instead of RN. Indeed, by Property 2.12, 01− c is an FP number, so it is computed
exactly, whatever the rounding function.
When no FMA is available, one can use an older algorithm by Veltkamp (1968,

1969) and Dekker (1971), which has been formally proved by Boldo (2006). It
splits the FP numbers 0 and 1 into two (see Section 4.3), multiplies the halves and
then subtracts all the parts in a way that ensures exact results thanks to properties
similar to those of Section 2.4. It takes 17 floating-point operations, which is quite
costly compared to Algorithm 3.
For division and square root, FMA-based algorithms similar to Algorithm 3

followProperties 2.13 and 2.14, with the restriction that round-to-nearest is required
to guarantee an exact residual in the case of square root.

4.2.3. Augmented operations from the 2019 revision of the IEEE Standard
The 2019 release of the IEEE-754 Standard for Floating-Point Arithmetic recom-
mends (but does not require) that new augmented operations should be provided for
the binary formats.28 These operations are called augmentedAddition, augmen-
tedSubtraction and augmentedMultiplication, and they are defined as follows
(IEEE 2019, Riedy and Demmel 2018).

• augmentedAddition(G, H) delivers (00, 10) such that 00 = RN0(G + H) and,
when 00 ∉ {±∞,NaN}, 10 = G + H − 00. When 10 = 0, it is required to have
the same sign as 00.

28 History and motivation are given by Riedy and Demmel (2018).
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• augmentedSubtraction(G, H) is the same as augmentedAddition(G,−H).
• augmentedMultiplication(G, H) delivers (00, 10) such that 00 = RN0(GH)
and, when 00 ∉ {±∞,NaN}, 10 = RN0(GH − 00). When GH − 00 = 0, the
number 10 (equal to 0) is required to have the same sign as 00.

Special cases (00 equal to ±∞ or NaNs) are described by the Standard (IEEE
2019). Note the use of the rounding function RN0 (i.e. round-to-nearest, ties-to-
zero), which differs from the default RN4 (round-to-nearest, ties-to-even). With this
rounding function, these operations would significantly help to implement bitwise
reproducible summation and dot product, using an algorithm given by Demmel,
Ahrens and Nguyen (2016).
At the time of writing, these augmented operations are not implemented in

hardware on any commercial platform. If, one day, an efficient implementation is
provided on some processor, they will be good candidates for replacing the 2Sum,
Fast2Sum and 2Prod algorithms presented above. However, due to the special
rounding function, we will need to check if an algorithm that has been proved to
work with the usual error-free transformations still works with these operations.
Boldo, Lauter and Muller (2021) have shown how to emulate these operations

using conventional, ties-to-even, arithmetic. This implies a significant performance
penalty, but makes it possible to design and test programs that use the augmented
operations. These programs will be ready for use with full efficiency when the
augmented operations become available in hardware.

4.2.4. EFT for the FMA
Assuming a round-to-nearest rounding function, the error of an FMA operation
cannot, in general, be expressed as a single FP number. It can, however, be
expressed as the unevaluated sum of two FP numbers (i.e. a double-word: see
Section 5.1), which can be obtained using Algorithm 4. This EFT was introduced
by Boldo and Muller (2005) and has since then been formally verified with the
Coq proof assistant (Boldo and Muller 2011). Given three FP numbers 0, 1, 2 and
assuming that no underflow or overflow occurs, this algorithm makes it possible to
convert the exact expression 01 + 2 into the unevaluated sum of three floating-point
numbers:

01 + 2 = 3 + 41 + 42,

where 3, 41, 42 are such that

3 = RN(01 + 2), |41 + 42 | ≤ 1
2ulp(3), |42 | ≤ 1

2ulp(41).

Since the 2Prod algorithm performs one multiplication and one FMA, and since
the 2Sum (resp. Fast2Sum) algorithm performs six (resp. three) additions, we
deduce that the ErrFma algorithm performs one multiplication, two FMAs and
17 additions, i.e. 20 operations in total. In general, it is not known whether this
cost can be reduced (which is in contrast to the optimality of 2Sum mentioned
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Algorithm 4 ErrFma(0, 1, 2)
1: 3 ← RN(01 + 2)
2: (E1, E2)← 2Prod(0, 1)
3: (B1, B2) ← 2Sum(2, E2)
4: (B3, B4) ← 2Sum(E1, B1)
5: C ← RN(RN(B3 − 3) + B4)
6: (41, 42)← Fast2Sum(C, B2)
7: return (3, 41, 42)

in Section 4.2.1). However, if we know in advance that 0, 1, 2 are such that
the exact error 01 + 2 − RN(01 + 2) fits into a single FP number instead of two
(i.e. 42 = 0), then the call to Fast2Sum in line 6 can be replaced by a single
addition, 41 ← RN(C + B2), which saves two operations. This simplified version
of ErrFma can be used for example when designing FP algorithms for correctly
rounded square root reciprocals (Borges, Jeannerod and Muller 2022). Also, three
floating-point operations (corresponding to the Fast2Sum of line 6) can be saved
by directly returning (3, C, B2), at the price of an ‘un-normalized’ output (Boldo and
Muller 2005). This is much in the spirit of Lange and Rump’s pair arithmetic (see
Section 5.2).

In some other applications, the exact error of the FMA is in fact not needed and
can be replaced by any good enough approximation. In such cases, we can thus
relax the specification of ErrFma in order to produce a single FP number 4̂ ≈ 41+42
instead of the pair (41, 42) and, hopefully, obtain a cheaper algorithm. For example,
if we choose to compute the correctly rounded value

4̂ = RN(41 + 42)

then, using 41 + 42 = C + B2 and 41 = RN(C + B2), it again suffices to replace line 6
in Algorithm 4 with 4̂ ← RN(C + B2). This gives the best possible approximation
to the error of the FMA in 18 FP operations instead of 20, for every input (0, 1, 2)
such that no underflow or overflow occurs. This variant of ErrFMA is of course no
longer an EFT, since the exact sum 3 + 4̂ can now differ from 01 + 2, but the pair
(3, 4̂) can be viewed as a double-word approximation to 01 + 2:

|3 + 4̂ − (01 + 2)| = |RN(41 + 42) − (41 + 42)|
≤ u|41 + 42 |
≤ u2 |01 + 2 |.

Here the relative error of the exact sum 3 + 4̂ is at most u2 = 2−2?, as if we
had rounded 01 + 2 to nearest in precision 2?. If we accept relaxing the accuracy
specification a little further and can tolerate a relative error bound of the form
$(u2) for some modest hidden constant, then even faster solutions are possible. In
particular, Algorithm 5 was proposed by Boldo andMuller (2011), who used 12 FP
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Algorithm 5 ErrFmaApprox(0, 1, 2)
3 ← RN(01 + 2)
(E1, E2) ← 2Prod(0, 1)
(F1, F2)← 2Sum(2, E1)
C ← RN(F1 − 3)
4 ← RN(C + RN(E2 + F2))
return (3, 4)

operations to produce a pair (3, 4) such that

3 = RN(01 + 2), 3 + 4 = (01 + 2)(1 + X), |X | ≤ 14u2.

Algorithms 4 and 5 were used by Kouya (2019) to implement some BLAS1
functions in double-word arithmetic. The experiments reported there for u = 2−53

are clearly in favour of the second algorithm, which in this specific context is
significantly faster than the first one while preserving the same level of accuracy.
Comparisons with Lange and Rump pair arithmetic (see Section 5.2) still need to
be done. The EFTs can be used to emulate stochastic roundings when no hardware
implementation is available (Févotte and Lathuilière 2016, Croci et al. 2022).

4.3. Splitting algorithms

We sometimes need to split a precision-? floating-point number, i.e. to decompose
it into twoFP numbers Gℎ and Gℓ of smaller significand size, such that G = Gℎ+Gℓ and
|Gℓ | ≤ 1

2ulp(Gℎ) (or, in some cases, |Gℓ | < ulp(Gℎ)). Among the many applications
of this, let us mention the following ones.

• By requiring Gℎ to have a one-bit significand, we can compute ufp(G).
• Very similarly, butwith looser constraints, wemay require |Gℎ | to be a power of

2 close to |G |. This can be useful when scaling some calculations, for example
to avoid spurious underflows or overflows when computing Euclidean norms
and performing some operations in complex arithmetic.
• By requiring |Gℓ | to be less than one and Gℎ to be an integer, we compute G

mod 1, which for instance is useful when implementing function cospi(G) =
cos(cG).
• By requiring Gℎ and Gℓ to have b?/2c-bit significands (which is always pos-
sible in base-2 FP arithmetic, even when ? is odd), and doing the same for
another FP number H decomposed into Hℎ and Hℓ , we ensure that GℎHℎ, GℎHℓ ,
Gℓ Hℎ and Gℓ Hℓ are FP numbers (and hence are computed exactly with FP
multiplications). This is the key to the algorithm of Dekker (1971), used in
place of 2Prod when no FMA instruction is available (see Section 4.2.2).
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Algorithm 6 NearestInteger(G)
Require: 2?−1 ≤ � ≤ 2?
B ← RN(� + G)
Gℎ ← RN(B − �)
Gℓ ← RN(G − Gℎ)
return (Gℎ, G;)

• It can be used to accurately compute the sum of = FP numbers, by splitting
them into parts that can be accumulated without errors. An example of such
a summation algorithm is given and analysed in detail by Rump et al. (2008).
See also Sections 3.4 and 5.3.

Like Jeannerod, Muller and Zimmermann (2018), we distinguish between abso-
lute splittings, where we require Gℎ to be a multiple of some constant and |Gℓ | to
be less than that constant, and relative splittings, where the required bound for Gℓ
is in some sense proportional to |G |. Algorithm 6 does an absolute splitting of G,
similarly to algorithm Extractscalar of Rump et al. (2008).

Note that Algorithm 6 is similar to Fast2Sum (Algorithm 1). Only the input
assumptions differ somewhat. This algorithm is, for instance, used for reducing the
initial argument in the Julia implementation29 of function cospi.

Theorem 4.1 (Jeannerod et al. 2018). Assume that � is an integer satisfying
2?−1 ≤ � ≤ 2?. If

2?−1 − � ≤ G ≤ 2? − �,
then the floating-point number Gℎ returned by Algorithm 6 is an integer such that
|G − Gℎ | ≤ 1/2 (i.e. Gℎ is equal to G rounded to a nearest integer). Furthermore,
G = Gℎ + Gℓ .
Some absolute splitting techniques were also introduced by Rump et al. (2008),

for scalars and vectors, in the context of accurate summation of many FP numbers.
Extensions to the matrix case have then been proposed by Ozaki, Ogita, Oishi and
Rump (2012), which allow us to compute EFTs of matrix products.
The next algorithm performs a relative splitting of G and can be seen as an

FMA-based variant of Veltkamp’s splitting used by Dekker (1971).

Theorem 4.2 (Jeannerod et al. 2018). Let G ∈ F and B ∈ Z such that 1 ≤ B < ?.
Then, barring underflow and overflow, Algorithm 7 computes Gℎ, Gℓ ∈ F such
that G = Gℎ + Gℓ and the significands of Gℎ and Gℓ have at most ? − B and B bits,
respectively.

29 See https://docs.julialang.org/en/v1/base/math/.

https://doi.org/10.1017/S0962492922000101 Published online by Cambridge University Press

https://docs.julialang.org/en/v1/base/math/
https://doi.org/10.1017/S0962492922000101


Floating-point arithmetic 249

Algorithm 7 FMAsplit(G)
Require: � = 2B + 1
W ← RN(�G)
Gℎ ← RN(W − 2BG)
Gℓ ← RN(G − Gℎ) {or Gℓ ← RN(�G − W)}
return (Gℎ, Gℓ)

Note that the upper bounds ? − B and B on the bit-lengths of Gℎ and Gℓ can be
attained simultaneously. For example, if G = 2−21−?, then W = (1+2−B−21−?)·2B+1,
and therefore

Gℎ = (2?−B − 1) · 2B−?+1, Gℓ = (2B − 1) · 21−? .

When B = ? − 1, Theorem 4.2 implies that Gℎ will be an integral power of 2, but
note that |Gℎ | need not be exactly ufp(G). Using again the input G = 2 − 21−?, we
can check that Gℎ = 1 = ufp(G) when B = ? − 1, while taking G = 2 − 22−? gives
Gℎ = 2 ≠ ufp(G).

Exact computation of ufp(G) can be done thanks to an algorithm due to Rump
(2009), recalled inAlgorithm 8. Rump’s algorithm uses four FP operations, without
any FMA. Furthermore, if in this algorithm we replace i with i · 21−? and ignore
the possibility of underflow and overflow, then we can obtain ulp(G) in four FP
operations as well.

Algorithm 8 ufp(G)
Require: i = 2?−1 + 1, k = 1 − 2−?

@ ← RN(iG)
A ← RN(k@)
X ← RN(@ − A)
return |X |

If an FMA is available and used, then one can obtain ulp(G) in just three FP
operations, by adapting a scheme introduced by Rump, Zimmermann, Boldo and
Melquiond (2009) for computing the predecessor and successor of a given FP
number (Jeannerod et al. 2018, Algorithm 8). Note also that this paper by Rump
et al. (2009) provides a good illustration of the care needed to handle subnormal
inputs properly.
Finally, let us mention that alternative splitting algorithms have been proposed

by Graillat, Lefèvre and Muller (2020) when rounding is assumed to be either
towards −∞ or towards +∞ (instead of to nearest). Such algorithms can then be
used to implement Dekker’s EFT for the product of two FP numbers when directed
roundings are used.
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4.4. Floating-point filters

In some cases, despite the use of numerical computations, one might be looking not
for a numerical result but for aBoolean result. A typical example is in computational
geometry, where decisions such as are these two points on the same side of this
plane? or is this point inside this sphere? must be made. These decisions usually
reduce to knowing the sign of a determinant.
If the rounding error of the floating-point determinant can be (hopefully tightly)

bounded, then we will in most cases be able to make the decision with a simple
floating-point calculation. The use of exact or highly accurate arithmetic will be
reserved to the (hopefully few) cases where the absolute value of the computed
determinant is less than the error bound. This is the idea behind the use of floating-
point filters, suggested by Fortune and Van Wyk (1993). See also the works by
Shewchuk (1997), Pion (1999), Demmel andHida (2004) and Bartels, Fisikopoulos
and Weiser (2022).

4.5. Error bounds in complex arithmetic

Once floating-point arithmetic is available for approximating and manipulating real
numbers, it can naturally be used to create ways to approximate and manipulate
complex numbers, and this has been common practice at least since the 1960s
(Smith 1962, Wilkinson 1965, Friedland 1967).
Typically, a complex number I ∈ C will be approximated by a complex floating-

point number of the form Î = 0+ 81 with 82 = −1 and 0, 1 two FP numbers from the
same set F of binary, precision-? FP numbers. If 0 and 1 are obtained by rounding
the real and imaginary parts of I to nearest in F, then in the absence of underflow
and overflow, each of the two associated relative errors is at most u = 2−?, and
therefore

Î = I(1 + X), X ∈ C, |X | ≤ u.

This is just the complex analogue of what we have seen in Section 2.1, the relative
error X now being a complex number whose complex absolute value is bounded by
the unit round-off independently of I. Similarly to the real case, u can be replaced
by u/(1+u)when rounding is to nearest, and by 2u in the case of directed or faithful
roundings.30 Also, the possibility of underflow for 0 or 1 is taken into account by
adding a suitable complex term to the product I(1 + X) (Demmel 1984).
Given two complex FP numbers G = 0 + 81 and H = 2 + 83, we can now consider

how to operate on them. In principle, this should be straightforward at least for
basic arithmetic, which is defined by simple real functions of 0, 1, 2, 3:31

30 In the case where |I | = 1, which occurs in particular when I is a root of unity, then the bounds u
and 2u can be divided by

√
2, as shown by Brisebarre et al. (2020).

31 For square root, choosing a negative real part could be possible as well, provided the sign of the
imaginary part is adjusted accordingly; also, we assume that sign(0) = +1. See the work of Kahan
(1987, p. 201) for a sign function supporting signed zeros.
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• |G | =
√
02 + 12,

• G ± H = 0 ± 2 + 8(1 ± 3),
• GH = 02 − 13 + 8(03 + 12),
• G/H = (02 + 13)/B + 8(12 − 03)/B with B = 22 + 32, and

• √G =
√
|G | + 0

2
+ 8 sign(1)

√
|G | − 0

2
.

In practice, providing suitable FP support for this set of basic operations is non-
trivial, as various issues arise, pertaining notably to specification, robustness and
accuracy. These issues are well known, and detailed discussions can be found for
example in the writings of Kahan (1987), Kahan and Thomas (1991) and Beebe
(2017, Chap. 15, 17), so here we only make a few comments.

Specification. Given some complex FP inputs whose real and imaginary parts
can be FP finite numbers as well as infinities or NaNs, what complex FP output
should we return for |G |, G + H, etc.? For the complex absolute value as well as
complex addition/subtraction we can simply rely on the IEEE-754 specifications
of the hypotenuse function and of addition/subtraction. Note, however, that since
the support of the hypotenuse function is not required but only recommended by
the Standard (IEEE 2019, §9), most existing implementations of |G | might follow a
weaker specification, where a correctly rounded result is not guaranteed.
For complex multiplication, division and square root, there is no such complete

specification to rely on, at least because strict requirements for the behaviour
of an operation like 01 + 23 have so far been beyond the scope of IEEE-754
arithmetic. Several implementation choices are thus possible, sometimes leading
to inconsistencies for numerical values as well as exceptional behaviours (Demmel
et al. 2022, §2.2).

Robustness. Another difficulty comes from the possibility of undue intermediate
underflows and overflows when evaluating expressions such as

√
02 + 12, 02 − 13,

and (02+13)/(22+32) in the straightforward way by means of basic FP arithmetic.
For example, if 02 ≈ 13 � 
, then the exact value 02 − 13 can be in the normal
domain of F. In such a case, it could in principle be represented accurately by an
element of F, while RU

D(RU
D(02) − RU

D(13)) = RU
D(+∞ − (+∞)) = NaN.

To avoid this kind of phenomenon asmuch as possible, various scaling techniques
have been proposed, especially for division and square root (Smith 1962, Friedland
1967, Stewart 1985, Kahan 1987, Li et al. 2000, Priest 2004, Baudin and Smith
2012), and some of them appear for example in the working draft of the C Standard
(ISO/IEC2022, AnnexG).Also, a scaling technique formultiplication ismentioned
by Sterbenz (1974, §13).
Note finally that the availability of a correctly rounded operator (0, 1, 2, 3) ↦→

01 + 23 would immediately lead to a robust multiplication; for division, however,
inputs such that 02 + 13 ≈ 22 + 32 � 
 would remain problematic.
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Accuracy. A third difficulty is due to the fact that damaging cancellation can be
caused by straightforward FP evaluations of expressions such as 02−13 or |G | − |0 |,
that appear in the above definitions of GH, G/H and √G. For the other operations,
namely |G | and G ± H, this is clearly not an issue, and high accuracy is ensured even
for naive implementations of the hypotenuse (Hull et al. 1994, Ziv 1999), although
even better accuracy can be obtained with some care, as shown by Borges (2021).
In the next three subsections we will examine this accuracy issue more carefully,

thus focusing on multiplication, division and square root, and see when and how
the possibility of heavy cancellation should be dealt with in order to ensure some
high level of accuracy. A number of error bounds will be reviewed, which have
been given in the literature under the assumption that underflows and overflows do
not occur. These bounds, however, remain compatible with the scaling techniques
mentioned in the previous paragraph provided the scaling factors are integral powers
of two.
The last subsection will be devoted to extensions to the complex case of some of

the error-free transformations seen in Section 4.2.

4.5.1. Ensuring normwise accuracy: multiplication and division
For complex multiplication and division, it was noticed early on that the definitions
recalled above can be used directly in FP arithmetic to obtain values Î such that

Î = I(1 + X), I ∈ {GH, G/H}, X ∈ C, |X | ≤ _u +$(u2) (4.1)

for some modest constant _ ∈ R>0 (Champagne 1964, Wilkinson 1965). All we
need here is that each FP operation is done with relative error at most u (or even a
small multiple of it) and that underflows and overflows do not occur.
In other words, despite the possibility of damaging cancellation when computing

the real or imaginary part of the result (resulting in poor componentwise accuracy),
the traditional expressions for complex multiplication and division are enough to
ensure high relative accuracy in the normwise sense, for any of the usual rounding
functions. In the specific case of round-to-nearest, several detailed error analyses
have been done in order to determine the possible values of _ in (4.1) depending on
the context (e.g. availability of an FMA). We briefly review some of these results
in what follows.

Multiplication and squaring. For multiplication, Brent, Percival and Zimmermann
(2007) showed that one can take _ =

√
5when 02−13 and 03+12 are obtained after

four FPmultiplications and two FP additions. This constant can be decreased to _ =
2 when an FMA is used to obtain the real and imaginary parts as RN(02−RN(13))
and RN(03 + RN(12)), or as any of the three other ways (Jeannerod, Kornerup,
Louvet and Muller 2017a). In both cases the term $(u2) in (4.1) can be removed
and the constant is best possible in the sense that there exist FP inputs 0, 1, 2, 3
yielding a relative error X such that |X | ∼ _u as u→ 0.

https://doi.org/10.1017/S0962492922000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000101


Floating-point arithmetic 253

It was also noted by Jeannerod et al. (2017a) that in the special case of complex
squaring, where

G2 = 02 − 12 + 8 · 201,
one can take _ = 2 even in the absence of an FMA, that is, when the real part is
obtained as RN(RN(02) − RN(12)).

Division and inversion. For division, the definition amounts to first computing the
complex product GH with H = 2− 83, and then dividing the real and imaginary parts
of this product by

B = HH = 22 + 32.

Evaluating this sum of squares as RN(RN(22) + RN(32)) or RN(22 + RN(32)) or
RN(RN(22) + 32) yields an FP number B̂ of the form

B̂ = B(1 + XB), XB ∈ R, |XB | ≤ 2u,

and each FP division then yields a relative error at most u. Thus, as noted by Olver
(1983), the computed quotient Î satisfies (4.1) with

_ = _mul + 3, (4.2)

where _mul denotes the constant associated with the algorithm used to evaluate GH.
Consequently, we can always take _ =

√
5 + 3 and, if an FMA is available, _ = 5.

An interesting special case is complex inversion, defined by

1/H = 2/B − 83/B.
Since no complex multiplication is involved, we can take _mul = 0, and we deduce
immediately that _inv = 3. The detailed error analysis by Jeannerod, Louvet,
Muller and Plet (2016) reveals that for ? ≥ 10 and without an FMA, we can in fact
take _inv = 2.70712 . . . , and that this leading constant is reasonably sharp. For
example, for ? = 53 (binary64 IEEE format), evaluating I = (2 + 83)−1 in this way
with 2 = 4503599709991314 and 3 = 6369051770002436 · 226 produces Î such
that |X | = | Î − I |/|I | = 2.70679 . . . u.
Complex inversion can of course also be used to implement complex division as

G · H−1 = 0(2/B) + 1(3/B) + 8(1(2/B) − 0(3/B)).
This approach has the same operation count as the initial one, based on G/H =
(02 + 13)/B + 8(12 − 03)/B, but less instruction-level parallelism, since the sum
of squares and the complex product can no longer be evaluated simultaneously.
However, it has the following nice accuracy property. The computed Î satisfies
(4.1) with

_ = _inv + _mul,
which for _inv < 2.708 and _mul ≤

√
5 < 2.237 implies _ < 4.945. Consequently,

for complex division we can always take _ = 5 in (4.1), provided we use G/H if an
FMA is available, and G · H−1 otherwise.
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If besides the FMA we can also use tests or call functions such as minimum-
Magnitude and maximumMagnitude (see Section 2.12.2), then the sum of squares
can now be evaluated as

B̂ = RN(<2 + RN(=2)), < = max(|2 |, |3 |), = = min(|2 |, |3 |). (4.3)

In this case it is known that the associated relative error |XB | can be bounded by 1.5u
instead of 2u without sorting |2 | and |3 |. This directly allows us to replace equation
(4.2) with _ = _mul + 2.5 and therefore to obtain a complex division algorithm for
which _ = 4.5 (Jeannerod, Louvet and Muller 2013b).

4.5.2. Ensuring normwise accuracy: square root
In contrast to multiplication and division, the formula recalled above for square root
does not ensure a normwise relative error in$(u) when evaluated in FP arithmetic.
This fact, which is due to the possibility of heavy cancellation in one of the two
expressions |G | ± 0, was recognized early on, and a now classical workaround is the
following rewriting, which for example was already proposed by Strachey (1959).
Given G = 0 + 81 with 0, 1 ∈ F, the real and imaginary parts of

√
G = ' + 8� can be

expressed as follows:

• if 0 ≥ 0, then ' =
√
|G | + 0

2
and � = 1/(2');

• if 0 < 0, then � = sign(1)
√
|G | − 0

2
and ' = 1/(2�).

By using the standard model, Hull et al. (1994) showed that in the absence of
underflow and overflow, Strachey’s formula produces a complex FP number Î =
'̂ + 8 �̂ such that

Î =
√
G (1 + X), X ∈ C, |X | ≤

√
37
2

u +$(u2).

This bound holds independently of whether an FMA is used for evaluating the sum
of squares in |G | =

√
02 + 12, and for directed and faithful roundings it holds with

u replaced by 2u.
For round-to-nearest, the term $(u2) can be removed and the leading constant√

37/2 = 3.041 . . . is reasonably sharp. For example, for ? = 53 (binary64 IEEE
format), if we take 0 = 650824205667 · 2−52 and 1 = 4507997673885435 · 2−51

and evaluate 02 + 12 as RN(RN(02) + RN(12)) or RN(02 + RN(12)), we obtain a
relative error X such that |X | > 3.023u (Jeannerod and Muller 2017). Of course,
if one can sort |0 | and |1 | and evaluate 02 + 12 with an FMA as in (4.3), then
a constant slightly smaller than

√
37/2 is easily established, such as for example√

545/8 = 2.918 . . . < 3.
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4.5.3. Ensuring componentwise accuracy
We have just seen that for the five basic operations on complex FP numbers the
usual definitions (and, in the case of square root, Strachey’s rearrangement) suffice
to ensure that the associated normwise relative errors | Î− I |/|I | can be bounded by
small multiples of u. A nice consequence of this is that the error analyses based
on the standard model of FP arithmetic can often be extended to the complex case
directly, by a suitable increase of the leading constants in the error bounds.
What if we now want high relative accuracy in the componentwise sense? In

this case, both the real and imaginary parts of Î must have relative errors in $(u).
For complex addition and subtraction, obtained as RN(0 ± 2) + 8RN(1 ± 3), this is
obviously true. For complex square root, Strachey’s rewriting, introduced in Sec-
tion 4.5.2 in order to ensure normwise accuracy, turns out to ensure componentwise
accuracy as well. Indeed, if 0 ≥ 0 (and with or without an FMA), it is easily seen
that repeated applications of the standard model lead to

|'̂ − ' |
|' | ≤ 5

2
u +$(u2),

| �̂ − � |
|� | ≤

7
2

u +$(u2).

For 0 < 0, these two bounds can be swapped and, again, when rounding is to
nearest they are reasonably tight and the terms $(u2) are not even needed (Hull
et al. 1994, Jeannerod and Muller 2017).
We are thus left with complex multiplication and division, for which the only

issue is the accurate FP evaluation of expressions of the form 02− 13. Specifically,
if 0123 ≥ 0 then sign(02) = sign(13) and sign(03) = sign(12), which implies that
only the real part in the complex product 02 − 13 + 8(03 + 12) can suffer from
heavy cancellation and that its imaginary part will be obtained with high relative
accuracy. Similarly, if 0123 < 0 then only 03 + 12 can be inaccurate. These
remarks apply to division as well, where inaccuracy can only come from the FP
evaluation of one of the numerators in (02 + 13)/(22 + 32) + 8(12 − 03)/(22 + 32).
In practice, a naive FP evaluation of 02 − 13 can indeed yield totally wrong

results, with or without an FMA. This fact is well known and we simply recall here
a binary64 example by Jeannerod, Monat and Thévenoux (2017b). For ? = 53, if
0 = 1 + 2−51, 1 = 1 + 3 · 2−52, 2 = 1 − 2−53 and 3 = 1 − 3 · 2−53, then the exact
result is

02 − 13 = 7 · 2−105 ≈ 1.72 × 10−31

and can be represented exactly as a binary64 FP number, while

RN(RN(02) − RN(13)) = 0,
RN(02 − RN(13)) = 1.11 . . . × 10−16,

RN(RN(02) − 13) = −1.11 . . . × 10−16.

An efficient way to avoid such damaging cancellations is to call the 2Prod
algorithm from Section 4.2.2. For example, it implements the EFT 02 = c + 4,
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Algorithm 9 cmulCHT(0, 1, 2, 3)
(c, 4) ← 2Prod(0, 2)
(c′, 4′) ← 2Prod(1, 3)
'̂ ← RN(RN(c − c′) + RN(4 − 4′))
(d, 5 ) ← 2Prod(0, 3)
(d′, 5 ′)← 2Prod(1, 2)
�̂ ← RN(RN(d + d′) + RN( 5 + 5 ′))
return ('̂, �̂)

Algorithm 10 cmulKahan(0, 1, 2, 3)
(c, 4) ← 2Prod(0, 2)
'̂ ← RN(RN(c − 13) + 4))
(d, 5 )← 2Prod(0, 3)
�̂ ← RN(RN(d + 12) + 5 ))
return ('̂, �̂)

where c is the rounded product RN(02) and 4 is the corresponding error. Adding
this error to the error of the product RN(13) yields a correction that can then be
used to improve the accuracy of the naive evaluation RN(RN(02)−RN(13)). This
scheme is an example of what is sometimes called a compensated algorithm (see
Section 5.3). It was presented and analysed by Cornea, Harrison and Tang (2002,
p. 273), who used it to evaluate both the real and imaginary parts ' and � of
(0 + 81)(2 + 83) very accurately. For round-to-nearest, this leads to Algorithm 9.

Detailed rounding error analyses of this approach show that both |'̂/' − 1| and
| �̂/� − 1| are bounded by 2u + $(u2), that the constant 2 is best possible, and that
the possibility of removing the term in $(u2) depends on the tie-breaking rule. If
RN = RN4 (ties-to-even), then 2u+$(u2) can be replaced by 2u. But if RN = RN0
(ties-to-away), the relative error in '̂ or �̂ can be larger than 2u + u2 − 4u3 (Muller
2015, Jeannerod 2016).
An alternative to Algorithm 9 is Algorithm 10, which, following a technique by

Kahan (1998), recovers the error of only one of the two products in 02 − 13, and
similarly for 03+12. In the version displayed here the computed errors are those of
RN(02) and RN(03), but three other ways are possible. In each case the resulting
relative errors are bounded as

|'̂/' − 1| ≤ 2u, | �̂/� − 1| ≤ 2u

and, again, the constant 2 cannot be reduced further (Jeannerod, Louvet and Muller
2013a).

In practice, these accurate algorithms have reasonable run-time overheads com-
pared with the naive ones, for which the computed real or imaginary part may
have no correct digit at all (Jeannerod et al. 2017b). Although Algorithm 10 is
simpler and cheaper than Algorithm 9, the latter has the advantage of symmetry
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and ensures that the complex multiplication it implements is commutative. Note
also that both algorithms preserve the fact that GG = (0 + 81)(0 − 81) = 02 + 12 is a
real number; this is well known to be false for the naive FMA-based scheme, where
the imaginary part is computed as RN(RN(−01) + 01) or RN(−01 + RN(01)).

Application to division. Algorithms 9 and 10 can be used directly to ensure high
componentwise accuracy for complex division. It suffices to evaluate the complex
product GH = (0 + 81)(2 − 83) with either of these algorithms, and then to divide
the obtained real and imaginary parts by HH = 22 + 32. Each component of the
computed quotient then has relative error at most 5u + $(u2) and, similarly to
what has been said for the normwise case, evaluating 22 + 32 as in (4.3) leads
further to the slightly smaller bound 4.5u +$(u2) (Jeannerod et al. 2013b). As for
complex inversion, the traditional formula 1/H = 2/B − 8 · 3/B already ensures high
componentwise accuracy.

The special case of squaring. To ensure componentwise accuracy when evaluating
G2 = 02 − 12 + 8 · 201, the preceding algorithms need not be used and it suffices to
evaluate 02 − 12 as (0 + 1)(0 − 1). This rewriting was already suggested by Kahan
(1987) and, for round-to-nearest, it is easily checked that the computed value

'̂ = RN(RN(0 + 1) · RN(0 − 1))

satisfies |'̂/' − 1| ≤ 3u. The analysis done by Jeannerod (2020) shows further
that the best possible constant is indeed 3 when RN rounds ties-to-away, but that
it is 9/4 when RN rounds ties-to-even. It was also noted there that '̂ can be
strictly larger than RN(02), while this cannot occur when using any of the naive
schemes RN(RN(02)−RN(12)), RN(02 −RN(12)) or RN(RN(02)− 12), thanks to
the monotonicity of the rounding function.

4.5.4. Complex EFTs
Extensions of error-free transformations from the real case to the complex case have
been proposed by Graillat and Ménissier-Morain (2007, 2008, 2012) for addition,
subtraction and multiplication, mostly in order to improve the normwise accuracy
of polynomial evaluation in complex FP arithmetic.
For addition, where G + H = (0 + 81) + (2 + 83) is evaluated as the complex

FP number Î = RN(0 + 2) + 8RN(1 + 3), a complex EFT is obtained directly by
applying the EFT from Section 4.2.1 twice, to 0 + 2 and to 1 + 3. Two calls to
the 2Sum algorithm suffice to produce the FP numbers 5 = 0 + 2 − RN(0 + 2) and
6 = 1 + 3 − RN(1 + 3) and therefore the complex FP number 4 such that

G + H = Î + 4, 4 = 5 + 86, 5 , 6 ∈ F. (4.4)

We can proceed similarly for subtraction, and the remarks made in the real case
still apply: rounding must be to nearest, 2Sum can be replaced by Fast2Sum up to
sorting the inputs, and the (im)possibility of spurious overflow is well understood.
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For multiplication, the most common EFT is obtained by considering the eval-
uation of GH = (0 + 81)(2 + 83) without FMA, that is, as Î = '̂ + 8 �̂ where
'̂ = RN(RN(02) − RN(13)) and �̂ = RN(RN(03) + RN(12)), and by using not
only 2Sum but also the FMA-based 2Prod algorithm from Section 4.2.2 to com-
pute the associated rounding errors. Specifically, for the real part we have

02 − 13 = RN(02) + 51 − RN(13) + 52
= '̂ + 51 + 52 + 53,

where the errors 51,− 52 ∈ F are computed by 2Prod and the error 53 ∈ F is
computed by 2Sum. Proceeding similarly for the imaginary part yields three FP
errors 6: such that 03 + 12 = �̂ + 61 + 62 + 63, and therefore three complex FP
numbers 4: such that

GH = Î + 41 + 42 + 43, 4: = 5: + 86: , 5: , 6: ∈ F. (4.5)

Depending on whether Fast2Sum or 2Sum is used, the costs of decomposing
G + H as in (4.4) and GH as in (4.5) range from, respectively, 6 to 12 and 14 to 20
FP operations. In practice, these EFTs have been used to improve the evaluation of
elementary symmetric functions on complex FP inputs (Jiang, Graillat, Barrio and
Yang 2016), as well as the computation of polynomial roots via the Ehrlich–Aberth
method (Cameron and Graillat 2022).

Note finally that in the absence of an FMA it is still possible to implement the
EFT in (4.5) by using the Veltkamp–Dekker algorithm (mentioned in Section 4.2.2)
in order to recover the rounding errors of the four FP products, but at the price
of at least twice as many FP operations as with 2Prod. If, on the contrary, an
FMA is available and used to evaluate the product GH as Î′ = '̂′ + 8 �̂ ′ with, say,
'̂′ = RN(RN(02) − 13) and �̂ ′ = RN(RN(03) + 12), then we can obtain an EFT of
the same form as in (4.5),

GH = Î′ + 41 + 4′2 + 4′3,
with 41 produced as before by two calls to 2Prod, and with 4′2 and 4′3 two other
complex FP numbers now produced by two calls to the EFT of the FMA (algorithm
ErrFMA from Section 4.2.4). Again, a significant cost overhead is to be expected
here, due to the complexity of ErrFMA. Thus, although such variants might be
optimized further, it seems that a reasonable choice for performing an EFT for
complex multiplication remains the one based on (4.5), restricting the use of the
FMA to 2Prod.

4.6. Error bounds for higher-dimensional problems

In the previous section we focused on complex FP arithmetic, whose key building
block is the two-dimensional inner product 01 + 23. We now consider similar
problems in higher dimensions, such as G>H =

∑=
8=1 G8H8 with G and H two vectors

of = FP numbers. As before, our focus will be on accuracy issues and the derivation
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of error bounds, assuming (unless otherwise stated) that only one precision is used
and that underflows and overflows do not occur.

4.6.1. Traditional worst-case bounds
Following Wilkinson (1960, 1963), a priori worst-case error bounds can often be
produced by repeated applications of the standard models of FP arithmetic (2.5):
(ratios of) expressions of the form

1 + \ℎ ≔
ℎ∏
8=1

(1 + X8) (4.6)

are obtained, from which bounds on |\ℎ | imply bounds on the backward error of
the computed result. Here, each X8 is the relative error of a single FP arithmetic
operation, and ℎ depends on the algorithm used to produce that result. For example,
when evaluating the sum G1 + G2 + G3 from left to right, the computed result B̂ can
be written as

B̂ = ((G1 + G2)(1 + X2) + G3)(1 + X1)
≕ G ′1 + G ′2 + G ′3,

where G ′1 ≔ G1(1+ \2), G ′2 ≔ G2(1+ \2) and G ′3 ≔ G3(1+ \1). In other words, B̂ is the
exact sum of three numbers obtained by slight (relative) perturbations (\2, \2, \1)
of (G1, G2, G3), and its (relative) backward error is at most max(|\1 |, |\2 |).

For round-to-nearest, where |X8 | ≤ u/(1 + u) ≤ u for all 8, we have

|\ℎ | ≤ (1 + u)ℎ − 1;

for directed roundings and faithful rounding the same holds with u replaced by 2u.
Assuming ℎ is fixed and D → 0, we see that these bounds have the form _u+$(u2)
for some ‘constant’ _ that is either ℎ or 2ℎ, depending on the rounding function.
The commonest way to bound |\ℎ |, however, is by replacing (1 + u)ℎ − 1 with

the following slightly larger quantity:

|\ℎ | ≤ ℎu
1 − ℎu

≕ Wℎ if ℎ < u−1. (4.7)

As amply demonstrated by Higham (2002), this Wℎ notation turns out to be the
right tool for performing a great deal of a prioriworst-case rounding error analysis.
Indeed, it makes it possible to derive error bounds that are concise yet rigorous
and free of the risk of having possibly large constants hiding in the $(u2) terms.
Furthermore, such bounds can be composed very conveniently by means of simple
manipulation rules such as Wℎ + W: + WℎW: ≤ Wℎ+: if ℎ + : < u−1 (Higham 2002,
§3.4).
Note that when deriving a backward error bound of the form Wℎ, the precise

value of ℎ can depend (sometimes significantly) on the FP algorithm used. For
example, when evaluating a degree-= polynomial

∑=
8=0 08G

8 by Horner’s rule, then,
for 08 , G ∈ F and using = multiplications and = additions with round-to-nearest, the
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resulting backward error is at most W2=. But if an FMA is used at each of the =
iterations, this bound drops to W= and can thus be roughly halved.

As another classical example, consider the FP evaluation of the sum

B= = G1 + · · · + G=, G8 ∈ F,
using exactly = − 1 FP additions and any parenthesizing. For = = 4, this could be
((G1 + G2) + G3) + G4 or (G1 + (G2 + G3)) + G4 or (G1 + G2) + (G3 + G4), etc. In the
absence of overflow32 the computed sum B̂= has backward error bounded by Wℎ,
where ℎ ≤ =−1 is the height of the binary tree that underlies the chosen summation
algorithm (Higham 2002, §4.2). Thus the forward error of B̂= can be bounded as
follows, independently of the summation ordering:

| B̂= − B= | ≤ W=−1

=∑
8=1
|G8 | if = − 1 < u−1. (4.8)

This constant W=−1 corresponds to recursive summation, where B̂= is produced by
the recurrence defined by B̂1 ≔ G1 and B̂: ≔ RN(̂B:−1 + G:) for 2 ≤ : ≤ =. At the
other extreme, pairwise summation corresponds to the smallest possible height

ℎ = dlog2 =e .
An interesting intermediate situation is blocked summation, which underlies the
design and implementation of various efficient and accurate algorithms for sum-
mation and inner products (Castaldo, Whaley and Chronopoulos 2009, Blanchard,
Higham and Mary 2020). Given a block size 1 (which for simplicity is assumed
here to divide =), we rewrite the exact sum B= as

∑=/1
9=1

∑1
:=1 G( 9−1)1+: and evaluate

it as follows. First, compute each of the =/1 partial sums of length 1, using a total
of =/1 · (1 − 1) FP additions; then compute the sum of the obtained partial sums
using =/1 − 1 FP additions. In this case, the term W=−1 in (4.8) can always be
replaced by Wℎ with

ℎ = 1 + =/1 − 2, (4.9)

whose minimal value ≈ 2
√
= is attained when 1 is nearest to

√
=.

Such variations in the values of Wℎ are in general reflected directly by the error
bounds of higher-level algorithms relying on FP summation, such as those for inner
products, matrix–vector multiplication, matrix multiplication and factorization,
etc. In particular, when evaluating inner products G>H =

∑=
8=1 G8H8 in the usual way

by adding the individual products together, the resulting constant is Wℎ+1 ≤ W=,
with ℎ ≤ = − 1 the height of the underlying summation tree. Finally, any of these
traditional error bounds can be extended to the case of complex FP arithmetic by
simply taking into account the small constants associated with complex FP ×, /, √
(and which were presented in Section 4.5).

32 Recall that FP addition is exact in the case of underflow, so all the error bounds we shall give for
FP summation actually need only assume that overflows do not occur.

https://doi.org/10.1017/S0962492922000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000101


Floating-point arithmetic 261

4.6.2. Refining some worst-case bounds
During the last decade or so, several of the traditional bounds mentioned in the
previous section have been sharpened and simplified. The initial improvement is
due to Rump (2012), who showed for recursive summation and round-to-nearest
that the constant W=−1 in (4.8) can be replaced by (=−1)u, for all =. In other words,
both the $(u2) term in W=−1 = (= − 1)u + $(u2) and the assumption (= − 1)u < 1
can be removed.
The proof of this result does not use just the standard model (2.5a) but combines

it with the following property of round-to-nearest:

|RN(0 + 1) − (0 + 1)| ≤ min(|0 |, |1 |) for 0, 1, ∈ F. (4.10)

Furthermore, the proof can be adapted to any summation ordering, so that (4.8)
can eventually be replaced by

| B̂= − B= | ≤ (= − 1)u
=∑
8=1
|G8 |. (4.11)

Then, still assuming round-to-nearest, several similar refinements have been
proposed by various authors, leading to $(u2)-free error bounds for several basic
FP algorithms, including the evaluation of inner products, 2-norms, powers and
continued products, the evaluation of univariate polynomials by means of Horner’s
rule, LU and Cholesky factorizations, and triangular system solving by substitution
(Rump 2019, §III and the references therein). In all cases, the classical constants
Wℎ have been replaced by their linear term ℎu, but sometimes at the price of some
restriction on the largest possible values of ℎ.

More recently, Lange and Rump (2017, 2019) introduced a general arithmetic
framework for FP summation, which in particular makes it possible to go beyond
(4.11) in at least three ways, by considering roundings other than to nearest, by
incorporating the height of the summation tree into the error bounds, and by
addressing the issue of the attainability of these bounds. Specifically, they gave the
following analogue of (4.11) for more general roundings, such as faithful rounding
(and thus also directed roundings), for which property (4.10) no longer holds.

Theorem 4.3 (Lange and Rump 2017). Let B= =
∑=
8=1 G8 with G8 ∈ F. Then, for

faithful rounding and any summation ordering, the computed sum B̂= satisfies

| B̂= − B= | ≤ (= − 1) · 2u
=∑
8=1
|G8 | if = − 1 ≤ 1

2u−1.

This bound has the same form as the one in (4.11), with u replaced by 2u, up to
some restriction on =. Note that in general this restriction on = cannot be relaxed
(and is thus unavoidable). For example, for recursive summation and rounding
towards +∞, taking (G1, G2, . . . , G=) = (1, u2, . . . , u2) with = = 1

2u−1 + 2 leads to
B̂= − B= > (= − 1) · 2uB=.
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Lange and Rump then introduced some $(u2)-free error bounds that not only
cover general roundings but also incorporate the height ℎ of the summation tree,
as follows.

Theorem 4.4 (Lange and Rump 2019). Let B= =
∑=
8=1 G8 with G8 ∈ F. Then, for

any summation ordering whose underlying binary tree has height at most ℎ, the
computed sum B̂= satisfies

| B̂= − B= | ≤ ℎv
=∑
8=1
|G8 | if ℎ ≤ v−1/2 − 1,

where v = u for round-to-nearest and v = 2u for faithful rounding.

Note that here the height ℎ ≤ =−1 is required to be at most of order 1/√u, while
in the previous theorem = was required to be at most about 1/u. Importantly, this
error bound holds for inner products as well, with ℎ ≤ = now being the height of
the associated binary evaluation tree (Lange and Rump 2019, Corollary 4).
Finally, for round-to-nearest, the bound (4.11) can be replaced by the following

attainable one, which holds whatever the ordering, provided = is not too large.

Theorem 4.5 (Lange and Rump 2019). Let B= =
∑=
8=1 G8 with G8 ∈ F. Then, for

round-to-nearest and any summation ordering, the computed sum B̂= satisfies

| B̂= − B= | ≤ (= − 1)u
1 + (= − 1)u

=∑
8=1
|G8 | if = − 1 ≤ 1

2u−1.

This bound is attained in particular for round-to-nearest, ties-to-even, when
applying recursive summation to (G1, G2, . . . , G=) = (1, u, . . . , u). Note that the
same bound was proposed by Mascarenhas (2016) with a different proof technique
and assuming recursive summation and = ≤ 1

20u−1. Interestingly, no such attainable
bound seems to be available for FP inner products. Despite this, and as shown by
Lange and Rump (2019, §6), this optimal bound for FP summation in round-to-
nearest is already enough to deduce rather directly several $(u2)-free bounds for
higher-level problems such as, for example, sums of products

∑
8

∏
9 G8 9 , matrix–

vector products for Vandermonde matrices, and blocked summation. In the latter
case, this makes it possible to replace the traditional constant W1+=/1−2, seen in
(4.9), with the linear term (1 + =/1 − 2)u provided max(1, =/1) − 1 ≤ 1

2u−1.

4.6.3. Computable error bounds
All the error bounds seen so far are real numbers involving exact expressions, such
as

∑=
8=1 |G8 |, that cannot be represented exactly as FP numbers. If an FP error

bound must be produced along with the approximate result, then a first way is via
repeated applications of the second standard model (2.5b) instead of the first one.
For example, for FP addition and round-to-nearest, this second model implies

|0 + 1 | ≤ (1 + u)|RN(0 + 1)| for 0, 1, ∈ F. (4.12)
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Applying this inequality = − 1 times to the sum of the |G8 | gives
=∑
8=1
|G8 | ≤ (1 + u)=−1̂C=,

where Ĉ= denotes the computed value of
∑=
8=1 |G8 | obtained using recursive summa-

tion (or another ordering). Hence, recalling (4.11), the error of the computed sum
of the G8 is bounded as

| B̂= − B= | ≤ (= − 1)u(1 + u)=−1̂C=.

Here the right-hand side is in general not in F, but it can be bounded by a computable
FP number as follows. Let 5 ≔ (= − 1)u and 6 ≔ RN(̂C=/(1 − =u)), and assume
= ≤ u−1. It is easily seen that 5 and 1−=u are FP numbers, and that (1+u)=−1̂C= ≤ 6.
Consequently,

| B̂= − B= | ≤ 5 6

≤ (1 + u)RN( 5 6)

≤ RN
(
RN( 5 6)
1 − 2u

)
≕ computable bound.

To summarize, a rigorous error bound for FP summation can be obtained easily
in round-to-nearest FP arithmetic, by first evaluating the two sums

∑
8 G8 and

∑
8 |G8 |

independently and then performing three extra FP operations. Similar examples
of computable FP bounds can be found in various contexts and we refer to the
works by Ogita et al. (2005), Langlois and Louvet (2007), Jiang et al. (2016) and
Cameron and Graillat (2022).
Another way is to exploit ufp-based bounds instead of the second standard model

(2.5b). For example, for FP addition,

|RN(0 + 1) − (0 + 1)| ≤ u ufp(RN(0 + 1)) for 0, 1, ∈ F.
This bound can be up to about half the size of the bound u|RN(0 + 1)| implied
by (2.5b). Furthermore, it is a computable bound, since the ufp of an FP number
can be obtained using no more than four FP operations in round-to-nearest (Rump
2009, Algorithm 3.5); see also Section 4.3.
For the summation of = FP numbers with round-to-nearest, this bound can be

exploited to obtain the following computable counterpart of (4.11).

Theorem 4.6 (Rump 2015). Let B= =
∑=
8=1 G8 with G8 ∈ F, and let B̂= and Ĉ=

be the computed sums of B= and
∑=
8=1 |G8 |, in round-to-nearest and with the same

ordering. Then B̂= satisfies

| B̂= − B= | ≤ (= − 1) u ufp(̂C=). (4.13)

Barring underflow and overflow and for = ≤ u−1, this bound is an FP number,
being the exact product of an FP number and an integral power of 2; as with the
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first approach, it can be computed by evaluating both B̂= and Ĉ= and performing a
few extra FP operations, using only round-to-nearest.
Rump (2015) notes that the bound (4.13) is attained for recursive summation,

round-to-nearest, ties-to-even, and (G1, G2, . . . , G=) = (1, u, . . . , u). He shows also
that in order to achieve (4.13) it is necessary to use the same ordering for both B̂=
and Ĉ=, and that different orderings lead to the more pessimistic bound

| B̂= − B= | ≤ (= − 1)u
(̂
C= + (= − 1)u ufp(̂C=)

)
.

As before, a few FP operations will suffice to turn this bound into a computable
one. From this, one can for example deduce computable error bounds for matrix
multiplication, which can then be used to implement efficient routines for interval
matrix multiplication (Ozaki, Ogita and Mukunoki 2021).

4.6.4. Probabilistic error bounds
For very high-dimensional problems and very low precision – a situation becoming
more and more common with the increase of computing speed and the availability
of small FP formats – products like =u can easily become larger than 1, thus making
backward error bounds of the form W= = =u/(1 − =u) or =u, such as those seen in
the three previous subsections, totally uninformative.
These bounds, however, are worst-case bounds and can be attained or nearly

attained only in extremely rare situations. In practice, for fixed u and increasing =,
it has long been observed that the error growth tends to be much slower, typically
as
√
ℎ u rather than as ℎ u (Wilkinson 1961, p. 318).

Recently, Higham and Mary (2019, 2020) initiated a path aimed at formalizing
this rule of thumb, and obtained rigorous probabilistic analogues of (4.7), that is,
bounds of the form

|\ℎ | ≤ W̃ℎ ≔ exp
(
_
√
ℎ u + ℎ u2

1 − u

)
− 1,

which are proved to hold with probability at least, say, 1−2 exp(−_2/2). Here _ is a
small constant that can be chosen so that the bound holds with very high probability
and the new term W̃ℎ = _

√
ℎ u + $(u2) indeed grows like

√
ℎ u. For stochastic

rounding, such probabilistic bounds hold unconditionally, while for deterministic
roundings (such as those of IEEE-754 arithmetic), they follow from assumptions
made about rounding errors and, sometimes, input data as well. For example, it can
be assumed that all the individual rounding errors occurring during a computation
form a sequence of mean-independent random variables of mean zero. In practice
this framework yields a priori error bounds whose growth rates nicely match the
observed ones.
Since 2019 the literature on this topic has been growing fast, with the publication

of probabilistic error analyses for most of the fundamental building blocks such as
sums, inner products and matrix–vector products, matrix multiplication and LU-
based system solving. We refer in particular to the works of Ipsen and Zhou (2020)
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and Connolly, Higham and Mary (2021), and the surveys of Croci et al. (2022)
and Higham and Mary (2022). Such analyses have also just been proposed for
Horner polynomial evaluation (El Arar, Sohier, de Oliveira Castro and Petit 2022),
for Householder QR factorization (Connolly and Higham 2022), and in the context
of mixed-precision algorithms (Hallman and Ipsen 2022, Connolly, Higham and
Pranesh 2022).
Finally, as noted by Higham (2021b), these new $(

√
ℎ u) bounds can be com-

bined with blocking techniques (which yield smaller constants as well, as in (4.9))
and with the features of modern architectures (whose block FMA units allow for
accumulation in extended precision), in order to explain why huge computations
using mostly small FP formats can succeed in practice.

4.7. Tools for polynomial approximation of functions

In general, at the hardware level, the only arithmetic operations that are available
are addition, multiplication, division and square root. Since division and square
root are significantly slower than the other operations (see Figure 1.1), if we avoid
using them, the only functions of one variable we can compute are piecewise
polynomials. Hence the mathematical functions are very often approximated by
polynomials (Cody and Waite 1980, Muller 2016, Beebe 2017). It is therefore
important to be able to tightly control the accuracy of polynomial approximations,
as well as the accuracy with which we evaluate polynomials in floating-point
arithmetic.

4.7.1. Sollya
The Sollya package33 by Chevillard, Joldeş and Lauter (2010) provides useful tools
for designing mathematical function libraries in floating-point arithmetic. Among
the many features of Sollya, two are of particular interest.

• A certified infinite norm (function supnorm), which allows us to compute
safe approximation error bounds, using an algorithm presented by Chevillard,
Harrison, Joldeş and Lauter (2011).
• A special floating-point minimax procedure (function fpminimax), that com-
putes best or nearly best polynomial approximations to functions given some
constraints (such as the coefficients of the polynomial being floating-point
numbers of a given format, or double-word numbers: see Section 5.1), using
techniques presented by Brisebarre and Chevillard (2007).

Let us give a short example of a Sollya session. We wish to approximate sin(G),
for G ∈ [0, 1/128], by an odd polynomial of degree 9 whose degree-1 coefficient
fits in one bit (which is just a way of imposing the fact that the coefficient should
be equal to 1), whose degree-3 coefficient is a double-word number in binary64

33 https://www.sollya.org/

https://doi.org/10.1017/S0962492922000101 Published online by Cambridge University Press

https://www.sollya.org/
https://doi.org/10.1017/S0962492922000101


266 S. Boldo, C.-P. Jeannerod, G. Melquiond and J.-M. Muller

arithmetic, and whose coefficients of degrees 5, 7 and 9 are binary64 FP numbers.
Under these constraints, we wish to minimize the relative approximation error. The
command line is:
> P := fpminimax(sin(x),[|1,3,5,7,9|],[|1,DD,D,D,D|],[0;1/128],relative);

Let us print the coefficients of % (in the form of an integer times a power of 2, so
that we have an exact representation of them):
> display=powers;
> P;
x * (1 + x^2 * (-108172851219475575594384527324229 * 2^(-109)
+ x^2 * (4803839602528529 * 2^(-59) + x^2 * (-7320136537069203 * 2^(-65)
+ x^2 * (3253360761268093 * 2^(-70))))))

We then obtain a tight enclosure of the relative approximation error (now printed
in decimal) as follows:
> prec=100!;
> display=decimal;
> supnorm(P,sin(x),[0;1/128],relative,2^(-20));
[4.138945864885702172513028063427e-30;4.13894968874187149931812337554e-30]

In recent years Sollya has frequently been used by the developers of mathematical
function libraries; see for example the work of Sibidanov et al. (2022).

4.7.2. Gappa
The Gappa tool34 is dedicated to the formal verification of properties related to
floating-point arithmetic, e.g. bounds on round-off errors (de Dinechin, Lauter
and Melquiond 2011, Melquiond 2019). Let us illustrate the tool on the previous
polynomial approximation. For conciseness, we will focus on bounding only the
round-off error for the tail of the polynomial, i.e. the computation of
4803839602528529 * 2^(-59) + x^2 * (-7320136537069203 * 2^(-65)
+ x^2 * (3253360761268093 * 2^(-70))).

First we need to provide the tool with the values of the polynomial coefficients:
c5 = 4803839602528529b-59;
c7 = -7320136537069203b-65;
c9 = 3253360761268093b-70;

Then we can describe the various floating-point computations. For example,
float<ieee_64,ne>(x * x) is the result of first computing the exact product of
x by itself and then rounding to binary64 in round-to-nearest (ties-to-even). Since
this rounding operator will be used more than once, let us give it the shorter name
rnd:
@rnd = float<ieee_64,ne>;
x2 = rnd(x * x);

34 https://gappa.gitlabpages.inria.fr/
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We can describe the whole polynomial computation in the same way. But since
rnd has to be applied around every arithmetic operation, we can instead put it on
the left of the equals sign to achieve the same effect in a more readable way:
y rnd= c5 + x2 * (c7 + x2 * c9);

Since we are interested in bounding the round-off error, we need a few more
definitions. In particular, we need to express the following infinitely precise com-
putations:
Mx2 = x * x;
My = c5 + Mx2 * (c7 + Mx2 * c9);

Now, all that is left is to ask the tool to verify a bound on a round-off error.
For example, the following formula means that, for any x less than 2−7 in absolute
value, the relative error (denoted by operator -/) between y and My is bounded by
2−53:
{ |x| <= 1b-7 -> |y -/ My| <= 1b-53 }

The tool validates that this formula actually holds. It can also produce a formal
proof that can be mechanically checked by the Coq proof assistant. For analysis or
debugging purposes, one can also leave holes in the formulas. For example, if one
wonders what the absolute error is when x is much smaller, the following formula
can be sent to Gappa:
{ |x| <= 1b-50 -> y - My in ? }
#@-Eprecision=200

The tool answers as follows:
Results:
y - My in [0, 7320136537069203b-165 {1.5652e-34, 2^(-112.299)}]

In other words, the round-off error is always non-negative but no larger than
2−112 ' 1.6 · 10−34. Note that the option -Eprecision=200 has been passed to
the tool in order to increase the internal precision of Gappa’s interval arithmetic.
Indeed, with its default precision, Gappa would only be able to prove an upper
bound of 2−66, which is correct but very pessimistic.

5. Extending the precision
As seen in Section 4.2, error-free transformations (EFTs) make it possible to
compute the rounding error of some operations. Upon them, one can then build
double-word operators to retain more accuracy using only processor floating-point
operations as in Section 5.1. Pair arithmetic is a variation on this approach that
avoids some renormalization steps, as shown in Section 5.2.

A double-word or pair arithmetic provides a way of extending the precision
by systematically replacing floating-point operations with costlier basic blocks.
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A more parsimonious use of EFTs leads to the so-called compensated algorithms,
as shown in Section 5.3.
These approaches are meant to emulate a floating-point precision that is double

the working precision, but this might not be sufficient. Section 5.4 presents some
tools and libraries that provide higher precision.

5.1. Double-word arithmetic

Since Algorithms 1 (Fast2Sum), 2 (2Sum) and 3 (2Prod) produce exact results A
in the form of unevaluated sums of two floating-point numbers, whose first one
is equal to RN(A), it is natural to try to perform calculations on such unevaluated
sums. If the underlying floating-point format being used is binary64, this makes
it easy to manipulate numbers with a precision larger than 100 bits. This can be
very useful in critical parts of programs, since the binary128 format (often called
quad precision), which has been specified in IEEE-754 since the 2008 version,
is seldom implemented in hardware. To our knowledge, in recent years the only
widely distributed computer with a hardwired binary128 arithmetic is the IBM
z system.

In the 1960s, Gregory andRaney (1964) and Ikebe (1965) suggested representing
large precision numbers as the sum of an FP number and scaled integers. In his
seminal paper, Dekker (1971) introduced the first double-word algorithms (called
doublelength in his paper) for addition, multiplication, division and square root.
The first interest of double-word arithmetic is to obtain more accurate results.
However, as mentioned by Riedy and Demmel (2018), it can also help to improve
reproducibility of parallel codes (He and Ding 2000) or to accelerate some linear
algebra algorithms (Yamazaki, Tomov and Dongarra 2015). Libraries that provide
double-word arithmetic have been written by Hida, Li and Bailey (2001)35 and
Briggs.36 A more recent library is CAMPARY37 (Joldeş, Muller, Popescu and
Tucker 2016).
The definition of a double-word number may vary slightly. We use the same

definition as Joldeş, Muller and Popescu (2017).

Definition 5.1. A double-word (DW) number G is the unevaluated sum Gℎ + Gℓ of
two floating-point numbers Gℎ and Gℓ such that Gℎ = RN(G).

The following algorithms are presented by Joldeş et al. (2017) for the sum or
product of a double-word number and an FP number, the sum, product or quotients
of two DW numbers, and by Lefèvre et al. (2022) for the square root. These
algorithms are variants of Dekker’s doublelength algorithms. The error bounds
have been proved by Joldeş et al. (2017), Muller and Rideau (2022) and Lefèvre
et al. (2022). There is a formal proof in Coq for all these error bounds.

35 Their QD Library is available at https://www.davidhbailey.com/dhbsoftware/.
36 No longer supported: see http://keithbriggs.info/doubledouble.html.
37 https://homepages.laas.fr/mmjoldes/campary/
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Algorithm 11 DWPlusFP(Gℎ, Gℓ , H)
Require: (Gℎ, Gℓ) is a DW number
1: (Bℎ, Bℓ)← 2Sum(Gℎ, H)
2: E ← RN(Gℓ + Bℓ)
3: (Iℎ, Iℓ)← Fast2Sum(Bℎ, E)
4: return (Iℎ, Iℓ)

Algorithm 12 SloppyDWPlusDW(Gℎ, Gℓ , Hℎ, Hℓ)
1: (Bℎ, Bℓ)← 2Sum(Gℎ, Hℎ)
2: E ← RN(Gℓ + Hℓ)
3: F ← RN(Bℓ + E)
4: (Iℎ, Iℓ)← Fast2Sum(Bℎ, F)
5: return (Iℎ, Iℓ)

Algorithm 13 AccurateDWPlusDW(Gℎ, Gℓ , Hℎ, Hℓ)
1: (Bℎ, Bℓ)← 2Sum(Gℎ, Hℎ)
2: (Cℎ, Cℓ) ← 2Sum(Gℓ , Hℓ)
3: 2 ← RN(Bℓ + Cℎ)
4: (Eℎ, Eℓ)← Fast2Sum(Bℎ, 2)
5: F ← RN(Cℓ + Eℓ)
6: (Iℎ, Iℓ) ← Fast2Sum(Eℎ, F)
7: return (Iℎ, Iℓ)

Algorithm 14 DWTimesFP1(Gℎ, Gℓ , H)
1: (2ℎ, 2ℓ1)← 2Prod(Gℎ, H)
2: 2ℓ2 ← RN(Gℓ H)
3: (Cℎ, Cℓ1)← Fast2Sum(2ℎ, 2ℓ2)
4: Cℓ2 ← RN(Cℓ1 + 2ℓ1)
5: (Iℎ, Iℓ) ← Fast2Sum(Cℎ, Cℓ2)
6: return (Iℎ, Iℓ)

Algorithm 11 (Joldeş et al. 2017, Algorithm 4) is implemented in the QD library.
The returned double-word number I = (Iℎ, Iℓ) is such that I = (Gℎ +Gℓ + H) · (1+Y),
with |Y | ≤ 2u2.

Algorithm 12 computes the sum (Gℎ, Gℓ) + (Hℎ, Hℓ). Its relative error is not
bounded in the general case (hence the name ‘sloppy’). But if Gℎ and Hℎ have the
same sign, the relative error is less than 3u2. A more accurate version is provided
by Algorithm 13, which has a relative error less than 3u2 in all cases.
Algorithm 14, suggested by Li et al. (2000), computes the product (Gℎ, Gℓ)×H. Its

relative error is less than 3
2u2+4u3. Note that since the algorithm calls 2Prod(Gℎ, H),
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Algorithm 15 DWTimesDW2(Gℎ, Gℓ , Hℎ, Hℓ)
1: (2ℎ, 2ℓ1)← 2Prod(Gℎ, Hℎ)
2: Cℓ ← RN(GℎHℓ)
3: 2ℓ2 ← RN(Cℓ + Gℓ Hℎ)
4: 2ℓ3 ← RN(2ℓ1 + 2ℓ2)
5: (Iℎ, Iℓ)← Fast2Sum(2ℎ, 2ℓ3)
6: return (Iℎ, Iℓ)

Algorithm 16 DWDivDW2(Gℎ, Gℓ , Hℎ, Hℓ)
1: Cℎ ← RN(Gℎ/Hℎ)
2: (Aℎ, A;)← DWTimesFP1(Hℎ, Hℓ , Cℎ) {approximation to (Hℎ + Hℓ) · Cℎ}
3: cℎ ← RN(Gℎ − Aℎ) = Gℎ − Aℎ {exact operation}
4: Xℓ ← RN(Gℓ − Aℓ)
5: X ← RN(cℎ + Xℓ)
6: Cℓ ← RN(X/Hℎ)
7: (Iℎ, Iℓ)← Fast2Sum(Cℎ, Cℓ)
8: return (Iℎ, Iℓ)

Algorithm 17 SQRTDWtoDW(Gℎ, Gℓ)
1: if Gℎ = 0 then
2: return (0, 0)
3: else
4: Bℎ ← RN(√Gℎ)
5: d1 ← RN(Gℎ − B2ℎ) {with an FMA instruction}
6: d2 ← RN(Gℓ + d1)
7: Bℓ ← RN(d2/(2 · Bℎ))
8: (Iℎ, Iℓ)← Fast2Sum(Bℎ, Bℓ)
9: return (Iℎ, Iℓ)
10: end if

variables Gℎ and H must be in the domain of validity of 2Prod, that is, they must
satisfy the condition of Property 2.12.

Algorithm 15 (Joldeş et al. 2017, Algorithm 11) computes the product (Gℎ, Gℓ)×
(Hℎ, Hℓ), assuming an FMA operator is available. Its relative error is less than 5u2.
Again, since the algorithm calls 2Prod(Gℎ, Hℎ), variables Gℎ and Hℎ must be in the
domain of validity of 2Prod, that is, theymust satisfy the condition of Property 2.12.
Algorithm 16 performs the division (Gℎ, Gℓ) ÷ (Hℎ, Hℓ). Its relative error is less

than 15u2 + 56u3.
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Table 5.1. Summary, partly extracted from the paper by Muller and Rideau (2022),
of the results presented by Joldeş et al. (2017), Muller and Rideau (2022) and
Lefèvre et al. (2022), all formally proved. Unless stated otherwise, the largest
errors observed in experiments are for RN being round-to-nearest, ties-to-even.

Operation
Name of algorithm in
Joldeş et al. (2017) or
Lefèvre et al. (2022)

Bound formally proved
Largest relative error
built or observed in
experiments

DW + FP DWPlusFP 2u2 2u2 − 6u3

DW + DW SloppyDWPlusDW N/A 1
AccurateDWPlusDW 3u2 + 13u3 3u2 − 11u3 +$(u4)

DW × FP DWTimesFP1 3
2u2 + 4u3 1.5u2

DWTimesFP2 3u2 2.517u2

DWTimesFP3 2u2 1.984u2

DW × DW DWTimesDW1 5u2 (ties-to-even) 4.9916u2 (ties-to-even)
5.5u2 (general) 5.4907u2 (ties-to-0)

DWTimesDW2 5u2 4.9433u2

DWTimesDW3 4u2 3.936u2

DW ÷ FP DWDivFP1 3.5u2 2.95u2

DWDivFP2 3.5u2 2.95u2

DWDivFP3 3u2 2.95u2

DW ÷ DW DWDivDW1 15u2 + 56u3 8.465u2

DWDivDW2 15u2 + 56u3 8.465u2

DWDivDW3 9.8u2 5.922u2

√
DW SQRTDWtoDW 25

8 u2 25
8 u2 − 343

8 u3

Algorithm 17 computes the square root of the DW number (Gℎ, Gℓ). Its relative
error is less than 25

8 u2.
Table 5.1 refers to some algorithms (e.g. DWTimesFP2) that are not given in

this article. These algorithms are presented (with the same names) in Joldeş et al.
(2017). They are slight variants of Algorithms 14, 15 and 16. These variants allow
us to choose different compromises between speed and accuracy. For instance,
Algorithm DWTimesDW3 is obtained by adding the term Gℓ Hℓ (which is neglected
in Algorithm 15): this results in a more accurate yet slower calculation.
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5.2. Lange and Rump’s pair arithmetic

The double-word algorithms presented in Section 5.1 are very accurate but they
suffer from a drawback: they all end up with an instruction of the form ‘(Iℎ, Iℓ)←
Fast2Sum(0, 1)’. That instruction costs three consecutive floating-point operations
(which is a significant penalty, especially for the simplest algorithms), and one may
wonder why we perform that instruction, knowing that all the information on the
result is already in variables 0 and 1, since Iℎ + Iℓ = 0 + 1.

As a matter of fact, that last Fast2Sum is a renormalization. The pair (0, 1) is
not necessarily (in fact, it seldom is) a double-word number, since the FP number 0
may not equal RN(0 + 1). If we perform one of the algorithms of Section 5.1 with
double-word inputs but without the last Fast2Sum, the output (0, 1) will satisfy
the error bounds given in Table 5.1, but that output will not be a valid entry for a
subsequent double-word algorithm. In other words, if the algorithms are fed with
such outputs, the resulting error may be larger than the bounds of Table 5.1.
However, a natural question is: If we decide in any case to perform such al-

gorithms without a final renormalization, what do we lose? We will almost cer-
tainly end up with larger final errors, but maybe we will be able to say something
on the final result of such a sequence of pair operations? Lange and Rump (2020)
undertook this task and gave conditions for the final result of a calculation to be a
faithful rounding of the exact result. More precisely, they define the following pair
operations.

• CPairSum(Gℎ, Gℓ , Hℎ, Hℓ) is SloppyDWPlusDW(Gℎ, Gℓ , Hℎ, Hℓ) (i.e. Algo-
rithm 12), where the pair (Bℎ, F) is returned (i.e. we drop the last Fast2Sum).

• CPairProd(Gℎ, Gℓ , Hℎ, Hℓ), adaptedwith our notation, is given byAlgorithm 18
(quite similar to Algorithm 15 without the last Fast2Sum).

• CPairDiv(Gℎ, Gℓ , Hℎ, Hℓ), adapted with our notation, is given by Algorithm 19.

• CPairSQRT(Gℎ, Gℓ) is SQRTDWtoDW(Gℎ, Gℓ , Hℎ, Hℓ) (i.e. Algorithm 17)
where the pair (Bℎ, Bℓ) is returned (i.e. we drop the last Fast2Sum).

Lange andRump (2020, Theorems 4.2 and 5.4) give general sufficient conditions,
for a computation represented by an evaluation treewhose nodes are pair operations,
to return a faithfully rounded result. We will not present these conditions here,
as this would require too much introductory material, but we give some of the
corollaries below. These corollaries are with the implicit assumption that there are
no underflows or overflows.

Corollary 5.2 (product of = FP numbers (Lange and Rump 2020)). We assume
(G1, . . . , G=) ∈ F=. If = ≤ 1/√2u − 1, then the product (2, 6) of all G8 computed
with the pair arithmetic in any order is such that RN(2 + 6) is a faithful rounding
of the exact product.
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Algorithm 18 CPairProd(Gℎ, Gℓ , Hℎ, Hℓ)
(2ℎ, 2ℓ1)← 2Prod(Gℎ, Hℎ)
Cℓ1 ← RN(Gℎ · Hℓ)
Cℓ2 ← RN(Gℓ · Hℎ)
2ℓ2 ← RN(Cℓ1 + Cℓ2)
2ℓ3 ← RN(2ℓ1 + 2ℓ2)
return (2ℎ, 2ℓ3)

Algorithm 19 CPairDiv(Gℎ, Gℓ , Hℎ, Hℓ)
Cℎ ← RN(Gℎ/Hℎ)
d ← RN(Gℎ − HℎCℎ) = Gℎ − HℎCℎ {exact operation}
c ← RN(d + Gℓ)
@ ← RN(Cℎ · Hℓ)
A ← RN(c − @)
B ← RN(Hℎ + Hℓ)
6 ← RN(A/B)
return (Cℎ, @)

Corollary 5.3 (sum of = FP numbers (Lange and Rump 2020)). We assume
(G1, . . . , G=) ∈ F=. Define

: =

( =∑
8=1
|G8 |

)/���� =∑
8=1

G8

����.
If = ≤ 1/√2:u − 1, then the sum (2, 6) of all G8 computed with the pair arithmetic
in any order is such that RN(2 + 6) is a faithful rounding of the exact sum.

Similar corollaries are given by Lange and Rump (2020) for the computation of
dot products and the evaluation of polynomials using Horner’s scheme.

5.3. Compensated algorithms

Error-free transformations give access to the rounding errors of individual opera-
tions. We can use them later on in the calculation to (at least partly) compensate for
these errors. This is the principle behind compensated algorithms. Let us illustrate
these algorithms in the case of the computation of the sum of = floating-point
numbers. We do not claim exhaustiveness here, as there is a large body of literat-
ure on summation algorithms; see for instance the works by Rump et al. (2008),
Demmel and Nguyen (2015), Higham (1993, 2002), Blanchard et al. (2020) and
Lange (2022). We give a few examples below.
The compensated summation algorithm given in Algorithm 20 was found inde-

pendently by Kahan (1965) and Babuška (1969).
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Algorithm 20 Kahan–Babuška(G1, . . . , G=)
1: B ← G1
2: 2 ← 0
3: for 8 = 2 to = do
4: H ← RU

D(G8 + 2)
5: C ← RU

D(B + H)
6: 2 ← RU

D(H − RU
D(C − B))

7: B ← C
8: end for
9: return B

Lines 5 and 6 of Algorithm 20 are simply Fast2Sum(B, H) (Algorithm 1). Note,
however, that the conditions that guarantee C + 2 = B + H may not be satisfied.
Indeed, the rounding function is not necessarily RN, and |H | is not necessarily less
than or equal to |B |, so the correcting term 2 used to update the next G8 may be only
an approximation to the error of C. And yet the algorithm already enjoys an error
bound better than (4.8): if each floating-point operation has relative error at most v
then, as shown by Hallman and Ipsen (2022), the final value of B satisfies����B − =∑

8=1
G8

���� ≤ (
3v +$(=v2)

) · =∑
8=1
|G8 |;

here, v = u when all computations are done using round-to-nearest, while v = 2u
when resorting to some generic rounding function RU

D.
Later on, Pichat (1972) and Neumaier (1974) independently suggested a more

accurate variant of Algorithm 20 where, instead of immediately adding at step 8 the
previously computed value of the error term 2 (let us call it 28−1), it accumulates
these values 28 and adds their computed sum to B at the end of the calculation.
They also performed tests to use Algorithm Fast2Sum in its domain of validity.
Priest (1992) also gave a doubly compensated summation algorithm, which guar-
antees high relative accuracy provided the summands G8 have first been sorted into
decreasing order of magnitude.
To avoid tests, Ogita et al. (2005) replaced the use of Fast2Sum and a test

in the Pichat–Neumaier algorithm by a 2Sum (Algorithm 2), and considered a
generalization (Algorithm 21), where the sum of the error terms is computed again
with the same algorithm (which was already suggested by Pichat). Then, calling
Algorithm 21 repeatedly, this gives the  -fold algorithm (Algorithm 22).

Rump et al. (2008) showed that the final value of variable 2 satisfies����2 − =∑
8=1

G8

���� ≤ (
u + W2

=−1
) · ���� =∑

8=1
G8

���� + W 2=−2 ·
=∑
8=1
|G8 |,

where W= ≔ =u/(1 − =u).
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Algorithm 21 VecSum(G1, . . . , G=)
? ← G
for 8 = 2 to = do

(?8 , ?8−1)← 2Sum(?8 , ?8−1)
end for
return ?

Algorithm 22  -fold(G1, . . . , G=)
for : = 1 to  − 1 do
G ← VecSum(G)

end for
2 ← G1
for 8 = 2 to = do
2 ← 2 + G8

end for
return 2

Another, very different, way of using EFTs to perform accurate summation is
the following. Malcolm (1971), starting from ideas expressed by Wolfe (1964),
splits the range of floating-point exponents into bins of a fixed width, < ? (which
depends on the number of terms to be added). Then, using a splitting algorithm
similar to Algorithm 6, each input number G8 is decomposed as the sum of a small
number of lower-precision FP numbers, called slices by Demmel et al. (2016), such
that the weights of the significand bits of a slice all belong to the same bin. If, is
well chosen, then all the elements of a bin can be accumulated without error. There
remains to add the non-zero terms accumulated in the bins. Malcolm suggests
doing that most significant bin first. The reproducible summation algorithm of
Demmel et al. (2016) builds on this method. Another algorithm based on judicious
splittings of the operands is the Accsum algorithm by Rump et al. (2008), which
guarantees faithful rounding of a sum.

5.4. Extended precision software

As seen in Section 5.1, we may rely on the available processor FP operations to
build extended precision arithmetic, for instance using double-word algorithms,
that roughly double the available precision. Triple-word (Fabiano, Muller and
Picot 2019) and quad-word algorithms (Hida et al. 2001) are available as well.

When additional precision is needed, even more than four FP numbers may be
used, and a number may be represented by the unevaluated sum of an arbitrary
number of floating-point numbers, with some conditions to avoid having too much
overlapping between them. Such sums are called floating-point expansions (Priest
1991, Shewchuk 1997, Daumas 1999, Popescu 2017).
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Software libraries exist based on these ideas. Double-word and quad-word arith-
metics are available in QD.38 CAMPARY39 provides the double-word algorithms
formally proved by Muller and Rideau (2022) as well as arbitrary-precision com-
putations based on floating-point expansions.
When the desired precision becomes very large, methods based on floating-point

expansions are no longer efficient, and one needs to switch to another solution that
consists in representing a number by an arbitrary-precision significand with a
large enough exponent. The pioneering work was done by Brent (1978) with his
MP multiple-precision package. GMP40 is known for its very efficient arbitrary-
precision integers, but it also provides rational numbers and floating-point num-
bers. GNU MPFR41 is a C library based on GMP that provides multiple-precision
floating-point arithmetic with correct rounding (Fousse et al. 2007). Pari/GP42

provides fast multiple-precision arithmetic, either based on GMP or on its own
native kernel (usually slower); it is mainly targeted at number theorists. MP-
FUN202038 is a Fortran package for multiple-precision arithmetic with special
care taken to be thread-safe; it includes two versions, one based on MPFR.
Another way to ensure the correctness is to provide some enclosing of the

exact result. This may be done by interval arithmetic as explained in Section 4.1.
MPFI43 is a C library for arbitrary-precision interval arithmetic, where intervals
are represented by their endpoints; it is based on MPFR for the implementation
of the endpoints (Revol and Rouillier 2005). Arb44 is a C library for arbitrary-
precision ball arithmetic (a form of interval arithmetic that uses a midpoint-radius
representation of real and complex numbers); it includes an impressive library of
special functions (Johansson 2013).
Extended precision may also be hidden to the user. For instance, computer

algebra software systems as Maple,45 Sage,46 or Mathemagix47 provide extended-
precision floating-point numbers (based on GMP for Sage, and on MPFR for
Mathemagix).

38 https://www.davidhbailey.com/dhbsoftware/
39 https://homepages.laas.fr/mmjoldes/campary/
40 https://gmplib.org/
41 https://mpfr.loria.fr/
42 http://pari.math.u-bordeaux.fr/
43 https://gitlab.inria.fr/mpfi/mpfi/
44 https://arblib.org/
45 https://www.maplesoft.com/products/Maple/
46 https://www.sagemath.org/
47 http://www.mathemagix.org/
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6. Conclusion
This conclusion focuses on the evolution of floating-point arithmetic and its links
to other domains. Section 6.1 is about useful operators that could spread and be
standardized in the future. Section 6.2 describes some recent alternative arithmet-
ics. Section 6.3 presents some fruitful links of floating-point arithmetic to formal
proof and computer algebra.

6.1. Implemented but not (yet?) standard operators and rounding functions

We have presented many arithmetic operators and rounding functions, the basic
ones in Section 2 (including somemore exotic ones in Section 2.12) and a few others
added by the last revision of the Standard in Section 4.2.3. Nevertheless, some
other features might be useful, whether they are rounding functions or operators.
Anold rounding function is round-to-odd, whichwasfirst considered by vonNeu-

mannwhen designing the arithmetic unit of the EDVAC, and later used byGoldberg
for converting FP numbers to decimal representation. It was used by GCC for the
reverse conversion, and formally studied by Boldo and Melquiond (2008). Its main
property related to double rounding is explained in Section 2.10.2.
As far as operators are concerned, we may desire that the augmented operations

presented in Section 4.2.3 should also be available in round-to-nearest, ties-to-
even. All EFTs (see Section 4.2) would greatly benefit from an efficient hardware
implementation of such operations.
Another possibility is to have more complex FP operators. As the FMA in-

struction can replace and generalize floating-point addition and multiplication, the
FDMDA48 (fused dual multiply dual add) instruction, which computes

01 + 23 + 4,
could replace and generalize the FMA. The question of the specification of such an
operator is then crucial, in particular whether it is correctly rounded (meaning as if
therewere a single rounding at the end of the four operations). Thismay be available
in the next generations of processors, due to its usefulness. More than solving the
difficult problem of the correctly rounded sum of three numbers (Kornerup et al.
2012) and making most EFT computations trivial, it would greatly simplify and
make more accurate double-word arithmetic algorithms, some complex arithmetic
operations and probably many other algorithms.

6.2. Alternative arithmetics

It is natural and sound to consider that floating-point arithmetic, as defined in the
1970s and 1980s, may now be questioned. As we saw in the Introduction, the
processor technology and target applications have drastically changed since the
birth of IEEE-754. For some applications, arithmetics other than conventional

48 See https://patents.google.com/patent/US20220222073A1/en.
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floating-point may be better suited, for instance when the range of numbers we
need to represent is known beforehand or very large. The emergence of digital
neural networks for AI applications requires arithmetics with tiny precisions (to
achieve high bandwidth) yet rather large range (Wang and Kanwar 2019, Bertaccini
et al. 2022).

In order to obtain a larger range than conventional floating-point while main-
taining good precision for numbers of the usual order of magnitude, Gustafson
(2015) introduced the unums, and later on their successors, the posits (Posit Work-
ing Group 2022). Posits are still numbers of the form " · 2� , where " and �
are integers, but with a cleverly designed encoding that allows for variable sizes of
" and � (but with a fixed total word size). Experiments by Cococcioni, Rossi,
Ruffaldi and Saponara (2022) suggest that Posit8 could be an interesting solution
for implementing digital neural networks. For general higher-precision numerical
computing, however, the price to pay is huge. Indeed, with posits, the standard
model (see Section 2.1) no longer applies, that is, the individual arithmetic oper-
ations no longer have a bounded relative error (de Dinechin, Forget, Muller and
Uguen 2019).

6.3. Floating-point arithmetic and beyond

As soon as a numerical algorithm contains more than a few operations, it is a
tremendous task to obtain very tight error bounds and to make sure that underflows
and overflows will not occur and that NaNs will not propagate throughout the
calculation. The proofs we publish are seldom fully satisfactory. Either we just
give a rough idea of what makes the algorithm work, coyly hiding all the dirty
stuff, or we try to take into account all possible corner cases, ending, as mentioned
in the Introduction, with long and tedious proofs, with the consequence that a
flaw may remain unnoticed for years. For example, Kahan (2004b) proposed an
intricate algorithm for computing a correct discriminant.49 The formal verification
of Kahan’s algorithm showed a gap in the pen-and-paper proof, as a test could
be wrong with respect to its mathematical counterpart, creating unstudied cases.
Fortunately, the algorithm was still correct in these special cases and formally
proved by Boldo (2009).
And yet, floating-point arithmetic is needed in many critical applications, and

for a given application we would like to analyse not just one solution but many of
them, in order to choose the best suited. For small formats up to 32 bits, exhaustive
testing is achievable for basic operators. But when the precision increases it
becomes intractable, and formal proof is then a precious tool that can provide a
strong validation of the pen-and-paper proof of an algorithm, as seen in several
parts of this article.

49 A naive algorithm may not be accurate enough, as a cancellation may endanger the sign of the
result.
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Another solution is to try to build algorithms and proofs that are correct by
construction. From that point of view, computer algebra could considerably help
the design and analysis of floating-point programs, in several respects. First, the
design of function software could be made easier and the probability of bugs
in such software could be made much lower, using tools that automatically find
symmetries and build local as well as asymptotic approximations, for instance from
the differential equation that defines the function. Second, part of the analysis that
uses the standard model could be assisted by computer. This would allow one to
explore many variants of a numerical algorithm; this would also allow the analysis
of numerical programs significantly larger than the ones we are able to deal with
by pen-and-paper calculations. The pioneering work of Mezzarobba (2010, 2020)
addresses these two topics.
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