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Characterizations and Representations of
Core and Dual Core Inverses

Jianlong Chen,Huihui Zhu, Pedro Patricio, and Yulin Zhang

Abstract. In this paper, double commutativity and the reverse order law for the core inverse are
considered. _en new characterizations of theMoore–Penrose inverse of a regular element are given
by one-sided invertibilities in a ring. Furthermore, the characterizations and representations of the
core and dual core inverses of a regular element are considered.

1 Introduction

Let R be an associative ring with unity 1. We say that a ∈ R is (von Neumann) regular
if there exists x ∈ R such that axa = a. Such x is called an inner inverse of a, and is
denoted by a−. Let a{1} be the set of all inner inverses of a. Recall that an element
a ∈ R is said to be group invertible if there exists x ∈ R such that axa = a, xax = x
and ax = xa. _e element x satisfying the conditions above is called a group inverse
of a. _e group inverse of a is unique if it exists, and is denoted by a#.

_roughout this paper, assume that R is a unital ∗-ring, that is a ring with unity 1
and an involution a ↦ a∗ such that (a∗)∗ = a, (a + b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗
for all a, b ∈ R. An element a ∈ R is calledMoore–Penrose invertible [7] if there exists
x ∈ R satisfying the following equations

(i) axa = a, (ii) xax = x, (iii) (ax)∗ = ax, (iv) (xa)∗ = xa.
Any element x satisfying the equations (i)-(iv) is called a Moore-Penrose inverse of
a. If such x exists, it is unique and is denoted by a†. If x satisûes conditions (i) and
(iii), then x is called a {1, 3}-inverse of a, and is denoted by a(1,3). If x satisûes the
conditions (i) and (iv), then x is called a {1, 4}-inverse of a, and is denoted by a(1,4).
_e symbols a{1,3} and a{1,4} denote the sets of all {1,3}-inverses and {1,4}-inverses of
a, respectively.

_e concept of core inverse of a complexmatrix was ûrst introduced by Baksalary
andTrenkler [2]. Recently, Rakić et al. [9] generalized the deûnition of core inverse to
the ring case. An element a ∈ R is core invertible (see [9, Deûnition 2.3]) if there exists
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x ∈ R such that axa = a, xR = aR, and Rx = Ra∗. It is known that the core inverse x
of a is unique if it exists, and is denoted by a(#). _e dual core inverse of a, when it
exists, is deûned as the unique a(#) such that aa(#)a = a, a(#)R = a∗R, and Ra(#) =
Ra. By R−1, R#, R†, R(1,3), R(1,4), R(#) and R(#) we denote the sets of all invertible,
group invertible, Moore–Penrose invertible, {1, 3}-invertible, {1, 4}-invertible, core
invertible, and dual core invertible elements in R, respectively.

In this paper, double commutativity and the reverse order law for the core inverse
proposed in [1] are considered. Also, we characterize theMoore–Penrose inverse of a
regular element by one-sided invertibilities in a ring R. Furthermore, new existence
criteria and representations of core inverse and dual core inverse of a regular element
are given by units.

2 Some Lemmas

_e following lemmas will be useful in the sequel.

Lemma 2.1 Let a, b ∈ R.
(i) If there exists x ∈ R such that (1 + ab)x = 1, then (1 + ba)(1 − bxa) = 1.
(ii) If there exists y ∈ R such that y(1 + ab) = 1, then (1 − bya)(1 + ba) = 1.

According to Lemma 2.1, we know that 1 + ab ∈ R−1 if and only if 1 + ba ∈ R−1. In
this case, (1 + ba)−1 = 1 − b(1 + ab)−1a, which is known as Jacobson’s Lemma.

Lemma 2.2 ([5, p. 201]) Let a, x ∈ R.
(i) x is a {1, 3}-inverse of a if and only if a∗ = a∗ax.
(ii) x is a {1, 4}-inverse of a if and only if a = aa∗x∗.

It is known that a ∈ R† if andonly if a ∈ aa∗R∩Ra∗a if andonly if a ∈ R(1,3)∩R(1,4).
In this case, a† = a(1,4)aa(1,3). By Lemma 2.2,we know that a = xa∗a = aa∗y implies
a ∈ R† and a† = y∗ax∗.

Lemma 2.3 ( [11,_eorems 2.16, 2.19, and 2.20]) Let S be a∗-semigroup and let a ∈ S.
_en a is Moore–Penrose invertible if and only if a ∈ aa∗aS if and only if a ∈ Saa∗a.
Moreover, if a = aa∗ax = yaa∗a for some x , y ∈ S, then a† = a∗ax2a∗ = a∗y2aa∗.

Lemma 2.4 ( [5, Proposition 7]) Let a ∈ R. _en a ∈ R# if and only if a = a2x = ya2

for some x , y ∈ R. In this case, a# = yax = y2a = ax2.

Lemma 2.5 ( [10,_eorems 2.6 and 2.8]) Let a ∈ R. _en
(i) a ∈ R(#) if and only if a ∈ R# ∩ R(1,3). In this case, a(#) = a#aa(1,3).
(ii) a ∈ R(#) if and only if a ∈ R# ∩ R(1,4). In this case, a(#) = a(1,4)aa#.

Lemma 2.6 ( [9, _eorem 2.14] and [10, _eorem 3.1]) Let a ∈ R. _en a ∈ R(#)
with core inverse x if and only if axa = a, xax = x, (ax)∗ = ax, xa2 = a and ax2 = x
if and only if (ax)∗ = ax, xa2 = a, and ax2 = x.
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3 Double Commutativity and Reverse Order Law for Core Inverses

First,we give the following lemma to prove the double commutativity of core inverse.

Lemma 3.1 Let a, b, x ∈ R with xa = bx and xa∗ = b∗x. If a, b ∈ R(1,3), then

xaa(1,3) = bb(1,3)x.

Proof From xa = bx, it follows that

xaa(1,3) = bxa(1,3) = bb(1,3)bxa(1,3) = bb(1,3)xaa(1,3) .

_e condition xa∗ = b∗x implies that

bb(1,3)x = (b(1,3))∗b∗x = (b(1,3))∗xa∗ = (b(1,3))∗x(aa(1,3)a)∗

= (b(1,3))∗xa∗aa(1,3) = (b(1,3))∗b∗xaa(1,3) = bb(1,3)xaa(1,3) .

Hence, xaa(1,3) = bb(1,3)x.

_eorem 3.2 Let a, b, x ∈ R with xa = bx and xa∗ = b∗x. If a, b ∈ R(#), then
xa(#) = b(#)x.

Proof As a, b ∈ R(#), then a, b ∈ R# from Lemma 2.5. Applying [4, _eorem 2.2],
we get b#x = xa#, since xa = bx.

So, xa(#) = b(#)x. Indeed, xa(#) = xa#aa(1,3) = b#xaa(1,3) = b#bb(1,3)x = b(#)x.

Remark 3.3 _eorem 3.2 can also been obtained from [4, _eorem 2.3]. Indeed,
note in [9,_eorem 4.4] that a has (a, a∗)-inverse if and only if a ∈ R(#).

Corollary 3.4 Let a, x ∈ R with xa = ax and xa∗ = a∗x. If a ∈ R(#), then xa(#) =
a(#)x.

In 2012, Baksalary and Trenkler [1] asked the following question. Given com-
plex matrices A and B, if A(#), B(#) and (AB)(#) exist, does it follow that (AB)(#) =
B(#)A(#)? Later, Cohen,Herman, and Jayaraman [3] presented several counterexam-
ples for this problem.

Next, we show that the reverse order law for the core inverse holds under certain
conditions in a general ring case.

_eorem 3.5 Let a, b ∈ R(#) with ab = ba and ab∗ = b∗a. _en ab ∈ R(#) and
(ab)(#) = b(#)a(#) = a(#)b(#).

Proof It follows from _eorem 3.2 that b(#)a = ab(#) and a(#)b = ba(#).
Also, the conditions b∗a = ab∗ and a∗b∗ = b∗a∗ guarantee that b∗a(#) = a(#)b∗,

which together with a(#)b = ba(#) imply a(#)b(#) = b(#)a(#) according to _eo-
rem 3.2.

Given the above conditions, it is straightforward to check
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(a) By Lemma 3.1, we have abb(1,3) = bb(1,3)a. Hence,

abb(#)a(#)ab = abb(1,3)aa#b = bb(1,3)aaa#b = bb(1,3)ba = ab.

(b) Since abb(1,3) = bb(1,3)a, it follows that

b(#)a(#) = b#bb(1,3)a#aa(1,3) = b#bb(1,3)aa#a(1,3)

= b#abb(1,3)a#a(1,3) = ab#bb(1,3)a#a(1,3) = abb#b(1,3)a#a(1,3)

and
ab = b#b2a = b#bb(1,3)b2a

= b(#)ab2
= b(#)a#aa(1,3)a2b2

= b(#)a(#)a2b2 .

Hence, abR = b(#)a(#)R.
(c) If x in Lemma 3.1 is group invertible, then aa(1,3)x# = x#aa(1,3). We have

b(#)a(#) = b#bb(1,3)a#aa(1,3) = b#a#bb(1,3)aa(1,3)

= b#a#
(aa(1,3)bb(1,3))∗ = b#a#

(baa(1,3)b(1,3))∗ = b#a#
(a(1,3)b(1,3))∗(ab)∗

and
(ab)∗ = b∗a∗aa(1,3) = a∗b∗aa(1,3) = a∗b∗bb(1,3)aa(1,3)

= b∗a∗aa#abb(1,3)a(1,3) = b∗a∗abb(1,3)a#aa(1,3)

= b∗a∗abb#bb(1,3)a#aa(1,3) = b∗a∗abb(#)a(#) .

_us, Rb(#)a(#) = R(ab)∗.
So, ab ∈ R(#) and (ab)(#) = b(#)a(#) = a(#)b(#).

4 Characterizations of Core Inverses by Units

In this section,we give existence criteria for the core inverse of ring elements in terms
of units. Representations based on classical inverses are also given. By duality, all the
results apply to the dual core inverse.

We now present an existence criterion of group inverse of a regular element.

Proposition 4.1 Let k ≥ 1 be an integer and suppose that a ∈ R is regular with an
inner inverse a−. _en the following conditions are equivalent:
(i) a ∈ R#.
(ii) u = ak + 1 − aa− ∈ R−1.
(iii) v = ak + 1 − a−a ∈ R−1.
In this case, a# = u−1a2k−1v−1.

Proof (i)⇒ (ii). Since

u(a(a#
)
ka− + 1 − aa#

) = (ak
+ 1 − aa−)(a(a#

)
ka− + 1 − aa#

)

= ak+1
(a#

)
ka− + 1 − aa− = aa− + 1 − aa− = 1,

it follows that u is right invertible.
Similarly, we can prove (a(a#)ka− + 1 − aa#)u = 1, i.e., u is le� invertible.

https://doi.org/10.4153/CMB-2016-045-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-045-7


Characterizations and Representations of Core and Dual Core Inverses 273

Hence, u = ak + 1 − aa− ∈ R−1.
(ii)⇔ (iii). Note that u = 1 + a(ak−1 − a−) ∈ R−1 if and only if 1 + (ak−1 − a−)a =

v ∈ R−1.
(iii)⇒ (i). As v ∈ R−1, then u ∈ R−1. Since ua = ak+1 = av, it follows that a =

ak+1v−1 = u−1ak+1 ∈ a2R ∩ Ra2, i.e., a ∈ R#.
Note that a = u−1ak−1a2 = a2ak−1v−1 ∈ a2R∩Ra2. It follows from Lemma 2.4 that

a# = u−1ak−1aak−1v−1 = u−1a2k−1v−1.

_eorem 4.2 Let a ∈ R be regular. _en the following conditions are equivalent:
(i) a ∈ R(#).
(ii) a + 1 − aa− and a∗ + 1 − aa− are invertible for some a− ∈ a{1}.
(iii) a + 1 − aa− is invertible and a∗ + 1 − aa− is le� invertible for some a− ∈ a{1}.
(iv) a∗a + 1 − aa− and (a∗)2 + 1 − aa− are invertible for some a− ∈ a{1}.
(v) a∗a + 1 − aa− and (a∗)2 + 1 − aa− are le� invertible for some a− ∈ a{1}.
(vi) a + 1 − aa− and (a∗)2 + 1 − aa− are le� invertible for some a− ∈ a{1}.
In this case,

a(#) = (a∗a + 1 − aa−)−1a∗ = a[((a∗)2
+ 1 − aa−)−1]

∗

= (a + 1 − aa−)−1a((a∗ + 1 − aa−)−1
)
∗ .

Proof (i)⇒ (ii). Since a ∈ R(#), a ∈ R#∩R(1,3) by Lemma 2.5. Let a− ∈ a{1, 3}. _en
a + 1 − aa− is invertible by Proposition 4.1, and hence a∗ + 1 − aa− = (a + 1 − aa−)∗
is invertible.

(ii)⇒ (iii) is clear.
(iii)⇒ (i). As a∗ + 1 − aa− is le� invertible, there exists s ∈ R such that s(a∗ + 1 −

aa−) = 1. Hence, a = s(a∗ + 1 − aa−)a = sa∗a ∈ Ra∗a, i.e., a(1,3) exists by Lemma
2.2(i). Also, a+ 1− aa− ∈ R−1 implies that a# exists by Proposition 4.1. So, a ∈ R(#) by
Lemma 2.5.

(i)⇒ (iv). Let a− ∈ a{1, 3}. _en a+ 1−aa− and a∗+ 1−aa− are invertible. Hence,
a∗a + 1 − aa− = (a∗ + 1 − aa−)(a + 1 − aa−) is invertible.
Also, it follows from Proposition 4.1 that a2 + 1 − aa− ∈ R−1 since a ∈ R#. So,

(a∗)2 + 1 − aa− = (a2 + 1 − aa−)∗ ∈ R−1.
(iv)⇒ (v) is clear.
(v)⇒ (i). Since a∗a + 1 − aa− and (a∗)2 + 1 − aa− are both le� invertible, there

exist m, n ∈ R such that m(a∗a + 1 − aa−) = 1 = n((a∗)2 + 1 − aa−). As

a = m(a∗a + 1 − aa−)a = ma∗a2 and a = n((a∗)2
+ 1 − aa−)a = n(a∗)2a,

ma∗ = m(n(a∗)2a)∗ = (ma∗a2)n∗ = an∗.
Let x = ma∗ = an∗. _en a = (na∗)a∗a = x∗a∗a, and hence x is a {1,3}-inverse

of a by Lemma 2.2. So, we have axa = a and (ax)∗ = ax. Also, xa2 = ma∗a2 = a
and ax2 = ax(an∗) = (axa)n∗ = an∗ = x. It follows from Lemma 2.6 that a ∈ R(#)

and a(#) = ma∗ = an∗.
(i)⇒ (vi) by (i)⇒ (iv) and Proposition 4.1.
(vi) ⇒ (i). Let u = a + 1 − aa− and v = (a∗)2 + 1 − aa−. As u and v are le�

invertible, there exist s, t ∈ R such that su = tv = 1. Hence, a = tva = t(a∗)2a ∈
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Ra∗a, which implies that a ∈ R(1,3) according to Lemma 2.2(i). Also, a = t(a∗)2a =
ta∗(t(a∗)2a)∗a = (t(a∗)2a)at∗a = a2 t∗a ∈ a2R, which combined with a = sua =
sa2 ∈ Ra2 implies a ∈ a2R ∩ Ra2, i.e., a ∈ R#. So, a ∈ R(#) by Lemma 2.5.

We next give another formula of a(#).
Note that (iv)⇔ (v). In the proof of (v)⇒ (i), taking m = (a∗a + 1 − aa−)−1 and

n = ((a∗)2 + 1 − aa−)−1.
We obtain

a(#) = ma∗ = (a∗a + 1 − aa−)−1a∗ = an∗ = a[((a∗)2
+ 1 − aa−)−1]

∗

.

As (a+ 1−aa−)a = a2, then a = (a+ 1−aa−)−1a2 and hence a# = (a+ 1−aa−)−2a
by Lemma 2.4.
From (a∗ + 1 − aa−)a = a∗a, it follows that a = (a∗ + 1 − aa−)−1a∗a. Using

Lemma 2.2(i), we know that ((a∗ + 1 − aa−)−1)∗ is a {1,3}-inverse of a.
So,

a(#) = a#aa(1,3) = (a + 1 − aa−)−2a2
((a∗ + 1 − aa−)−1

)
∗

= (a + 1 − aa−)−1a((a∗ + 1 − aa−)−1
)
∗ .

_e proof is completed.

Remark 4.3 If a ∈ R satisûes a∗a = 1 and aa∗ /= 1, then a∗ + 1 − aa− is not le�
invertible for any a− ∈ a{1}. In fact, if a∗+1−aa− is le� invertible for some a− ∈ a{1},
then there exists s such that s(a∗ + 1 − aa−) = 1. As a∗a = 1, a = s(a∗ + 1 − aa−)a =
sa∗a = s. Hence, a(a∗+1−aa−) = 1 and a ∈ R−1. So, aa∗ = 1,which is a contradiction.

Proposition 4.4 Let k ≥ 1 be an integer and suppose that a ∈ R is regular. If (a∗)k +

1 − aa− ∈ R−1 for any a− ∈ a{1}, then a ∈ R(#).

Proof Let u = (a∗)k + 1−aa−. As u is invertible, then a = u−1(a∗)ka ∈ Ra∗a, hence
a is {1, 3}-invertible by Lemma 2.2(i).
As ((a∗)k+1−aa(1,3))∗ = ak+1−aa(1,3) is invertible for a(1,3) ∈ a{1}, then a ∈ R#

by Proposition 4.1. So, a ∈ R(#) from Lemma 2.5.

Remark 4.5 If a∗ + 1 − aa− ∈ R−1 for some a− ∈ a{1}, then a ∉ R(#) in general.
Such as let R = M2(C) be the ring of all 2 × 2 complex matrices and suppose that
involution ∗ is the conjugate transpose. Let A = [ 0 1

0 0 ] ∈ R. _en A− = [ 0 0
1 1 ] ∈ A{1}.

Hence, A∗ + I − AA− = [ 0 −1
1 1 ] ∈ R−1, but A ∉ R#. So, A ∉ R(#).

_e converse of Proposition 4.4 may not be true. In the following Example 4.6, we
ûnd a core invertible, but there exists some a− ∈ a{1} such that none of a∗ + 1− aa−,
(a∗)2 + 1 − aa− and a∗a + 1 − aa− are invertible.
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Example 4.6 Let R be the ring as Remark 4.5. Given A = [ 1 −2
1 −2 ] ∈ R, then A2 = −A

and hence A# exists. So, A(#) exists. Taking A− = [
2
3

1
3

0 0
],

A∗ + I − AA− =
1
3
[
4 2
−8 −4] , (A∗)2

+ I − AA− =
1
3
[
−2 −4
4 8 ] ,

A∗A+ I − AA− =
1
3
[

7 −13
−14 26 ]

are not invertible.

_eorem 4.7 Let k ≥ 1 be an integer and suppose a ∈ R(#). _en the following
conditions are equivalent, for any a− ∈ a{1}:
(i) (a∗)k + 1 − aa− ∈ R−1.
(ii) (a∗)k+1 + 1 − aa− ∈ R−1.
(iii) a∗a + 1 − aa− ∈ R−1.

In this case, a(#) = (a∗a + 1 − aa−)−1a∗ = ak[((a∗)k+1 + 1 − aa−)−1]∗.

Proof As a ∈ R(#), a ∈ R# by Lemma 2.5. Hence, a+1−aa(#) ∈ R−1 fromProposition
4.1. Note that aa(#) = aa(1,3) and a∗aa(#) = a∗. Hence, 1 + (a∗ − 1)aa(#) = a∗ + 1 −
aa(#) = (a + 1 − aa(#))∗ ∈ R−1. From Jacobson’s Lemma, it follows that aa(#)a∗ + 1 −
aa(#) = 1 + aa(#)(a∗ − 1) ∈ R−1.
As (a∗+1−aa−)(a+1−aa(#)) = a∗a+1−aa− and a+1−aa(#) ∈ R−1, a∗+1−aa− ∈

R−1 if and only if a∗a + 1 − aa− ∈ R−1.
Also, ((a∗)n+1−aa−)(aa(#)a∗+1−aa(#)) = (a∗)naa(#)a∗+1−aa− = (a∗)n+1+

1 − aa−; then (a∗)n + 1 − aa− ∈ R−1 if and only if (a∗)n+1 + 1 − aa− ∈ R−1, since
aa(#)a∗ + 1 − aa(#) ∈ R−1.

_us, a∗a + 1 − aa− ∈ R−1 if and only if (a∗)k + 1 − aa− ∈ R−1 if and only if
(a∗)k+1 + 1 − aa− ∈ R−1.

Set m1 = (a∗a + 1 − aa−)−1 and n1 = ((a∗)k+1 + 1 − aa−)−1(a∗)k−1. _en

a = (a∗a + 1 − aa−)−1
(a∗a + 1 − aa−)a = m1a∗a2

and

a = ((a∗)k+1
+ 1 − aa−)

−1
((a∗)k+1

+ 1 − aa−) a

= ((a∗)k+1
+ 1 − aa−)

−1
(a∗)k−1

(a∗)2a = n1(a∗)2a.

From _eorem 4.2 (v)⇒ (i), it follows that

a(#) = m1a∗ = an∗1 = (a∗a + 1 − aa−)−1a∗ = ak[((a∗)k+1
+ 1 − aa−)−1]

∗

.

Remark 4.8 Even though a∗a + 1 − aa− ∈ R−1 for any a− ∈ a{1}, it does not imply
the core invertibility of a. Let R be the inûnite matrix ring as in Remark 5.4 and let
a = Σ∞i=1e i+1, i . _en a∗a = 1, aa∗ /= 1. For any a− ∈ a{1}, as (2− aa−)−1 = 1

2 (1+ aa
−);

then 2 − aa− = a∗a + 1 − aa− ∈ R−1 . But a ∉ R# and hence a ∉ R(#).
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Proposition 4.9 Let k ≥ 1 be an integer and suppose a ∈ R. _en the following
conditions are equivalent:
(i) a ∈ R(#).
(ii) a ∈ R(1,3) and (a∗)k + 1 − aa(1,3) ∈ R−1 for any a(1,3) ∈ a{1, 3}.
(iii) a ∈ R(1,3) and (a∗)k + 1 − aa(1,3) ∈ R−1 for some a(1,3) ∈ a{1, 3}.
In this case, a(#) = (u−1)∗a2k−1(u−1)∗ = (u−1)∗ak−1u−1(ak)∗, where u = (a∗)k + 1 −
aa(1,3).

Proof (i)⇒ (ii). It follows from Lemma 2.5 that a ∈ R(#) implies a ∈ R# ∩ R(1,3).
Hence, ak + 1 − aa(1,3) ∈ R−1 from Proposition 4.1.

So, (a∗)k + 1 − aa(1,3) = (ak + 1 − aa(1,3))∗ ∈ R−1 for any a(1,3) ∈ a{1, 3}.
(ii)⇒ (iii) is clear.
(iii)⇒ (i). Let u = (a∗)k + 1− aa(1,3). _en ak + 1− aa(1,3) = u∗ ∈ R−1, and hence

a ∈ R# by Proposition 4.1.
As u∗a = ak+1, a = (u−1)∗ak+1 = (u−1)∗ak−1a2. Lemma 2.4 guarantees that a# =

((u−1)∗ak−1)2a.
Also, ua = (a∗)ka implies a = (u−1(a∗)k−1)a∗a. So, applying Lemma 2.2(i), we

know that a ∈ R(1,3) and (u−1(a∗)k−1)∗ = ak−1(u−1)∗ is a {1,3}-inverse of a.
Hence, we have

a(#) = a#aa(1,3) = ((u−1
)
∗ak−1

)
2a2ak−1

(u−1
)
∗

= (u−1
)
∗ak−1

(u−1
)
∗ak+1ak−1

(u−1
)
∗

= (u−1
)
∗ak−1aak−1

(u−1
)
∗
= (u−1

)
∗a2k−1

(u−1
)
∗ .

From uak = (a∗)ku∗, it follows that u−1(a∗)k = ak(u−1)∗. _us,

a(#) = (u−1
)
∗ak−1ak

(u−1
)
∗
= (u−1

)
∗ak−1u−1

(a∗)k .

Remark 4.10 In Proposition 4.9, if k ≥ 2, then the expression of the core inverse
of a can be given as a(#) = ak−1(u−1)∗, where u = (a∗)k + 1 − aa(1,3). Indeed, as
u∗ak−1 = a2k−1, (u∗)−1a2k−1 = ak−1. Hence, a(#) = (u−1)∗a2k−1(u−1)∗ = ak−1(u−1)∗.

Taking k = 1 in Proposition 4.9, we have the following corollary.

Corollary 4.11 Let a ∈ R. _en the following conditions are equivalent:
(i) a ∈ R(#).
(ii) a ∈ R(1,3) and a∗ + 1 − aa(1,3) ∈ R−1 for any a(1,3) ∈ a{1, 3}.
(iii) a ∈ R(1,3) and a∗ + 1 − aa(1,3) ∈ R−1 for some a(1,3) ∈ a{1, 3}.
In this case, a(#) = (u−1)∗a(u−1)∗ = (u−1)∗u−1a∗, where u = a∗ + 1 − aa(1,3).

Remark 4.12 Let a ∈ R be regular with an inner inverse a−. If u = a∗ + 1 − aa− ∈

R−1, then (u−1)∗a(u−1)∗ = (u−1)∗u−1a∗. In fact, as ua = a∗a, a = u−1a∗a, and
hence (u−1)∗ ∈ a{1, 3} by Lemma 2.2. _us, a(u−1)∗ = (a(u−1)∗)∗ = u−1a∗ and
(u−1)∗a(u−1)∗ = (u−1)∗u−1a∗. Moreover, if a ∈ R(#), then a(#) /= (u−1)∗u−1a∗ in
general. Indeed, take A = [ 1 −2

1 −2 ] in Remark 4.5. _en A# = A and A† = 1
10 [ 1 1

−2 −2 ].
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Hence, A(#) = A#AA† = − 1
2 [ 1 1

1 1 ]. If A− = [ 0 1
0 0 ] ∈ A{1}, then U = A∗ + I − AA− =

[ 2 0
−2 −2 ] is invertible. But (U−1)∗U−1A∗ = (U−1)∗A(U−1)∗ = 1

4 [ 0 0
−1 −1 ] /= A(#).

Proposition 4.13 Let a ∈ R(#) and suppose u = a∗+1−aa− ∈ R−1 for some a− ∈ a{1}.
_en a(#) = (u−1)∗a(u−1)∗ if and only if a− ∈ a{1, 3}.

Proof “⇒” As ua = a∗a, a = u−1a∗a. It follows from Lemma 2.2 that (u−1)∗ ∈

a{1, 3} and a = a(u−1)∗a. Also, as a = a(#)a2 = (u−1)∗a(u−1)∗a2 = (u−1)∗a2 =

(u∗)−1a2, a2 = u∗a = (a + 1 − (aa−)∗)a = a2 + a − (aa−)∗a, which implies a =

(aa−)∗a = (a−)∗a∗a. Again, Lemma 2.2 guarantees that a− ∈ a{1, 3}.
“⇐” See Corollary 4.11.

Recall that a ring R is calledDedekind-ûnite if ab = 1 implies ba = 1, for all a, b ∈ R.
We next give characterizations of core inverse in such a ring.

Corollary 4.14 Let R be a Dedekind-ûnite ring. _en the following conditions are
equivalent:
(i) a ∈ R(#).
(ii) a ∈ R(1,3) and a∗a + 1 − aa(1,3) is invertible for any a(1,3).
(iii) a ∈ R(1,3) and a∗a + 1 − aa(1,3) is invertible for some a(1,3).

In this case, a(#) = v−1a∗, where v = a∗a + 1 − aa(1,3).

Proof Let u = a∗ + 1 − aa(1,3) and v = a∗a + 1 − aa(1,3). _en v = uu∗. As R
is a Dedekind-ûnite ring, v ∈ R−1 if and only if u ∈ R−1. By Corollary 4.11, a(#) =
(u−1)∗u−1a∗ = (uu∗)−1a∗ = v−1a∗.

5 Core, Dual Core, and Moore–Penrose Invertibility

In this section, wemainly characterize the core inverse and dual core inverse of ring
elements. First, new characterizations of the Moore–Penrose inverse of a regular el-
ement are given by one-sided invertibilities. One can ûnd that some parts of the fol-
lowing _eorem 5.1 were given in [12,_eorem 3.3]. Herein, a new proof is given.

_eorem 5.1 Let a ∈ R be regular with an inner inverse a−. _en the following
conditions are equivalent:
(i) a ∈ R†.
(ii) aa∗ + 1 − aa− is right invertible.
(iii) a∗a + 1 − a−a is right invertible.
(iv) aa∗aa− + 1 − aa− is right invertible.
(v) a−aa∗a + 1 − a−a is right invertible.
(vi) aa∗ + 1 − aa− is le� invertible.
(vii) a∗a + 1 − a−a is le� invertible.
(viii) aa∗aa− + 1 − aa− is le� invertible.
(ix) a−aa∗a + 1 − a−a is le� invertible.
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Proof (ii)⇔ (iii), (ii)⇔ (iv), (iii)⇔ (v), (vi)⇔ (vii), (vi)⇔ (viii), and (vii)⇔
(ix) follow from Lemma 2.1.

(i)⇒ (ii). If a ∈ R†, then there exists x ∈ R such that a = aa∗ax from Lemma 2.3.
As (aa∗aa− + 1 − aa−)(axa− + 1 − aa−) = 1, aa∗aa− + 1 − aa− is right invertible.
Hence, aa∗ + 1 − aa− is right invertible by Lemma 2.1.

(ii)⇒ (i). As aa∗ + 1− aa− is right invertible, a∗a + 1− a−a is also right invertible
by Lemma 2.1. Hence, there is s ∈ R such that (a∗a + 1 − a−a)s = 1. We have a =

a(a∗a + 1 − a−a)s = aa∗as ∈ aa∗aR. So, a ∈ R† by Lemma 2.3.
(i)⇒ (vi). _is is similar to the proof of (i)⇒ (ii).
(vi)⇒ (i). As aa∗ + 1 − aa− is le� invertible, t(aa∗ + 1 − aa−) = 1 for some t ∈ R.

Also, a = 1 ⋅ a = t(aa∗ + 1− aa−)a = taa∗a ∈ Raa∗a, which ensures a ∈ R† according
to Lemma 2.3.

As a special result of_eorem 5.1, we have the following corollary.

Corollary 5.2 ([6,_eorem 1.2]) Let a ∈ R be regularwith an inner inverse a−. _en
the following conditions are equivalent:
(i) a ∈ R†.
(ii) aa∗ + 1 − aa− is invertible.
(iii) a∗a + 1 − a−a is invertible.
(iv) aa∗aa− + 1 − aa− is invertible.
(v) a−aa∗a + 1 − a−a is invertible.

_eorems 5.3 and 5.5 were given in [12] by the authors. Next, we give diòerent
purely ring theoretical proofs.

_eorem 5.3 Let a ∈ R be regular with an inner inverse a−. _en the following
conditions are equivalent:
(i) a ∈ R† and aR = a2R.
(ii) u = aa∗a + 1 − aa− is right invertible.
(iii) v = a∗a2 + 1 − a−a is right invertible.

Proof (i)⇒ (ii). As aR = a2R, a+ 1− aa− is right invertible by [8,_eorem 1]. Also,
from a ∈ R† we can conclude aa∗aa− + 1 − aa− is invertible by Corollary 5.2. Hence,
u = aa∗a + 1 − aa− = (aa∗aa− + 1 − aa−)(a + 1 − aa−) is right invertible.

(ii)⇔ (iii) follows from Lemma 2.1.
(iii)⇒ (i). Since v is right invertible, there exists v1 ∈ R such that vv1 = 1. _en

a = avv1 = a(a∗a2 + 1 − a−a)v1 = aa∗a2v1 ∈ aa∗aR, and hence a ∈ R† by Lemma
2.3. It follows from Corollary 5.2 that a ∈ R† implies that w = a∗a + 1− a−a ∈ R−1. As
v = (a∗a+ 1− a−a)(a−a2 + 1− a−a) is right invertible, a−a2 + 1− a−a = w−1v is right
invertible, and hence a + 1− a−a is also right invertible. So, aR = a2R by [8,_eorem
1].

Remark 5.4 In general, a ∈ R† and aR = a2R may not imply a ∈ R#. For example,
let R be the ring of all inûnite complexmatrices with ûnite nonzero elements in each
column with transposition as involution. Let a = Σ∞i=1e i , i+1 ∈ R, where e i , j denotes
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the inûnite matrix whose (i , j)-entry is 1 and other entries are zero. _en aa∗ = 1
and a∗a = Σ∞i=2e i , i . So, a† = a∗ and aR = a2R. But a ∉ R#. In fact, if a ∈ R#, then
a#a = aa# = aa#aa∗ = aa∗ = 1, which would imply that a is invertible. _is is a
contradiction.

Dually, we have the following result.

_eorem 5.5 Let a ∈ R be regular with an inner inverse a−. _en the following
conditions are equivalent:
(i) a ∈ R† and Ra = Ra2.
(ii) u = aa∗a + 1 − a−a is le� invertible.
(iii) v = a2a∗ + 1 − aa− is le� invertible.

We next give existence criteria and representations of the core inverse and of the
dual core inverse of a regular element in a ring.

_eorem 5.6 Let a ∈ R be regular with an inner inverse a−. _en the following
conditions are equivalent:
(i) a ∈ R# ∩ R†.
(ii) a ∈ R(#) ∩ R(#).
(iii) u = aa∗a + 1 − aa− ∈ R−1.
(iv) v = aa∗a + 1 − a−a ∈ R−1.
(v) s = a∗a2 + 1 − a−a ∈ R−1.
(vi) t = a2a∗ + 1 − aa− ∈ R−1.
In this case,

a(#) = u−1aa∗ , a(#) = a∗av−1 ,

a† = (t−1a2
)
∗
= (a2s−1

)
∗ ,

a#
= (aa∗t−1

)
2a = a(s−1a∗a)2 .

Proof (i)⇔ (ii) by Lemma 2.5.
(iii)⇔ (v) and (iv)⇔ (vi) are obtained by Jacobson’s Lemma.
(i)⇒ (iii). From Proposition 4.1 and Corollary 5.2, a ∈ R# ∩ R† implies that a +

1 − aa− and aa∗aa− + 1 − aa− are both invertible. Hence, u = aa∗a + 1 − aa− =

(aa∗aa− + 1 − aa−)(a + 1 − aa−) is invertible.
(iii) ⇒ (i). Suppose that u = aa∗a + 1 − aa− is invertible. _en a ∈ R† from

_eorem 5.3, and hence aa∗aa− + 1 − aa− is invertible by Corollary 5.2. Since

u = (aa∗aa− + 1 − aa−)(a + 1 − aa−)

is invertible,
a + 1 − aa− = (aa∗aa− + 1 − aa−)−1u

is invertible, i.e., a ∈ R# by Proposition 4.1.
(i)⇔ (iv) can be obtained by a proof similar to that of (i)⇔ (iii).
Next, we give representations of a(#), a(#), a† and a#, respectively.
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Since ua = aa∗a2, a = (u−1aa∗)a2. As a# exists, then a# = (u−1aa∗)2a by Lemma
2.4. From Lemma 2.5, we have

a(#) = a#aa(1,3) = u−1aa∗u−1aa∗a2a(1,3)

= u−1aa∗aa(1,3) = u−1aa∗(aa(1,3))∗ = u−1aa∗ .

Similarly, it follows that a# = a(a∗av−1)2 and a(#) = a∗av−1.
As as = aa∗a2 and ta = a2a∗a, we then have a = aa∗(a2s−1) = (t−1a2)a∗a. It

follows from Lemma 2.2 that a ∈ R† and

a† = (a2s−1
)
∗a(t−1a2

)
∗
= (s−1

)
∗
(a2

)
∗a(a2

)
∗
(t−1

)
∗

= (s−1
)
∗
(aa∗a2

)
∗a∗(t−1

)
∗
= (s−1

)
∗
(as)∗a∗(t−1

)
∗

= (a∗)2
(t−1

)
∗
= (t−1a2

)
∗ .

Similarly, a† = (a2s−1)∗.
Noting sa−a = a∗a2, we have a−a = s−1a∗a2 and a = aa−a = (as−1a∗)a2. Hence,

it follows that a# = (as−1a∗)2a = a(s−1a∗a)2 since a ∈ R#. We can also get a# =

(aa∗t−1)2a by a similar way.

Corollary 5.7 Let a ∈ R†. _en the following conditions are equivalent:
(i) a ∈ R(#).
(ii) a ∈ R(#).
(iii) u = aa∗a + 1 − aa† ∈ R−1.
(iv) v = aa∗a + 1 − a†a ∈ R−1.
(v) s = a∗a2 + 1 − a†a ∈ R−1.
(vi) t = a2a∗ + 1 − aa† ∈ R−1.
In this case,

a(#) = u−1aa∗ = aa∗t−1 ,

a(#) = a∗av−1
= s−1a∗a.

Proof As a ∈ R†, a ∈ R(#) if and only if a ∈ R# if and only if a ∈ R(#) by Lemma
2.5. So (i)–(vi) are equivalent by _eorem 5.6. Moreover, a(#) = u−1aa∗ and a(#) =
a∗av−1. Note that uaa∗ = aa∗t and a∗av = sa∗a. _en u−1aa∗ = aa∗t−1 and
a∗av−1 = s−1a∗a, as required.

Proposition 5.8 Let a ∈ R†. _en the following conditions are equivalent:
(i) a ∈ R(#).
(ii) a ∈ R#.
(iii) a∗ + 1 − aa† ∈ R−1.
In this case, a# = (u−2)∗a and a(#) = (u−1)∗u−1a∗, where u = a∗ + 1 − aa†.

Proof (i)⇔ (ii) by _eorem 5.6 (i)⇔ (ii).
(ii)⇔ (iii). Note that a∗ + 1 − aa† = (a + 1 − aa†)∗. It follows from Proposition

4.1 that a ∈ R# if and only if a + 1 − aa† ∈ R−1 if and only if a∗ + 1 − aa† ∈ R−1.
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Let u = a∗ + 1 − aa†. _en u∗a = a2 and a = (u∗)−1a2. As a ∈ R#, a# = (u∗)−2a =
(u−2)∗a by Lemma 2.4.

Since a ∈ R†, it follows that

a(#) = a#aa(1,3) = a#aa† = (u∗)−2a2a†

= (u∗)−1
(u∗)−1a2a† = (u∗)−1aa†

= (u∗)−1u−1uaa† = (u−1
)
∗u−1a∗ .

_e proof is completed.

Proposition 5.9 Let a ∈ R#. _en the following conditions are equivalent:
(i) a ∈ R(#) ∩ R(#).
(ii) a ∈ R†.
(iii) a∗ + 1 − aa# ∈ R−1.
In this case, a† = (u−1)∗a(u−1)∗, a(#) = a#a(u−1)∗ and a(#) = (u−1)∗aa#, where
u = a∗ + 1 − aa#.

Proof (i)⇔ (ii) by _eorem 5.6 (i)⇔ (ii).
(ii) ⇒ (iii). Note that a ∈ R† implies a∗a + 1 − a#a ∈ R−1 by Corollary 5.2. As

a ∈ R#, then a + 1 − aa† ∈ R−1 from Proposition 4.1. Since a∗a + 1 − a#a = (a∗ + 1 −
aa#)(a + 1− aa†), it follows that a∗ + 1− aa# = (a∗a + 1− a#a)(a + 1− aa†)−1 ∈ R−1.

(iii)⇒ (ii). Let u = a∗ + 1 − aa#. _en ua = a∗a and au = aa∗. As u ∈ R−1, then
a = aa∗u−1 = u−1a∗a ∈ aa∗R ∩ Ra∗a. So, a ∈ R† and (u−1)∗ is both a {1,3}-inverse
and a {1,4}-inverse of a. Moreover, a† = a(1,4)aa(1,3) = (u−1)∗a(u−1)∗.

Hence, a(#) = a#aa(1,3) = a#a(u−1)∗ and a(#) = a(1,4)aa# = (u−1)∗aa#.

It is known that if a ∈ R†, then aa(1,3) = aa†. Applying Corollary 4.14, we have the
following corollary.

Corollary 5.10 Let R be a Dedekind-ûnite ring. If a ∈ R†, then a ∈ R(#) if and only if
a∗a + 1 − aa† ∈ R−1. In this case, a(#) = (a∗a + 1 − aa†)−1a∗.

Remark 5.11 Suppose 2 ∈ R−1. If a∗a + 1 − aa† ∈ R−1 implies a ∈ R(#) for any
a ∈ R†, then a∗a = 1 can conclude aa∗ = 1. Indeed, if a∗a = 1, then a ∈ R† and
a† = a∗. Hence, a∗a+ 1− aa† = 2− aa† ∈ R−1 with inverse 1

2 (1+ aa
†). _us, a ∈ R(#)

and a ∈ R#. As aa# = a#a = (a∗a)a#a = a∗a = 1, a ∈ R−1, and hence aa∗ = 1.
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