
Bull. Aust. Math. Soc. 100 (2019), 201–205
doi:10.1017/S0004972719000212

PERIODS OF DUCCI SEQUENCES AND ODD SOLUTIONS
TO A PELLIAN EQUATION

FLORIAN BREUER

(Received 10 October 2018; accepted 30 November 2018; first published online 3 July 2019)

Abstract

A Ducci sequence is a sequence of integer n-tuples generated by iterating the map

D : (a1, a2, . . . , an) 7→ (|a1 − a2|, |a2 − a3|, . . . , |an − a1|).

Such a sequence is eventually periodic and we denote by P(n) the maximal period of such sequences for
given n. We prove a new upper bound in the case where n is a power of a prime p ≡ 5 (mod 8) for which
2 is a primitive root and the Pellian equation x2 − py2 = −4 has no solutions in odd integers x and y.
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1. Introduction

Let n be a positive integer and consider the map D : Zn → Zn defined by

D : (a1, a2, . . . , an) 7→ (|a1 − a2|, |a2 − a3|, . . . , |an − a1|).

Sequences of integer n-tuples obtained by iterating this map are known as Ducci
sequences, in honour of E. Ducci, who first studied them in the 1930s. He discovered
that every such sequence of integer n-tuples eventually stabilises at (0, 0, . . . , 0) if and
only if n is a power of 2 (see [8]).

Ducci sequences and their generalisations have received much attention in the
literature (see, for example, [4–7, 9, 11, 18]) and they have been independently
rediscovered in various guises by several authors (for example in [1–3, 12, 16]).

Since the entries in a Ducci sequence remain bounded, the sequence eventually
becomes periodic. We are interested here in the period P(n) of the Ducci sequence
starting with (0, . . . , 0, 1). The function P(n) was studied in detail in [11] and it is
shown that the period of any Ducci sequence of n-tuples divides P(n), n divides P(n)
and P(2kn) = 2kP(n). Thus it suffices to study P(n) for odd n. Furthermore, one has
the following upper bounds on P(n).

c© 2019 Australian Mathematical Publishing Association Inc.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.

201

https://doi.org/10.1017/S0004972719000212 Published online by Cambridge University Press

https://orcid.org/0000-0001-5888-7685
https://doi.org/10.1017/S0004972719000212


202 F. Breuer [2]

Theorem 1.1 [11]. Suppose n is odd.

(1) Denote by m = ordn(2) the multiplicative order of 2 modulo n. Then P(n) divides
B1(n) := 2m − 1.

(2) Suppose there exists an integer M for which 2M ≡ −1 (mod n). In this case
we say that ‘n is with −1’. If M is the smallest such integer, then P(n) divides
B2(n) := n(2M − 1).

In [5] we list the first few odd values of n satisfying various sharpness conditions
relative to the bounds in Theorem 1.1. In particular, the first examples of n with
−1 for which P(n) < B2(n) are n = 37, 101, 197, 269, 349, 373, 389, 541, 557 and 677.
Searching the Online Encyclopedia of Integer Sequences we find that, with the
exception of 541, these are the first nine entries of Sequence A130229 [15]: the primes
of the form p ≡ 5 (mod 8) for which the Pellian equation

x2 − py2 = −4 (1.1)

has no solution in odd integers x and y.
Our goal is to prove the following result, which explains this discovery.

Theorem 1.2. Let p ≡ 5 (mod 8) be a prime such that 2 is a primitive root modulo p
and for which (1.1) has no solution in odd integers x and y. Then P(p) divides 1

3 B2(p).
If furthermore p is not a Wieferich prime, then P(pk) divides 1

3 B2(pk) for all positive
integers k.

Recall that an integer a is a primitive root modulo n if ordn(a) = ϕ(n), that is, a
generates (Z/nZ)∗. Artin’s Conjecture states that every nonsquare integer a , −1 is
a primitive root modulo p for infinitely many primes p. When 2 is a primitive root
modulo n, then 2ordn(2)/2 ≡ −1 (mod n), so n is with −1.

A prime p is called a Wieferich prime if 2p−1 ≡ 1 (mod p2). Only two Wieferich
primes are known, 1093 and 3511, neither of which satisfies the hypothesis of
Theorem 1.2. However, a standard heuristic argument suggests that the number of
Wieferich primes p ≤ x should grow like log log(x) (see [4, Section 9]).

The condition that 2 is a primitive root modulo p in Theorem 1.2 is essential; the
first entry in sequence A130229 for which 2 is not a primitive root is 997 and in fact
P(997) = B2(997) = 997(2166 − 1).

The case n = 541 does not fit into our scheme; instead P(541) = 1
7 B2(541).

2. Periods and cyclotomy

It is known (see, for example, [7]) that the tuples in the periodic part of a Ducci
sequence all lie in {0, c}n, for some constant c. Therefore, after discarding the common
factor c, we may assume that all entries lie in {0, 1}n = Fn

2, in which case the Ducci
operator D becomes linear:

D : Fn
2 → F

n
2; (a1, a2, . . . , an) 7→ (a1 + a2, a2 + a3, . . . , an + a1).
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Next, mapping a tuple u = (a1,a2, . . . ,an) to the element represented by the polynomial
f = a1xn−1 + a2xn−2 + · · · + an in the ring R = F2[x]/〈xn − 1〉, we find that the Ducci
sequence u,Du,D2u, . . . ∈ Fn

2 maps to the sequence f , (x + 1) f , (x + 1)2 f , . . . ∈ R, an
idea going back to [18]. We thus find that P(n) equals the multiplicative period of
x + 1 in R. Realising R to be the ring of cyclotomic integers modulo 2, we arrive at the
following result (see [4, Theorem 5.2]).

Theorem 2.1. Suppose n is odd. Denote by L = Q(ζn) the nth cyclotomic field, where
ζn ∈ C is a primitive nth root of unity. Denote by OL = Z[ζn] the ring of integers in
L. Let P ⊂ OL be a prime ideal containing 2. Then P(n) equals the lowest common
multiple of the multiplicative orders of ζ + 1 modulo P, where ζ ranges over all nth
roots of unity ζ , 1.

Since (OL/P)∗ has order B1(n), we recover the bound P(n)|B1(n). Further, note
that ζ + 1 = (1 − ζ2)/(1 − ζ) is a unit in OL by [10, Proposition 3.5.5], so one source
of sharper bounds for P(n) arises when the units of OL generate a proper subgroup
of (OL/P)∗. Determining the units of OL is generally difficult, but under certain
circumstances this phenomenon can be detected already at the level of a quadratic
subfieldQ(

√
d) ⊂ L = Q(ζn), which is where the Pellian equation (1.1) comes into play.

3. Proof of Theorem 1.2

Suppose that p ≡ 5 (mod 8) and that 2 is a primitive root modulo n = pk. If p
is not a Wieferich prime, then this follows if 2 is a primitive root modulo p, by
[10, Proposition 2.1.24]. Now 2 remains prime in Q(ζn), that is, P = 2OL, by [10,
Proposition 3.5.18].

By [10, Propositions 3.4.1 and 3.5.14], Q(ζp), and thus also L, contains the
real quadratic field K = Q(

√
p), whose ring of integers is OK = Z[(1 +

√
p)/2]. Let

p = P ∩ K = 2OK .
Since p is inert in L/K, we have Gal(L/K) � Gal((OL/P)/(OK/p)), and thus the

norm NL/K : L→ K induces the commutative diagram

O∗L
//

NL/K

��

(OL/P)∗

N
����

O∗K
// (OK/p)∗

where the second vertical map is the norm of finite fields, which is surjective by [10,
Proposition 2.4.12].

The group of units O∗K is generated by −1 and the fundamental unit in K,
say ε = (x + y

√
p)/2, where (x, y) is the fundamental solution to (1.1), see [10,

Proposition 6.3.16] and [17]. Therefore, we see that the units O∗K generate the trivial
subgroup {1} < (OK/p)∗ � F∗4 if and only if (1.1) has no odd solutions. In this case,
the image of the bottom horizontal arrow is a subgroup of index 3. It follows that the
image of the top arrow lies in a subgroup of index 3 and thus P(n) | 1

3 B1(n). Since p ≡ 1
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Figure 1. Proportion δ(x) of primes p ≤ x for which the hypothesis of Theorem 1.2 holds.

(mod 4), we have 3 | B2(n) = n(2pk−1(p−1)/2 − 1) and so the following lemma completes
the proof of Theorem 1.2.

Lemma 3.1. Suppose n is with −1. Let ` - n be an odd prime with ` | B2(n). Then
P(n) | B2(n)/` if and only if P(n) | B1(n)/`.

Proof. Let m = ordn(2) so that B2(n) = n(2m/2 − 1). Since ` | B2(n) and ` - n, we have
` | 2m/2 − 1. Since ` is odd, ` - 2m/2 + 1. Let v`(x) denote the `-adic order of x. Then

v`(B1(n)) = v`(2m − 1) = v`((2m/2 − 1)(2m/2 + 1))

= v`(2m/2 − 1) = v`(n(2m/2 − 1)) = v`(B2(n)).

The result follows. �

4. Remarks

As the example of p = 997 shows, our argument requires 2 to remain prime inQ(ζn).
This means that 2 generates (Z/nZ)∗ and so n = pk for some prime p. We must have
p ≡ 3 or 5 (mod 8), otherwise 2 is a square modulo p. Furthermore, we need 3 | B2(n),
which requires p ≡ 1 (mod 4). This explains the condition p ≡ 5 (mod 8).

We expect that there are infinitely many primes p for which (1.1) has no odd
solutions. Heuristically, we expect the fundamental unit to fall in each of the three
nonzero residue classes modulo p with equal probability, which suggests that these
primes have density 1/3 in the set of all primes p ≡ 5 (mod 8). The Generalised
Riemann Hypothesis implies that the proportion of primes p ≡ 5 (mod 8) for which 2
is a primitive root is A/2, where A ≈ 0.3739558 is Artin’s constant, as follows from
the main result of [14]. Assuming that these two conditions on p are independent,
we thus expect that the primes satisfying the hypothesis of Theorem 1.2 have density
A/6 ≈ 0.0623259689.

Numerically, we find that for primes up to 109, this proportion is 0.0612819, but this
proportion creeps up as one considers ever larger upper bounds on p (see Figure 1).
This suggests that a Chebyshev bias-type phenomenon might be at work.

It is known that there are infinitely many squarefree integers d ≡ 5 (mod 8) for
which the equation

x2 − dy2 = 4
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has no odd solutions (see [17]). (One can replace −4 by 4 in (1.1); this has the effect
of merely squaring the fundamental unit).

Finally, our argument is related to that in [13]. That paper considers the same fields
K ⊂ L as we do, and uses the unit NL/K(1 + ζn) ∈ O∗K to produce a relatively small
solution to (1.1).
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