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Abstract

The connection between Clifford analysis and the Weyl functional calculus for a rf-tuple of bounded
selfadjoint operators is used to prove a geometric condition due to J. Bazer and D. H. Y. Yen for a point to
be in the support of the Weyl functional calculus for a pair of hermitian matrices. Examples are exhibited
in which the support has gaps.
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1. Introduction

For a J-tuple A = (A\,..., Ad) of noncommuting bounded selfadjoint operators
acting on a Hilbert space H, there is no direct analogue of the spectral theorem for
a single selfadjoint operator T, by which a function / (T) of T can be expressed in
terms of an integral / (T) = f0(T)f(^) dE(k) with respect to a spectral measure E.

The Weyl functional calculus W^ : / i-> /w(A) for A is a means of constructing
functions/w(A) of the system A of operators, for suitable smooth functions/ defined
on Rd. It was proposed by H. Weyl for the pair (P, Q) of unbounded selfadjoint
operators, where P is the momentum operator and Q is the position operator in
quantum mechanics. In the noncommuting case, the operator # A (f) is not necessarily
expressible as an integral with respect to an operator-valued measure, but W& is an
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86 Brian Jefferies and Bernd Straub [2]

operator-valued distribution. If A consists of bounded operators, then /^A necessarily
has compact support.

A feature of Weyl's functional calculus is that W\ maps a polynomial p in d
variables to an operator /?w(A) in which symmetrised products in the elements of A
replace the associated monomial components of p.

A similar phenomenon emerges in Clifford analysis. A monogenic function /
defined on Rrf+1, and with values in a finite dimensional Clifford algebra, is a function
satisfying a higher dimensional analogue of the Cauchy-Riemann equations. Every
complex valued analytic function in d real variables has a unique monogenic extension
to an open subset of Rd+l. The monogenic extension of polynomials on Rd are the
corresponding polynomials in the J-tuple (zi, . . . , zd) of monogenic extensions of
coordinate functions, but with products suitably symmetrised.

The purpose of the present work is to exploit the connection between the Weyl and
Clifford calculi, previously examined in [17, 18], to obtain a geometric expression for
the support of the Weyl functional calculus for two hermitian matrices. Expressed
otherwise, we describe geometrically the 'joint spectrum' y (A) of two noncommuting
hermitian matrices A = (Au A2). In the case that A\, A2 do commute, the support
y (A) of the Weyl functional calculus W\ for the pair A is actually the support of the
joint spectral measure for A—the finite set of joint eigenvalues of A\ and A2. Our
technique uses a generalisation of the Cauchy-Stieltjes transform of a measure on K
from the complex plane to higher dimensions. The analogy is as follows.

Let /x be a finite Borel measure on the line. The Cauchy-Stieltjes transform jl is
defined for all z € C \ supp /x by

z-x

The measure /x can be recovered from its Cauchy-Stieltjes transform /x by the formula

I (f>dfi = lim / [/X(JC — is) — LL(X + ie)]<p(x) dx,

j * * - ° + y R
 L J

valid for all smooth functions (p with compact support.
A similar argument applies to a spectral measure. Suppose that A is a selfadjoint

operator acting in a Hilbert space with a selfadjoint spectral measure P supported on
the spectrum o (A) of A, that is, A = / XdP(X). Then for every z belonging to the
resolvent set p(A) = C \ c(A), the functional calculus for selfadjoint operators gives

27TI Jfc Z — X LIZ I

in terms of the resolvent (zi — A)~l of A. Moreover,

(1) [ <pdP = - i - lim f[((x-ie)I -A)"1 - ((x + ie)I - A)~l] <p(x)dx
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for all smooth functions </> with compact support (see [11, (iv) page 2168]). The
support a (A) of the spectral measure P is characterised as the complement of the set
of points x e R contained in an open set U in C in which the resolvent z h-> (z /—A)~l ,
z e U \ R, is the restriction to U \ R of a continuous function defined in U. Formulas
like (1) are basic to the spectral theory of differential operators and to the construction
of their spectral measures, for example, by the Weyl-Titchmarsh-Kodaira formula for
Sturm-Liouville differential operators.

In the case that A = (Au . . . , Ad) is a J-tuple of bounded selfadjoint operators
acting on a Hilbert space H and W\ is the Weyl functional calculus associated with
A, the equation

= lim f [Gx+eeo(A) - Gx-eeo(A)]4>(x)dx, 4> e C?(Rd),

was established in [17, Theorem 6.2]. Here Ga,(A), co e Rd+l \ ({0} x supp(;TA)), is a
higher dimensional analogue of the resolvent family of a single operator. The Cauchy
kernel G(.) (A) takes values in a Clifford module over the space of bounded linear
operators acting on H. It can be viewed as a higher dimensional Cauchy-Stieltjes
transform of the distribution # A supported in Rd. The analogue

/w(A) = / Gm(A)n{a))f (co)diu,(a))

of the Riesz-Dunford formula is also valid for functions / left monogenic in a neigh-
bourhood in Rd+l of the support of "Wk [17, Corollary 5.5].

Then supp(^A) is characterised as the complement of the set on which the function
a) H-> Ga)(A) is continuous, that is, the 'spectrum' supp(y^) of the functional calculus
Ws. is precisely the set of singularities of the Cauchy kernel G() (A), just as the spectrum
a (T) of a single operator T is the set of singularities of the resolvent X H> (XI — T) ~l.

Although the Fourier transform W\ of the operator-valued distribution W^ is known
explicitly, it does not obviously provide detailed information about the local behaviour
of W\. For example, in the case of a pair A = (Au A2) of bounded selfadjoint
operators, an application of the Paley-Wiener theorem shows that the convex hull of
supp(#^) coincides with the closure of the numerical range of the bounded linear
operator A i + iA2 [2, Theorem 5.2]. It is difficult to obtain further information from
bounds involving the Fourier transform Wk of # A .

A simple geometric condition for points to belong to supp(#A) in the case that
A = (A i, A 2) is a pair of hermitian matrices is found in Theorem 6.4 from the plane
wave decomposition for G^(A) [18, Lemma 2.5], as this is adapted to a more detailed
examination of the behaviour of # A around its support.

The argument we use demonstrates why Clifford analysis or, more specifically,
quaternionic analysis is more suited to the problem at hand than the theory of functions
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of several complex variables. The distribution W\ is supported in R2 and can b<
represented as the boundary values of a function, taking its values in a Clifford modul<
over the space of matrices, and monogenic in R3 off the plane R2 = {0} x R2 c R3

However, if we represent the distribution W\ as the boundary values on R2 of i
matrix-valued analytic function 0 defined in C2, then we find that O has singularitie;
on certain algebraic curves studied by Kippenhahn [23] in his 1951 investigation intc
the numerical range of matrices; this phenomenon complicates the analysis. Th<
emergence of singularities in C in the Cauchy transform of smooth scalar-valuec
functions in Rn for n > 1 is noted in [10].

The distribution (x, t) (->• >^A(*) is actually the fundamental solution of a lineai
symmetric hyperbolic system of PDE of a type that arises, for example, in the stud}
of two-dimensional magnetohydrodynamic waves [35]. Part of Theorem 6.4 has beer
obtained by Bazer and Yen [6, 7] by appealing to a plane wave decomposition forWtA

from the method of Herglotz and Radon [20], although no connection is made in these
works with Kippenhahn's characterisation [23] of the numerical range of matrices
Our approach also makes explicit the relationship with the 'spectral theory' of a finite
collection of noncommuting operators.

A more general study of the support of the fundamental solution of hyperbolic PDE
with constant coefficients originated with the penetrating work of Petrovsky [27] anc
was advanced by Atiyah, Bott and Garding [3, 4], see also [34]. The lacunas studiec
in the present work and in [27, 6, 7] are called strong lacunas in the terminology oi
[3] and [4]. The fundamental solution of a symmetric hyperbolic system P of PDE
may have lacunas stronger than those of det P [3, page 188]. As in the works [6, 7]
we use the additional features of symmetric hyperbolic systems to obtain results more
directly than those obtained from the general theory of Atiyah, Bott and Garding
[3, 4]. In particular, the formulas of Herglotz-Petrovsky-Leray [3, Theorem 7.16] foi
the fundamental solution of det P are replaced in the present context by a much simple]
formula of Bazer and Yen for the matrix valued distribution #̂ A> see Lemma 9.2.

The method of the present work demonstrates that the monogenic functional cal-
culus for noncommuting systems of operators is a useful tool to analyse the suppon
of distributions in Rd. It also makes explicit the connection between earlier work
of Kippenhahn [23] and Murnaghan [25] on the numerical range W(A) of the ma-
trix A = Ai + iA2 and the support of the Weyl functional calculus Wk for a paii
A = (A i, A2) of hermitian matrices. In particular, lacunas or gaps in the support oi
#A—the difference between the convex set W(A) and supp(#A)—are already explicit
in the numerical range of certain (3 x 3) matrices A exhibited in [23], see Figures 1-6.

An outline of Clifford analysis is given in Sections 2-3. The higher-dimensional
analogue of the Riesz-Dunford functional calculus is outlined in Section 4. An
elementary proof of the plane wave decomposition for the Cauchy kernel in IR3

suitable for the present purpose is given in Section 5.
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The geometric condition characterising the monogenic spectrum y(A) and the
support of the Weyl functional calculus is introduced in Section 6. The remainder of
the work is devoted to a proof of Theorem 6.4 using spectral theory arguments for
systems of operators.

Our arguments from spectral theory have mainly a functional analytic flavour, but
certain geometric ideas, already evident in the pioneering work of Petrovsky [27], are
needed to implement the analysis. We include a brief discussion of algebraic curves
in Section 7 in an attempt to alleviate the reader's burden with possibly unfamiliar
ideas already introduced. Some concrete examples of Kippenhahn's plane algebraic
curves for (3 x 3) matrices are exhibited in Section 8. The proof of Theorem 6.4 is
completed in Section 9.

Finally, in Section 10, we make some suggestions about what extensions to the
arguments advanced may be valid for finite systems A = (A i , . . . , Ad) of matrices, or
bounded linear operators on a Banach space for which the spectrum cr
of the operator Ylj=i ^j Hi *s a subset of the real numbers for every £ €

2. Clifford algebras

Let F be either the field R of real numbers or the field C of complex numbers. The
Clifford algebra F(rf) over F is a 2rf-dimensional algebra with unit generated by the
standard basis vectors e0, e\,..., ed of the vector space Frf+I. Multiplication in F(rf)

satisfies es ek + eke} = —28jk for 1 <j,k<d, with Sjk denoting the Kronecker delta.
The vector e0 serves as the identity element.

A basis of F(rf) is given by vectors es, indexed by all subsets 5 of the finite set
{ 1 , . . . , d}. For each such subset S, the element es is the ordered product of the
vectors c7 with j e 5, with the understanding that ee = e0.

The Clifford algebras R((i), Rw and (R(2) are the real, complex numbers and the
quaternions, respectively.

The conjugate ~el of a basis element es is defined so that e^e~l = ~e~ies = 1. Denote
the complex conjugate of a number c e F by c. Then the operation of conjugation
H B « defined by ~u = Y^s "s^s f°r every u = 52s uses, us e F is an involution
of the Clifford algebra F(rf). Then u v = TJw for all elements u and v of F(rf). An
inner product is defined on F(rf) by the formula (u, v) = [uv]0 = ]T]5 usi)s for every
u = J2S uses and v = J2S vses belonging to F(rf). The corresponding norm is written

as | - | .
The Clifford algebra F(rf) has the appealing property that any nonzero vector x e

Rd+X has an inverse x"1 in the algebra given by x~x = 3C/|JC |2.
The algebraic tensor product X{d) = X <g> F(rf) of a vector space X over F with F(rf)

is a two-sided module. Elements of X(d) may be viewed as finite sums u =
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of tensor products of elements xs of X with basis vectors es of F(rf). Multiplication
in X(d) by elements A. of the Clifford algebra (F(rf) is defined by uX = J2sxs(es^)
and ku = Ylsxs(^es)- If X is a normed space, then the norm on X(d) is taken to be

2

Let X be a Banach space and j£?(X) the space of continuous linear operators acting
on X. The space Jf(X)id) and the space jSf(rf) (X(rf)) of all right module homomorphisms
of X(d) are identified by defining the operation of T = ]T5 Tses on u = £ 5 uses as
T{u) = £ 5 5 , Ts(us,)eses, The norm of T is given by | |r | | = ( £ 5 H^ll^w)1 / 2 -
The space _S?(X) is identified with the subspace of -£f(X)(rf) consisting of all elements
7>0, T e -£?(X). An element T of &(X)(d) has an inverse S if ST = TS = I e0. If
such an inverse exists, it is written as T~l.

3. Clifford analysis

What is usually called Clifford analysis is the study of functions of finitely many
real variables, which take values in a Clifford algebra, and which satisfy higher
dimensional analogues of the Cauchy-Riemann equations.

A function / : U —> FW) defined in an open subset U of Rd+1 has a unique
representation/ = ^2sfses in terms of F-valued functions fs, S c { 1 , . . . , d) in the
sense that/ (x) = ^s/5(;c)e5forall;c € U. Then/ is continuous, differentiate and
so on, in the normed space FW), if and only if for all finite subsets S of { 1 , . . . , d], its
scalar component functions fs have the corresponding property. Let 9, be the operator
of differentiation of a scalar function in they th coordinate in Rd+l—the coordinates
of x e Rd+l are written as x = (x0, x\,..., xd). For a continuously differentiate
function/ : U —• F(rf) defined in an open subset U of Rd+l with/ = Ylsfses> t ne
function Df is defined by setting Df = Yls ^lj=o^jfs)ej es and / D is specified by

Now suppose that / is an F^-valued, continuously differentiable function defined
in an open subset U of Rd+l. Then / is said to be left monogenic in U if Df (x) = 0
for all x e U and right monogenic in U if / D(x) = 0 for all x e U. The definition
extends to functions/ with values in a Clifford module over F(rf).

For each y e Rd+\ the function Gy : Rd+l \ {y} -+ F(rf) defined by

(2)

for all * 7̂  y is both left and right monogenic. Here the volume of the unit J-sphere
in Rd+l has been denoted by od and Rd+l is identified with a subspace of F ^ . In [9],
the notation E(y — x) = Gy(x) for y ^ x is used. In the present work, we replace x
by a d-tuple A of matrices or operators, so the given notation is more convenient.

https://doi.org/10.1017/S1446788700003499 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003499


[7] The support of the Weyl calculus 91

The function (2) plays a special role in Clifford analysis. Suppose that £2 c D&rf+1 is
a bounded open set with smooth boundary 9£2 and exterior unit normal n(co) defined
for all co e 3£2. For any left monogenic function/ defined in a neighbourhood U of
Q, the Cauchy integral formula

Jan
(3) / Gto(xMo))f(fi))dti(iD) =

0, if x e U \

is valid. Here /x is the surface measure of 3 £2. The result is proved in [9, Corollary 9.6].
If g is right monogenic in U then / 9 n g(co)n(a))f (co) d/j,(co) = 0 [9, Corollary 9.3].

4. The monogenic calculus

Suppose that A = (A l s . . . , Ad) is a d-tuple of hermitian operators acting on a
Hilbert space H. For each f e Rd, set (A, £) = Y?j=i Aj$j •

The Weyl functional calculus [2, 26, 33] is a means of forming functions / w (A i ,
. . . , A</) of the d-tuple A = (A i , . . . , Ad) of operators. There exists a unique operator
valued distribution Wx : / H> / W ( A ) , / € C 0 0 ^ ) , defined over the test function
space C°°([Rrf) of all infinitely differentiate functions, such that the restriction of W^
to y(Rd) is given by

(4) WK(f) =

The integral converges as a Bochner integral in -£?(//) with the operator norm. The
support supp(#^) of this distribution is contained in the closed ball in Rd centred at
zero and with radius r = (]T^=1 \\Aj ||2) [33, Theorem 1].

By virtue of the standard techniques of distribution theory, the distribution ^ A also
applies to any smooth function f : U —> F(rf) defined in an open neighbourhood U of
supp(#A) in Rd+\ by applying Wk to each of the components of/ restricted to the
open neighbourhood U D Rd of supp(^A) in 0^.

Then the J£(H)(d)-valued function a> h-> GW(A) defined by

(5) C«(A) = WA(Ga), for all co e Rd+l \ ({0} x supp(^A)),

is called the Cauchy kernel for the J-tuple A. It is the Cauchy-Stieltjes transform of the
operator-valued distribution W& in the sense of Clifford analysis [9, Definition 27.6].

By an elementary argument [17, Corollary 5.5], the Cauchy integral formula (3)
ensures that

(6) %(f)= [ Gw(\)n(o})f(o))dn(<o)
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for any function / left monogenic in a neighbourhood of the closure of the region Q
in Rd+l containing the support suppC^) of Wx in Rd = {0} x Rd.

The monogenic spectrum of A is the subset y (A) of Rd off which the function

co H+ GB(A), co € r + 1 \ ({0} x y(A))

is a left and right monogenic function. It is proved in [17] that the set y (A) is precisely
the support supp(^A) of the distribution #^.

For example, any analytic function f of d real variables defined in an open neigh-
bourhood U of y (A) in Rd is the restriction to U of a left monogenic function /
defined in an open subset of Rd+l [9, Proposition 14.4]. Then formula (6) defines the
operator/ (A) := / (A) in such a way that for any polynomial p in d real variables, the
operator p (A) is formed from p by replacing terms xjt • • • xjk by symmetric products
in the bounded linear operators A ; i , . . . , Ajk.

5. The plane wave decomposition of the Cauchy kernel

We now restrict ourselves to the case where d = 2 and A = (Au A2) is a pair of
hermitian operators in a finite dimensional Hilbert space.

Throughout the following, T denotes the unit circle centred at zero in R2 and fi is
the arc length measure of T. The inverse in the integrand of the following formula is
understood as an inverse in the Clifford algebra IR(2).

The following elementary calculation is a special case of a general formula [32,
page 111], [30, 24] for the plane wave decomposition of the Cauchy kernel in Rd+1.

LEMMA 5.1. Let y e l R 2 and suppose that y0 e R is nonzero. Then

1 C

yo-y "27 A yo > 0;

T - I (&>*) ~ yot)~2 dfM(t) y0 < 0.

PROOF. Let us calculate

(7) / « , , r> - wO-

for nonzero y e R2 and y0 e R. Choose coordinates such that (y, t) = |;y|cos#.
Then (7) is equal to

r
Jo
r \y\cosey + 2yQycose

J ( | | 2 2 0 + 2)2

https://doi.org/10.1017/S1446788700003499 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003499


[9] The support of the Weyl calculus 93

The term involving sin 9 has integral zero, so it does not contribute to the integral (8).
Because

t2jr cos20 n
d9 =

f
Jo

(a2cos29 + b2)2 \b\(a2 + b1?'2 '

d9 =
/o {a2 cos2 9 + b2)2 \b\\a2 +

we have
2n cos2 9 2ny

and
\y\2cos29-y2

 Jn 27r\yQ\1 d9 =-
o (|y|2cos20+>;o

2)2 (\y\2 + y
2)V2 '

The plane wave representation of the Cauchy kernel GW(A) given next was proved
in [18] for J-tuples of operators. It is critical for the subsequent calculations. The
inverse in the integrand is taken in the Clifford module _£?(<Cn)(2).

THEOREM 5.2. Let A = (A\,A2) be two (n x n) hermitian matrices. Then for
y e B&2 and jo 7̂  0, the Cauchy kernel Gy+yoeo(X) = ^^(Gy+yQeo) admits the repre-
sentation

(9) Gy+yoeo(A) = - ~-^- / ((yl - A, t) - y0tiy
2dv(t).

oTT Jj

PROOF. According to Lemma 5.1, if y0 ^ 0 and JC e IK.3 is not equal to y -\- yoeo,
then

Gy+yoeo(x) = - ——- / ((y -x, t) - yos) 2dfi(t).
O7T2 Jj

The function JC t-> Gy+yoeo(x)is C°° for x e R3\ {y + yoeo), so if y0 ^ 0, then we have

Gy+yoeo(A) = Wx{Gy+yoeo) = -

8TT2

V U

The first of the equalities above is the definition (5) of Gy+yoeQ(A). The second
follows from Lemma 5.1. The continuous linear operator WA can be passed from
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outside the integral to inside the integral by appealing to a property of Bochner
integrals (see [17]).

The last equality can be seen from the equality #A( /?( ( •, £))) = p((A, £)), valid
for any polynomial p on C and any £ e R2. An appeal to Runge's theorem and
continuity shows that p can be replaced by any complex function / which is analytic
on the compact subset (supp(^A), £) of R. In particular, for each t e T, yQ ^ 0
and y e R2, the [R(2)-valued function/, : x h-> ((y — x, t) — yoO~2, x € R2 may be
expressed as f,(x) = <!>((*, t)),x e R2, with

= «?, t)-z + yot) {((y, t) - z? +
- i

The function <t> is analytic at all points z € C for which ({y, t) — z)2 + yl ^ 0, so it
is analytic in the open strip |3z| < \yQ\ containing (supp(^) , t) c IR for each t e J.
Hence,

, 0)) = ((yl - A, r> - j

for every / G T. •

For all co e R3 with |o;| sufficiently large, GW(JC) has an expansion in terms of
monogenic polynomials in * e R3. Replacing the monogenic polynomials with
symmetrised products of the operators A\ and A2, we obtain GW(K) = ^ A ( G ^ ) for
all co outside a sufficiently large ball in R3 [17, Equation (5)], [18, Equation (5)]. This
is the analogue of the Neumann series for (XI — A)~\ |X| > ||A ||, in the case that A
is a single operator A. The right hand side of (9) has the same representation for all
co outside a sufficiently large ball in R3.

6. The monogenic spectrum

Let A = (Ai, A2) be a pair of hermitian matrices. Where convenient, we shall
represent the (n x n) matrix associated with A as A = A\ + iA2 in order to avoid
hats and tildes. In the same spirit, C is identified with 1R2 and R2 is identified with the
subspace {0} x R2 of R3. We adopt the convention that a point co e R3 is written as
y + yo^o for y e R2 and y0 e R. For a d-tuple B — (Bu ..., Bd) of (n x n) matrices
and % e C1, the notation (B, £) is used to denote the matrix ^ = 1 #,£,.

We are concerned with the compact set y (A) C R2 of points at which the Cauchy
kernel co h+ G^(A) has a discontinuity as co e R3 approaches the subspace {0} x R2

of R3 from above (COQ -> 0+) and below (COQ -» 0~).
To this end, we examine the integral (9) more closely. Let y — (yi, y2) e R2. We

interpret B(j) = yl — A as the pair (Bx(y), B2(y)) of matrices with £/()>) = yj I — Aj
for 7 = 1 , 2 . Then, appealing to the identity t2 = — 1 for t e J c K(2) with respect to
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multiplication in the Clifford algebra, for y0 96 0 the integrand of (9) can be written
down explicitly as

(10) ((B(y), t) - y0tiy
2 = ((B()0, t) + yQtI)2((B(y), t)2 + y2

0iy
2

= «B(y), t)2 - yo
2/)((B(y), t)2 + y 2 / )" 2

The points t e T, where (B(y), f) is not invertible, will dominate the integral (9)
as y0 -> 0+ and y0 —• 0~, respectively. This suggests to investigate the zeros of

det(B(y), r) = det(5,(y)r, + B2(y)t2).

Now suppose that t — {t\, t2) = (cos#, sin#) for — n < 0 < TC and let z — eie. Then
h = (z + z~')/2 and r2 = (z - z~1)/2i, so that

det(B(y), r> = (2z)-"det(£1(;y)(z2+ 1) - iB2(y)(z2 - 1))

= (2z)-*det((B1(y) - /B2(>'))z2 + (S,(y) + iB2(y)))

= (2zrndet(Bl(y)-iB2(y))

x det(z2/ + (Bx(y) - i B I

if 5i(>) — iB2(y) is invertible.
Fix y e K2 and let T = Bi(y) + /B2(y)- Then in the case that T and hence, T*, is

invertible, the set of points t e l where det(B(>>), t) = 0 is in two-to-one correspon-
dence with [a(-(T*yl T)] fl T: if £ is an element of the set [a(-(T*)~l T)] D T,
then the corresponding t e T is ±£1/2.

For t e 1, the equation det(B(y), t) = det(y/ — A, t) = 0 has a geometric
interpretation. Let t1 e T be orthogonal to f in R2. Then the line

(11) LyJ = {y + kt1 I U R}

passes through y 6 1R2 and has the property that (x, t) e or ((A, t)) for all x e LyJ.
As we will see later, the number of such lines that exist for a point y and for

all points in a neighbourhood of y, is decisive for whether the point y belongs to
supp(^A). We introduce the following definition to isolate those points y e IR2 for
which this is the maximum number possible.

DEFINITION 6.1. Let A be a (n x n) matrix and let R(A) be the set of all points
k e p(A) such that in some neighbourhood U c p{A) of k in C,

(12) cr ( ( ( £ / - A ) T ' ( £ / - A ) ) C T

for each £ e U.
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The set R(A) is necessarily an open set. If the matrices A i and A2 commute, that is.
if A = A] + iA2 is a normal matrix, then the set R(A) is readily described. In this case
((£/ - A)*)~l(^I - A) is a unitary matrix for all £ e p(A), sothatR(A) = p(A).

Condition (12) may be restated by saying that R(A) is the set of all X e C such thai
in some neighbourhood U of X in C, every solution z e C of the equation

(13) de t ( (£ / -A)*z + ( £ / - A ) ) = 0

with £ e U satisfies |z| = 1.
If £ € cr(A), then z = 0 is a solution of (13)—such points are excluded. Note that,

in the notation above, this covers the case where Bx(y) — iB2(y) is not invertible. Foi
y e p(A), we have

det ((yl - A)*z + (yl - A)) = det(y/ - A) det (zl + ((yl - A)T\yl - A)).

Hence det ((yl — A)*z + (y I —A)) is a polynomial of degree n in z and there are
n solutions z e C of (13) counting multiplicity. To each z € T, there corresponds
a line Ly§zu2 in IR2. If all the solutions z e C satisfy |z| = 1, that is, if y e R(A).
then this says that the number of lines LyJ, t e T, passing through y e R2 = C, is
the maximum possible. In particular, counting multiplicity, the maximum number oi
lines LyJ, t e T, that can possibly pass through y is n.

The following simple condition guarantees that a point y e IR2 belongs to R(A).
Let W(A) denote the numerical range {{Av, v) \ v e C , ||u|| = 1} of the (n x n)
matrix A = A\ + iA2-

PROPOSITION 6.2. Let A be a (n x n) matrix. Then C \ W(A) c R(A).
quently, C \ R(A) /j a nonempty compact subset of the numerical range W{A) of the
matrix A.

PROOF. Firstly, a(A) c W(A), so if X e € lies outside W(A) then X e p(A),
Moreover, for every z € C, the inclusion

cr((XI - A)*z + (XI - A)) C W((XI - A)*z + (XI - A))

holds. Hence, for any complex number z for which 0 e cr((XI — A)*z + (XI — A)),
there exists v e O with \v\ = 1 such that ((XI - A)*zu, v) + ((XI - A)v, v) = 0.
Here (•, •) is the inner product of C Because X — (Au, u) ^ 0 for all u e C with
|M| = 1, the complex number

X — (Av, v)
z = -=—=====

X — (Av, v)

has modulus one. Consequently, X e R(A). C
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REMARK 6.3. The same proof works with the analogous definition of R(A) if A is
a bounded linear operator on a Hilbert space. If A is normal, then R(A) = p(A) and
Wx is the spectral measure of A supported on a {A).

Our aim is to prove the following result strengthening Proposition 6.2 and providing
a geometric characterisation of the support supp(>^v) of the Weyl functional calculus
and for the monogenic spectrum y (A) of a pair of hermitian matrices.

THEOREM 6.4. Let A = (A i, A2) be a pair ofhermitian matrices and A = A
Then the equalities supp(#A> = y(A) = !R2 \ R(A) hold.

The equality supp(^A) = y(A) is proved in [17] for any d-tuple A of bounded
selfadjoint operators, so this work is concerned with the second equality for hermitian
matrices A\, A2—the geometric characterisation of y(A).

The spectrum a (A) of the matrix A = A\ + /A2 is clearly contained in the
numerical range W(A) = co(supp(/^A)) of A. The following immediate consequence
of Theorem 6.4 and the fact that R(A) Cp(A) strengthens this observation.

COROLLARY 6.5. Let A = (A\, A2) be a pair of hermitian matrices and A =
A, + /A2. Then a (A) c supp(^A).

A bounded linear operator on a Hilbert space is called normal if it commutes with
its adjoint. The following consequence of Theorem 6.4 characterises the situation in
which the inclusion in Corollary 6.5 is an equality.

COROLLARY 6.6. Let A = (Ai, A2) be a pair of hermitian matrices. Set A =

A\ + /A2. The following conditions are equivalent:

(i) A is a normal matrix.
(ii) supp(#A) has empty interior.

(iii) a (((XI - A)*)"1 (XI - A)) C T for all X e p(A).
(iv) G(A) =

PROOF. If A is a normal matrix, then the distribution WA is associated with the
spectral measure of A supported by the finite set of joint eigenvalues of A, so the
implication (i) =>• (ii) is immediate. The definition of the set R(A) and Theorem 6.4
shows that (iv) follows from (iii). The implication (iv) => (i) is proved in [12, 29], so
it remains to establish (ii) => (iii).

Suppose that the negation of (iii) holds and that X e p(A) has an eigenvalue of the
matrix ((XI - A)*)"1 (XI - A) lying outside the unit circle T. Then the same holds in a
neighbourhood of X because the unordered n-tuple of eigenvalues of the matrix valued
function X i-> ((XI — A)*)"1 (XI — A) depends continuously on the parameter X [22,
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Theorem II.5.1]. Hence, C \ R(A) has nonempty interior. According to Theorem 6.4,
has nonempty interior. D

7. The numerical range of matrices

Let A = (A\, A2) be a pair of (n x n) hermitian matrices. Set A = A\ + iA2. An
application of the Paley-Wiener Theorem yields that the convex hull of the support
supp (^ ) of the associated Weyl distribution W^ coincides with the numerical range
W(A) = {(Ax, x) | x € <C", ||JC || = 1} of the matrix A. For more precise information
on the location of supp(#A) within the numerical range of A, we need to have a closer
look at the fine structure of W(A).

Of particular interest are certain plane algebraic curves associated with A that were
first investigated by R. Kippenhahn in 1952. We briefly recall the concepts involved.

Let F = [R or C. For 0 < k < 3, the Grassmannian G3i*F, defined as the set of
all ^-dimensional F-subspaces of F3, is a compact analytic F-manifold of dimension
k(3 — k). It has a natural topology, induced by the differential structure of the manifold,
which is determined, for example, by the metric h on G3t*F with

h(U, V)= sup inf | | K - U | | for all U, V e G3,*F.
i>€V,|v| = l u€l/,|u| = l

The projective plane PG(F3) over F is given by PG(F3) = IJo<*<3 Gi,*F- The 1-
and 2-dimensional subspaces of F3 are usually called the points and lines in PG(F3),
respectively.

By a common abuse of notation we introduce homogeneous coordinates for the
points in PG(F3) as (u\ : u2 : w3) = F(«i, u2, M3). The coordinates of a vector in F3

are expressed with respect to the standard basis for F3.
A polarity of PG(F3) is a bijection on PG(F3) which reverses the inclusion of

subspaces and the square of which equals the identity mapping. The standard polarity
n is characterised by un = {u € F3 | X!/=i ujvj — 0} for all u e G3i]F, which gives
un e G32F. Using the polarity n, we can also introduce homogeneous coordinates
for the lines in PG(F3) by setting [v\ : i>2 : u3] = (U] : v2 : v3y.

A nonempty subset C of G3,i F is called a plane F-algebraic curve if it is the zero
locus of a homogeneous 3-variate polynomial over F. The defining polynomial of C
is not uniquely determined: if/ defines the curve, then so does, for example, / * for
any k > 1. However, every curve C has a defining polynomial of minimal degree
which is unique up to a constant factor. A curve is said to be irreducible if it has
an irreducible defining polynomial. Since a polynomial ring over a field is a unique
factorisation domain, each algebraic curve C is the union of finitely many irreducible
curves. If C\, ... , Q are the irreducible components of C with irreducible defining
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polynomials f \ , . . . , fk, then / = f\ • • -fk is a defining polynomial of C of minimal
degree. We call / a minimal polynomial of C. Note that an irreducible real algebraic
curve is not necessarily connected.

Let/ be a minimal polynomial of the algebraic curve C = {u e G3,iF | / (w) = 0}.
A point u € C is called singular or a singularity of C if (3//duj)(u) = 0 for
; = 1, 2, 3. Observe that C has at most finitely many singular points. These are
the singular points of the irreducible components of C together with the points of
intersection of any two of these components. A nonsingular point u e C is called a
simple point of C. The curve C is the topological closure of its simple points. Also,
to every simple point u e C, there exists a neighbourhood of u in which C admits a
smooth parametrization.

Let C be an irreducible plane algebraic curve with minimal polynomial / . At each
simple point u e C, we have a unique tangent line to C which is given by

If C is not a projective line or a point, then it is well-known that the set {(<% C)n \ u e
C simple} is contained in a unique irreducible algebraic curve C*, the so-called dual
curve of C. In fact, since an algebraic curve has at most finitely many singularities,
the dual curve is the topological closure of the set { (^C)* \ u e C simple}. We have
C* = C. If C is a projective line, then {{^uC)n \ u e C) consists of a single point
u in PG(F3). In this case, we set C* = {u} and define C* to be the image under n of
the set of all lines in PG(F3) which pass through u. This again yields C* = C. The
dual curve of a general plane algebraic curve C is the union of the dual curves of its
irreducible components. In particular, C and C* have the same number of irreducible
components.

In general, it is difficult to derive an explicit equation for the dual curve C* from
the given equation of a curve C. However, from the above we obtain the following
criterion for a point in PG(F3) to belong to C*.

LEMMA 7.1. Let (xx : x2 : 1) e G3,iF. If there exists a smooth local parametriza-
tion £ i->- (c(£) \ s(X) : ix{i;)) of C, for £ in an open set [ /Cf , and a point z € U
such that JCIC(Z) + x2s(z) + At(z) = 0 and xxd{z) + X2s'(z) + fi'(z) = 0, then the
point (JCI : JC2 : 1) belongs to C*.

PROOF. The two points (c(z) : s(z) : n(z)) and {d{z) : s'(z) : £t'(z)) span the
tangent line ^ a M ^ C t o Cat (c(z) : s(z) : fi(z)). The equations

xxc(z) + x2s{z) + fi(z) = 0 and xxc{z) + x2s'{z) + fi'(z) = 0

imply that (jti : x2 : 1) = {^(C(zyS(z):n{z))Qn • Hence (xx : x2 : 1) belongs to the dual
curve C* of C. •
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The details and further information on complex algebraic curves can be found, for
example, in [31]. The literature for the real case is somewhat less easy to access. As
a general reference to the theory of real algebraic geometry, see [8].

Let A = Ax + iA2 € j£?(C). Following Kippenhahn [23], we define the complex
algebraic curve Cc(A) in the complex projective plane PG(C3) by setting its dual
curve to be

DC(A) = {(c:d : fi) e G3,iC | det(cAj + dA2 + /x/) = 0} .

In [23], Kippenhahn showed that the real part CR(A) of the curve CC(A) = DC(A)*
is contained in the affine subplane F = {(aj : a2 : 1) \ (t*i, a2) e R2} of PG(D£3) and,
identifying F with R2 in the canonical way, that the convex hull co(CR(A)) of C^(A)
is precisely the numerical range of A.

The curve CR(A) considered as a real algebraic curve in PG([R3) is the dual curve
of the real part of Dc(A) given by

DR(A) = {(c : d : /x) e G3AR | det(cA, + dA2 + fil) = 0} .

Every point u e I>R(A) has a representation (cos# : sin# : /x) for some 9 e [0, n)
and (JL e R. As u is a zero of det(cA j -f dA2 4- /x/), it follows that —/x is an eigenvalue
of the operator &f(9) = cos 6A \ + sin 6A2.

Note that the points in £>R(A) are in one-to-one correspondence with the lines Lyt

in RL2 defined in (11), satisfying (x, t) e cr((A, t)) for all x e LyJ. For u = (cosO :
sin# : /x) e DR(A), take t — (cos^, sin^) e 1 and v e R2 such that (y, t) = -\x.
Then un is the two dimensional subspace |J{(;ci : x2 : 1) | (xux2) e Ly<t} of R3,
that is, Lyt x {1} is the line in which the plane u* normal to u in R3 cuts the plane

With the following result due to Rellich [28], [22, Theorem 6.1, page 120], we
obtain local parametrizations of the curve DR(A). Let 5 (C) = {x e C | |x| = 1} be
the unit sphere in C

LEMMA 7.2 (see [28, Satz 1]). Let the map srf : R - • i f (Cn) ^e given by st?'(9) =
cos 0A j + sin 9A2for 6 e R. Let 9Q e R and /Xo be an eigenvalue with multiplicity r
of the operator £/{9Q). Then there exists a neighborhood U of 9^ and regular analytic
functions ^, : U -> R andxj : U -> S(Cn) with 1 < j < r, such that /x; (^0) = A%
S2/(6)XJ (9) = fij (9)XJ (9) and (xj (9), xk(9)) = 8jkfor every 9 e Uandl<j,k<r.

Given a point u0 = (cos90 : sin^o : ~Mo) € DR(A), any of the maps 9 h->
sin# : —fi(9)) with 9 in the neighbourhood £/ of 90 as given by Lemma 7.2, is then
a smooth local parametrization of a component of DR(A) in a neighbourhood of w0.
With Lemma 7.1, this yields immediately a complete characterisation of the curve
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LEMMA 7.3. A point (xx : xz : 1) e G3,iFbelongs to the curve Cn(A) if and only if
there exists a point u0 = (cos90 : sin#0 : —Mo) e DR(A), and a local parametrization
9 i-> (cos# : sin 9 : —^(9)) of a component of D&(A) in a neighbourhood Uofu0

such that X\ cos 90 + x2 sin 60 — /z(#o) = 0 and —xi sin 90 + x2 cos 90 — fi'(9o) = 0.
Then

(14) (x{,x2) = ix(0Q)(cos00, sin0o) + /x'(6»o)(- sin0o, cos#0)-

The line LyJ associated with u j , as described above, is therefore tangential to the
image of CR(A) in R2 at {x\, x2) except in the case that /x(9) = at cos6 + a2 sin 6 in
a neighbourhood U of 60. Then the set {(cos# : sin# : ix{6)Y \ 0 e U] corresponds
to a family of lines passing through the point (xi, x2) = (aua2).

LEMMA 7.4. With the exception of a finite set of points in C^(A), if(x\ : x2 : 1) 6
G31IF belongs to CK(A), and u0 = (cos#0 : sin60 : /x0) is one of the corresponding
points in Dfr(A) and 9 \-> (cosO : sin^ : —ix(6)), 0 e U, is one of the corresponding
local parametrizations of a component of D^{A) in a neighbourhood ofu0 as given
by Lemma 7.3, then the equation

(15) Ocj - rsin0o)cos0 + (x2 + tcos60)sm9 - /x(0) — 0

has two real solutions 9 e U for either small positive t or small negative t and none
in V for t of the opposite sign.

PROOF. By Lemma 7.3, the image of the curve CR(A) in K2 has the local parametri-
zation (xi(9),x2(9)) = fx(9)(cos9, sin9)+fi'(9)(- sin0, cos9) withtf € U. Hence,
its signed curvature at (;ti, *2) is given by |/x(</>0) + Ai"(0o)|~' (see, for example, [7,
formula (3.9)]). So if /z(0o) + M"0A>) ¥= 0. then the image of CR(A) in K2 is a smooth
curve with nonzero curvature in a neighbourhood of (JCI, x2). Hence, there are two
tangents with points of tangency in U on one side of the curve and none on the other
for |r| > 0 small enough. The solutions 9 e U of (15) correspond to the directions of
the normals to the tangents.

The points of C&(A) that we have to exclude correspond to the ones at which the
image of CR(A) in R2 has infinite curvature. Unless ju, + /x" vanishes identically,
there exist at most finitely many solutions 9 of fi(9) + ix"(9) = 0 in any compact
interval. If (*i : x2 : 1) e CR(A) is a point for which the analytic function /x + fx"
vanishes in a neighbourhood U of 90 in C, there exists (ai,a2) e K2 such that
/x(0) = ax cos 9 + a2 sin 9 for all 9 e U. However, inspection of (14) shows that then
x — (*i, JC2) = (fli, a2) is a point of C^{A) through which the family of lines Lx ,,
/ 6 T, passes. In particular, x belongs to the finite set a (A 0 x a (A 2). •

https://doi.org/10.1017/S1446788700003499 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003499


102 Brian Jefferies and Bernd Straub [18]

Local coordinates. Define the function s : C \ {0} -> C2 by

(16)

From now on, we drop the subscript R from the Kippenhahn curves CR(A) and denote
them by C(A). Furthermore, we identify (yi : y2 : 1) € C«(A) with y = (yu y2) e
R2, so that C(A) is a subset of R2.

According to the discussion preceding Definition 6.1 we have the following alter-
native formulation of the set R(A).

PROPOSITION 7.5. Let A = (A\, A2) be a pair of(n x n) hermitian matrices. Then
R(A) is the set of all k € R2 for which there exists a neighbourhood Uofk in R2,
with the property that for each x G U, every solution z € C \ {0} of the equation

det((jc/-A,5(z))) = 0

satisfies \z\ = 1.

Let y e R2 and suppose that £ G C \ {0} is a point at which

(17)

If y G R(A), then ^ necessarily belongs to T, and the set Zy of all such £ e T is finite.
Suppose that £ e T. Then s(f) e T and the matrix (A, s(2;)) is hermitian. By a

result of Rellich [22, Theorem II.6.1], there exists a neighbourhood VK of £ in C \ {0},
a positive integer m < n, analytic -£?(Cn)-valued projections P\(z), • •., Pm{z) with
HJLi Pj (2) = / and analytic functions /xi (z), • • •, M™(2) defined for z e V( such that
for each 7 = 1, . . . . m, the equation

holds, ( y , s ( ^ ) ) - M . « ) = 0 and

7=1

Here Pj (z) is the projection onto an eigenspace for the eigenvalue /z, (z) of (A, s(z)).
Set A.;>(z) = (y, j(z)) - M; (z) for; = 1, . . . , m and z € Vf. Then

(18)

https://doi.org/10.1017/S1446788700003499 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003499


[ 19] The support of the Weyl calculus 103

It turns out that the functions fMj and projections PJyj = I, ...,m, can be analyti-
cally continued along any arc that avoids a certain finite exceptional set of points [5,
Theorem 3.3.12]. Therefore, formula (18) may also be valid in a neighbourhood V(

of points £ e C \ {0} not on the unit circle T.
It can happen that two of the eigenvalues t>j,y(z) and k(y(z) of (v/ — A, s(z))

are equal at a particular complex number z. In particular, there may exist an integer
1 < k < m such that kj^(£) = 0 for ally = 1 , . . . , k. According to the interpretation
preceding Definition 6.1 and the definition of C(A), if 4T e T, then there exist k
coincident tangent lines from y to C(A) with normal f.

LEMMA 7.6. Letx e R2, let£ e C\[0} be a complex number and V? an open neigh-
bourhood of£ in Cfor which (18) is an analyticparametrization in V( withklx(2;) = 0
and k'lx(£) ^ 0. Then there exists a unique C°°-function <p : Ux —> C defined in a
neighbourhood Ux of(0,x) in R3 such that 0(0,*) = f and kUy((p(%, y)) = it- for
all (£, y) € £/x.

Moreover, for y fixed, the function % (->• 0(£, y), (£, y) e [/x is one-to-one and
*-\y(4>(t,y)) is nonzero for all (£, y) € (/̂ . / / f e T, r/ien 0(0, y) G 1 for all
(0't y) € £/,.

PROOF. Let C/ C R4 be the set f / = V { x l J 2 and let $ : ( / - » K4 be defined by

*(z, y) = fri.y(.z), y) = ((y, s(z)) - m(z), y)

for all (z, y) e U. Here we identify C with K2 on the right hand side of the equation.
The derivative <!>'(£, x) of the function O on the open subset U of IR4, as a function of
four real variables, is nonsingular at (£, x) G (/ because

By the inverse function theorem, there exists an open neighbourhood W of (0, x)
in R\ an open neighbourhood U of (£, x) in K4 and a diffeomorphism/ : W -*• U
such that 4> o / (a, y) = (a, y) for all (a, y) e W. In particular, 4>' is nonsingular
on U'.

Then 0(£,y) G C is defined on the set Ux of all (^,yi,y2) e K3 such that
(0,?,y,,y2) 6 W, by / (0 , f ,y , ,y 2 ) = (0(^,y),y), so that A,.,(0(£, y)) = if.
Because/ is a diffeomorphism, the function (£, y) i-> 0(£, y) is C00 on Ux. Fur-
thermore, (0(?,y),y) G U\ so |A.',/0(f,y))|2 = det(O'(0(?, y), y)) * 0 for all
(I, y) e f/x.

Now suppose that f € T. There exists an open neighbourhood N^ of £ in T on
which A u is defined. Let * : Wf x R2 ->• K3 be defined by

*U, y) = (^i.y(0, y) = (0 \ 0 - M.(0. y)
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for all (r, y) e N( x R2. Then *(f, x) = (0, x) and the derivative

of* at (£,.*) e TxR2isnonsingular. Here T{M(Jx I 2 ) is the tangent space of T x R 2

at (£, x). As above, there exists a diffeomorphism g from an open neighbourhood of
(0, x) in R3 onto an open neighbourhood of (/,;;) i s T x K2 such that * o g = Id.
Because * = <t> | /Vf x K2, we must have g(a, y) — f (a, 0, y). Hence

proving that </>(0, y) e T. •

If 4> : V{ x C2 -> C3 is denned by <t>(z, 17) = ( £ , 2
= 1 ty*/(z) - Mife),»?) for all

z e Vf and ?? e C2, then a similar argument to that above, but replacing 4> by <t> and
appealing to the inverse function theorem for analytic functions of several variables,
shows that <f> is actually the restriction to Ux of a function analytic in an open subset
ofC3.

According to a rephrasing of Lemma 7.3 in terms of our local coordinates, the
Kippenhahn curves C(A) for a matrix A are characterised by the following proposition.

PROPOSITION 7.7. The Kippenhahn curves C(A) consist of all points y e K2 for
which there exists a point f belonging to the unit circle T and a neighbourhood V£ of
£ wi C such that there exists an analytic parametrization (18) on V£ for which

(19) X,.,(f) = A' l i y (f)=O.

Of course, in any such parametrization (18), we are at liberty to choose the indices
j = 1 , . . . , m for the analytic functions kJy : V( -*• C. In particular, for any
y € C(J4) , we can choose a neighbourhood Vf of £ in C and indices for which (19)
holds for j = 1.

COROLLARY 7.8. Let x e M.2 \ C(A), let f e C \ {0} fee a complex number and
Vf a neighbourhood of% in Cfor which (18) is a parametrization with A.,iJt(f) = 0.
77ie/i f/iere exute a unique C°°-function <(> : Ux —>• C defined in a neighbourhood
Ux of (0, *) m K3 suc/i r/iar rac/i rfwtf 0(0, x) = f and A.i.;y(0(£, y)) = /£ /or aW

Moreover, for y fixed, the function % H-> 0(^, y), (£, y) e f/̂  is one-to-one and

A'Io,(f, y) is nonzero for all (f, y) e £/,. / / f € T, rAen z(0, y) € T/ora// (0, y) € Ux.

PROOF. By Proposition 7.7, A'u (f) ^ 0, so Lemma 7.6 is applicable. •
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The following result describes the relation between the set R(A) and the Kippen-
hahn curves C(A).

COROLLARY 7.9. 3R(A) c C(A) c R(A)C.

PROOF. Let x e R(A). All solutions^ of det((x, f ) / - (A, f » = Osatisfy |f | = 1
because the set-valued function y i-»- cr(((y/ — A)*)~'(y/ — A)), y e p{A), is
continuous in the metric of unordered n-tuples [22, Theorem n.5.1] and by definition,
o{{(yI-A)*)-\yl - A ) ) c T for ally e R(A).

For any such j ; 6 T, there exists an analytic parametrization (18) such that
A.lx(£) = 0. Suppose A.'1;c(£) ¥=• 0- Then by Lemma 7.6, for all y in an open
neighbourhood of x, we can find 0(0, y) e T such that k^y(<p(O, y)) = 0 and

It follows that if k\ x (£) ^ 0 holds for the parametrizations of all solutions f, then
there is a neighbourhood U of x such that for every y e U, all nonzero complex
solutions z of det((y, s(z))/ — (A, s{z))) — 0 satisfy |z| = 1. This means that
x € R(A).

Therefore, for every element x of 3R(A) = R(A) \ R(A), there must exist a
solution £ and an analytic parametrization (18) such that A,i,x (f) = 0 and k\ x (£) = 0.
Proposition 7.7 yields that* e C(A).

To establish the inclusion C(A) c R(A)C, suppose that x e C(A). By Lemma 7.4,
except possibly for a finite subset 7 of C(A), there exists a neighbourhood U of *
in K2 in which not every solution z 6 C of det((y/ — A, s(z))) = 0 for y e U,
belongs to T. More precisely, for y on one side of C(A), there exist at least two
solutions belonging to T—two unit normal vectors to the local tangents to C(A)
passing through y—and for y on the other side of C(A), two solutions that do not
belong to T. Moreover, if x e J, then either x is isolated, or any neighbourhood of x
contains a point y e C(A) \ J to which the conclusion above applies. In either case,
x e R(A)C. •

By considering the direct sum of suitable matrices, the inclusions of Corollary 7.9
can be made to be proper inclusions.

We informally state alternative characterisations of the Kippenhahn curves C(A):

• The real part of the curve DC(A)* dual to DC(A) = {(c : d : fi) 6 G3JC |
det(cA, + dA2 + ixl) = 0}, identifying (a,, a2) e R2 with (a, : a2 : 1) e G3,iC.

• The real algebraic curve dual to DR(A) = {(c : d : fi) e G3ilK | det(cAi +
dA2 + fMl) = 0}, identifying (otu oc2) e R2 with (a, : a2 : 1) e G3,iK.

• All points y e K2 for which there exists £ e T and a neighbourhood Vt

of £ in C such that there exists an analytic parametrization (18) on VK for which
KyiK) = *',,,(£) = 0 [Proposition 7.7].
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• The envelope of all lines Ly,s given by (11) for each y € R2 and s e T such
that (y, .s) e a ( ( A , j » .

• The singular values of the numerical range map nA associated with the matrix A
(see [14] and [21]), with the possible exception of "double tangents" [21, Theorem 3.5].

8. Examples

The Weyl functional calculus Ws. for a pair A = (A\, A2) of (2 x 2) hermitian
matrices can be calculated explicitly. The support y (A) of WA is either the numerical
range W(A) of the matrix A = A\ + iA2, an elliptical plane region with nonempty
interior in the case that A\, A2 do not commute with each other, or y(A) consists
of a single point a e K2 if A = al, or otherwise, two distinct joint eigenvalues
O\, a2 € R2. Calculations of this nature follow from [2] and are given explicitly
in [19].

The case of a pair A of noncommuting (3 x 3) hermitian matrices reveals greater
geometric structure. If A has a joint eigenvalue a e IR2, then y(A) consists of a
together with the support of the Weyl functional calculus associated with the pair of
reduced (2 x 2) matrices, possibly consisting of the point a together with a disjoint
elliptical region.

In the following diagrams, Figures 1-6, we plot the lines in R2 corresponding to
points (c : d : k) e DR(A) after the fashion described in Section 7. The displayed
lines are tangent to the algebraic curves C(A) or pass through the isolated points
belonging to C(A). Such an isolated point exists in Figure 1, although it is not a
joint eigenvalue—the two matrices written under Figure 1 have no nontrivial common
invariant subspace. The numerical range W(A) of A and the support y(A) of the
Weyl functional calculus are equal to the elliptical region—a convex set. This is also
an example where 3y(A) = 3R(A) is a proper subset of C(A), see Corollary 7.9.

There is a joint eigenvalue (1,0) in Figure 2 and an ellipse corresponding to the
pair of reduced (2 x 2) matrices. The numerical range W(A) of A = A\ + iA2 is the
convex hull of the point (1,0) and the ellipse. The support y (A) of the Weyl functional
calculus is the union of the elliptical region and the isolated point (1,0). The convex
hull of y(A) coincides with W(A), as required by the Paley-Wiener Theorem.

Figures 3-6 display the Kippenhahn curves C(A) associated with various pertur-
bations of the matrices A i, A2 in Figure 2. The boundary of the lightly shaded regions
with single lines passing through them are the algebraic curves C(A). The convex
hull of C(A) is the numerical range W(A) of A i + iA2. Theorem 6.4 says that, in each
diagram, the lightly shaded region is actually the support y (A) of the Weyl functional
calculus >̂ A for A.

By way of comparison with the general theory of [3, 4], the support of the funda-
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0 1/2 0 \ /I 0 0
A = | | 1/2 0 1/2 j , I 0 0 0

0 1/2 0 / \0 0 -

FIGURE 1.

A =

FIGURE 2.
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0 0 l/10>
0 0 1

1/10 1 0

FIGURE 5.

0 0 \ / 0 0 1/10N
A = | | 0 —1 0 1 , 0 0 1

0 - 1 / \ l / 10 1 0

FIGURE 6.
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mental solution E{x, t) of the hyperbolic differential operator

det (,L + A ' + A > )
\ at ox\ ox2/

at t = 1 is the numerical range W(A) [4, Theorem 7.7]. The triangular regions inside
W(A) in Figures 2-6 correspond to Petrovsky lacunas [3, Example 10.6], so E(x, t)
is a homogeneous polynomial of degree n — 3 = 0 there, that is, a nonzero constant
function. Because the matrix valued distribution W\ can be expressed in terms of
derivatives of E, it vanishes in these regions.

A further illustration for a pair of (7 x 7) hermitian matrices associated with the
linearised Lundquist equations of magnetogasdynamics is given in [7, Figures la-b].
The numerical ranges of certain matrices are displayed in a fashion similar to that
above in [13, Figures 1-9, pages 139-147]. Unfortunately, the interior structure of
the numerical range is omitted from these diagrams.

9. Proof of Theorem 6.4

We first show that R(A) c y(A)c. Let x e R(A). We must find an open
neighbourhood U of (0, x) in R3 such that the function

( 6 , y) H + Gy+(eo(A), (€, y)eU\ ( {0} x R 2 )

is the restriction to U \ ({0} x R2) of a continuous function defined in U. Then by
Painleve's Theorem [9, Theorem 10.6], Gm(A) is monogenic in a neighbourhood of
(0, x), because GW(A) is monogenic above and below {0} x R2. Hence x e y (A)c.

We start by examining the plane wave decomposition (9). Let y e R2 and set
B(y) = yl — A. First, we convert the integral (9) to a contour integral

(20) /"((BOO, s) - €siy2dfi(s) = ~i /"({B(y), s(z)) - es(z)iy2z'x dz

for the function 5 : C \ {0} —*• C2 defined by (16). The integral (20) may be evaluated
using Cauchy's Residue Theorem by finding the residues of the function

\-2_-l(21) z H> ((B(y), zs(z)) - ezs(z)I)-zz

in the open unit disk D = {z € C | |z| < 1}. The formula (10) holds for any s e J
and € ^ 0. We split the integral (20) accordingly into its scalar part belonging to the
linear subspace [Te0 \ T e _S?(C)} of -£f(C)(2) and its vector part belonging to the
linear subspace {7,c, + T2e2 \ Tu T2 e SC{<Ln)} of if(C")( 2 ) . There is no component
belonging to the linear subspace [Texe2 \ T e 3?(C)} of
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We make a few observations. If the limit of the scalar part

(22) -i f((B(y), s)2 - €2/)((B(y), s)2 + e 2 / ) ^ " 1 dz

of the integral (20) exists in J?(C) and is nonzero as e ->• 0, then by formula (9), the
Cauchy kernel Gy+(eo(A) has a jump discontinuity at y e R2 as e -»• 0. In this case
v € y(A). The formula

# A ( 0 ) = lim f [Gy+eeo(\) - Gy-£eo(A)]<P(y)dy, cf> e CC°°(R2),

mentioned in the proof of [17, Theorem 6.2] shows that the jump

y i-> j|im[Gj,+£<d(A) - Gy-eeo(A)],

where it exists, is the Schwartz kernel of the matrix valued distribution W\. The vector
part

(23) i^i y s(B(y), s)((B(y), s)2 + e2/)"^"1 dz

of the integral (20) depends only on |e | for e •£ 0, so the vector part of

- Gy-eeo(A)

is zero for all e > 0, in accordance with the fact that the distribution WK takes its
values in the subspace JS?(O) of S£(C")(2).

The strategy used to prove that x e y (A)c is to show that the matrix-valued integral
(22) converges to zero as e -*• 0+, whereas the integral (23) converges in .Sf (C)( 2)
uniformly for all y e K2 in a neighbourhood of x.

We first examine the residues of the matrix-valued integrand

(24) z h+ «B(y), s(z))2 - e 2 / )«B(y) , s(z))2 + e 2 / r V

of (22). Note that if y belongs to an open neighbourhood of x in R(A) C p(A), then the
point? = 0 is a removable singularity, for B{(y) + iB2(y) = (y\ + iy2)I — (A{ +iA2)
is invertible and we may write ((B(y), s(z))2 - e2/)((B(y), s(z))2 + e 2 / ) " ^ " 1 as

((B(y), zs(z))2 - ze2I)((B(y), zs(z))2 + ze2iy2z,

where ((B(y), zs(z))2 - ze2I)((B(y), Zs(z))2 + Z€2iy2 -> 4(B,(y) + iB2(y))-2 as
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LEMMA 9.1. Let e > 0. Ifz ^Oisa solution o/det((B(y), s(z)) + iel) — 0, then
z~l satisfies det((B(y), s(z~1)) — iel) = 0. In particular, ifcp is the function defined
in Corollary 7.8, then <f>(—e, y) — 4>(e, y)~l.

PROOF. The identity (B(y), s(z~')) = (B(y), s(z))* holds because Ax and A2 are
hermitian matrices, so

det((B(y), 5(r')) - iel) = det((B(y), j(z))* - iel)

= det((B(y),5(z)) + i€/) .

Let A.î  : Vf —• C and <f> : Ux —>• C be the functions defined in Corollary 7.8. Then
z l~> ^•\.x(z~1), z € Vf is analytic and equal to A.iiX on V̂  H T where klx has real
values. By analytic continuation, it follows that kyx(z~l) — k\,x(z) for all z e V?.
According to the definition of <p we have k\,x(<t>(e, y)"1) = Xtx(cp{e, y)) = — zc and
ki<x(4>(—€, y)) = —j'e. The uniqueness of <j> ensures that 0(—e, y) = (/»(e, y)~' for
all (e, y) e Ux D

Hence, solutions z e C \ (0) of

det ((B(y), s(z))2 + e2l) = det ((B(y), s(z)) + iel) det ((B(y), s(z)) - iel) = 0

either satisfy z e T (if e = 0) or come in pairs z = t; and z = %~\ one inside the open
unit disk D and the other outside the closed unit disk D.

The following representation was obtained in [7, Equation (4.4a)] using a plane
wave decomposition different to the one used here.

LEMMA 9.2. Suppose that x € K2 \ a (A) does not belong to the Kippenhahn
curves C(A). Then there exists an open neighbourhood U ofx in R2 disjoint from C(A)
and two contours, F\ (x) surrounding D and l^Qc) contained in D, both anticlockwise
oriented, such that (B(y), s(z)) is invertible in Sf(C)forall z € V\(x) U F2(x) and
y 6 U, and the limit

lim f(((B(y), s(z))2 - e2/)((B(y), s(z))2 + €2iy2z-' dz

(25a) = i lim / «B(y), s(z))2 - e2/)((B(y), s(z))2 + e2/)"^"1 dz
1 f-*°Jr,w)+r,{x)

(25b) =\( (yl - A, s(z))-2z-1 dz,

exists and the convergence is uniform for all y e U.
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PROOF. Suppose that £ e D satisfies

(26) de t ( (x / -A, *«;))) = 0.

If £ e T, then we know that an analytic parametrization (18) exists in an open
neighbourhood Vf of £ in C for which A.u(£) = 0. By assumption, x e K2 \ C(A),
so Corollary 7.8 implies that there exists a smooth function y (->• 0(0, y) defined in a
neighbourhood U of x in R2 disjoint from C(A), such that 0(0, x) = £, 0(0, y) e T
and XliV(0(O, y)) = 0 for all y e U.

Furthermore, the solution 0(£, y) of A1>(0(^, y)) = i'£ is a smooth function for
(£, y) in a neighbourhood of (0, x) in R3. Hence, given any contours F] (x) and F2(x)
satisfying the conditions above, there exists an open neighbourhood V of (0, JC) e R3

such that 0(±e, y) lies in the region between the contours Fi(x) and V2(x) for all
(±e, y) e V. According to Corollary 7.8, the complex numbers 0(±e, y) are distinct
and both converge to 0(0, y) as e ->• 0+.

On the other hand, Xx = {z e D | det({x/ — A, s(z))) = 0} is a finite subset
(£y)*=i of the open unit disk D. We claim that there exists an open neighbourhood
W of (0, x) and disjoint closed disks Dj c D centred at £, e X^ such that for every
(£, y) e W, all solutions z of the equation

(27) det( (y/-A,s(z)) + i £ / ) = 0

lie in the union U*=1 Dj of the disjoint closed disks.
This would again follow from Corollary 7.8 if we knew that an analytic parametriza-

tion (18) exists in an open neighbourhood V( of f € Xx. We have already noted that,
except for a finite set of points, such an analytic parametrization is possible [5, Theo-
rem 3.3.12]. More simply, setting B(>>) — yl — A, (27) can be written as

(2z)-ndet((B0;), 2zs(z)) +
(2z)-ndet(S1(y) - iB2(y))det(z2AI

- iB2(y)yl(B](y) + iB2(y))

- iB2(y))det[(zI

OrVSiO') + «fl2(y)) + tHBdy) ~ iB2(y)y2]

= 0,

provided that y e p{A). By assumption x € p(A), so the equation is valid for all y
in a neighbourhood of x and the solutions z of (27) can be expressed in terms of the
eigenvalues of an (n x n) matrix depending continuously on (£, y). The unordered
n-tuple of eigenvalues of this matrix valued function depends continuously on the
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parameters (£, y) [22, Theorem II.5.1] facilitating the construction of the required
disjoint closed disks Dj,j — 1, . . . , k.

According to Lemma 9.1, poles of the function (24) come in pairs (z,z~l) lying
either inside the open unit disk D or outside the closed unit disk D for all y in a
neighbourhood of JC. NOW choose the inner contour Fjix) to surround every closed
disk Dj, and choose rx(x) to lie between T and points z~l, z € Uj=lDj, outside D.
Next choose the intersection of all open neighbourhoods V of (0, x) corresponding to
the finitely many solutions £ e T of (26) and take the intersection V of this open set
with the open set W corresponding to the finitely many solutions £;̂  e D,j = 1 , . . . , k
of (27).

Then for every (e,y) e V", the contour integral

f , s(z))2 - €2I)((B(y), s(z))2 + €2/)~ V dzz))2 + €2/)~ V

is 2ni times the sum of the residues of the integrand at the distinct poles 0 (±e , y)
and 4JTJ times the sum of the residues at poles near solutions £ € D of (26), because
both contours Fi (JC) and ^ ( x ) surround these. The possibility of a pole at zero in the
case that y € o(A) is excluded.

The function

(€, y)

is continuous on V, so equality (25b) is immediate. To prove equality (25a), we need
to look separately at those poles £ of (24) satisfying (26) lying inside the open disk D
and those lying on T.

The sum of the residues of the function (24) belonging to U*=1 Di c D is equal to

f ((B(y), s(z))2 - 62/)({B(y), s(z))2

-i- f
2711 Jr2(

, s(z)}2 - €2I)((B(y), s(z))2 + € 2 / r V ! dz

for all (€, y) € V", so this is uniformly continuous in (e, y) e V.
Now we need to show that the sum of the residues of the function (24) over all the

poles 0 ( ± e , _y) converges uniformly in y as e —> 0+ to twice the sum of the residues
of z i-> (B(y), s(z)}~2z~l over all the poles 0(0, y). According to Lemma 9.1, one of
the poles <p(±e, y) lies in D and the other is outside D, so then equality (25a) will be
established.

The set Zy of all solutions £ e T of (26), is finite for each y in a neighbourhood of
x, so it suffices to prove that each residue of (24) at 0 (±e , y) converges uniformly to
the residue of z *-> (B(y), s(z))~2z~l at 0(0, y).

For every solution £ e Zy, there exists a neighbourhood V? in C such that V̂  n (Zv \
= 0 and the parametrization (18) holds. Then, writing A; for the eigenvalues
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kj<y(z) of (yl - A, s(z)) in (18), the equality

(28) ((B(y), s(z))2 - 62/)((B(y), s(z))2 + c 2 / ) " V = ^T ( ^ ^ + * Pj (z)
J = •

holds for all z e V .̂
By assumption, the eigenvalue functions kj have at most one zero, z = £, in VK. We

may suppose that for some integer k, 1 < k < m, we have A.i (f ) = ••• = At(f) = 0
and kj (£) ^ 0 fory' > it. The terms in the sum (28) corresponding to the latter are
analytic in the open set V(.

By Corollary 7.8, there exists a neighbourhood Ux of (0, x) in K3 such that for
a l l ; with 1 < j < k, <pj(€,y) = k~\ie) defines a C°°-function on Ux satisfying
k'j(4>j(€, y)) ^ 0 for all (e, y) e Ux. In particular, the set of all y € K2 such that
(£, y) € C/x for some £ € K, is disjoint from C(A). Then for e > 0, we have

P(z)\\
7 7_U,,

Here we have written (A.; (z)2 + e2)2 = (kj (z) + ie)2(kj (z) - ie)2 and noted that

gives rise to a pole of order two at <pj (e, y). Now

2 ^ 2 ic:J Xl~ie

dz (kj + ie)2 ' (kj + ie)3 ' (kj + iey

is zero at <pj (e, y). According to Corollary 7.8, the function (e, y) h-> k'j (<f>j (e, y)) is
C°° and nonzero in a neighbourhood of (0, x). It follows that the matrix

(29) Res ( — J - ^ *— Pj (z); <t>j (e,;

f P, (z) 1 K(4>j (e- y)) pj i<t>j («. y))
J K^f I J J J J

converges uniformly for all y in a neighbourhood of x as c -> 0+.
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The residue at each of the poles <f>j (±€, y) contributes to the integral over F\ (x) +
r2(x), so in the limit, we obtain twice the sum of the residues of the matrix-valued
function z t-> (B(>>), s(z))~2z~l at poles £ e T and inside T. We have proved the
required formula. •

The next lemma establishes that the scalar component of co H> GW(\) is continuous
in a neighbourhood of x e R(A) in R3.

LEMMA 9.3. For every x e R(A) the matrix valued function

y H+ Gy+eeo(A) - G,_feo(A), y e R2,

converges to zero as e —> 0+, uniformly for all y in a neighbourhood ofx.

PROOF. By Corollary 7.8, x e C(A)C and R(A) C p(A), so the representation of
Lemma 9.2 is valid. But there are no poles interior to T or exterior to T. Hence, the
integral over r2(x) is zero and we can deform Fi(x) to oo. It follows that integral
(25b) is zero. •

The following argument treats the residues of the integrand

(30) z H+ s(z)(B(y), s(z))((B(y), s(z))2 + e2/)"^"1

of the contour integral (23), the vector part of the Cauchy kernel.
Let* 6 R2\(C(A)Ua(A)). As in the proof of Lemma 9.2, there exists an open set

VK c D about each solution £ e D of det((*/ — A, s(z))) = 0 and a neighbourhood
W of (0,*) in K3, such that for every (£, y) e W, all solutions z of the equation
det((;y/ — A, s(z)) — i%I) — 0 belong to U? V̂ . Moreover, the closures of the open
sets Vf are pairwise disjoint.

The sum R( (e, y) of the residues of the function (30) at poles in Vf is a continuous
function of (e, y), because it can be represented as a contour integral of the continuous
function (30) over a contour inside the open unit disk D surrounding VK. Then

lim € R>(€,y) = 0
(-•0+

uniformly for y in a neighbourhood of*.
Now let £ 6 T be a solution of det((*/ - A, s(z))) = 0. Suppose that j , 1 <

j < w, is an index for which A7(£) = 0 and <p((, y) = A~'(/e) lies in D for all
0 < e < 8, otherwise, replace ie by — ie. Such a solution exists by Corollary 7.8
and the assumption that x e R2 \ C(A). Furthermore, (e, y) h-> 0(e, v) is C00 in a
neighbourhood of (0, x) and |A.̂ . (<p(e, y))\ is bounded below.
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LEMMA 9.4. Letx e K2A C'(A) and suppose that (j>(e,y) is a pole of (30) belonging
to the open unit disk D, as defined above. Then

€ Kes
z

converges as e —> 0+, uniformly for all y in a neighbourhood ofx.

PROOF. AS in the proof of Lemma 9.2, it suffices to prove that

converges as e —>• 0+ uniformly for y in a neighbourhood of x.
By assumption, (j>(e, y) — k~x(ie) lies in the open unit disk D for all 0 < e < 8.

Then

Note that
= (kj + ie) - 2kj = y kj - ie

dz (kj + ie)2 ' (kj + /e)3 J (kj + i

is zero at 0(e , y). On the other hand,

=_L\±(-p. (
lu,y) 4 [ d z \ z A

and the other terms in the residue formula converge uniformly for y in a neighbourhood
of x as e —>• 0+. D

Consequently, for every x e R(A), the matrix-valued integral (22) converges to zero
as e -> 0, whereas the integral (23) converges in _$?(C) uniformly in a neighbourhood
of x. The Cauchy kernel a> (-> GW(A) is therefore continuous in a neighbourhood of
(0, x) in K3, proving that x € K(A)r.

To complete the proof of Theorem 6.4, it still remains to prove that x e y(A)
for all x € R2 \ R(A). We essentially follow the somewhat abbreviated proof of [7,
Theorem 4.3] after noting that Condition II of [7, Theorem 4.3] is superfluous by
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appealing to our Lemma 7.1. As mentioned in [7, page 316], the proof is based on a
closely related argument of Petrovsky [27, page 348].

Let A(A) be the set of all x e K 2 \ C(A) such that \imt^[Gy+Eeo(A) - Gy-eeo(A)]
converges uniformly to zero for all y in an open neighbourhood of x disjoint from
C(A). Then A(A) is an open subset of R2 containing y(A)c, because for every
x e y(A)c, the Cauchy kernel co (-> GW(A) is continuous for every co in a neighbour-
hood of (0,*) in R3.

Suppose that

(31) (R2\(R(A)UC(A)))nA(A) ^ 0.

We shall obtain a contradiction from the assumption (31), so showing that

R2 \ (R(A) U C(A)) C A(A)f C y(A).

Because

(32) ((R2 \ (R(A) U C(A))) n A(A)) \ a (A)

is a nonempty open set, there exists a nonempty open subset U of the set (32) such
that Hm^o+tGv+teoCA) — Gy-eeo(A)] converges uniformly to zero for all y G U.

Now U is disjoint from R(A) and a (A). If for every x e U, every pole of the
function

(33) Z H (x/ -A,5(z) ) - l

lies on T , then U c R(A). By Lemma 9.1, poles z ^ 1 of (33) come in pairs z e D
andz"1 € D , so there must exist x e U such that (33) has a pole inside D. Moreover,
by the argument of Lemma 9.2, the set [y e R2 | a(((yl - A)*)~l(yl — A))r\D ^ 0}
is an open subset of OS2, so for every y belonging to some neighbourhood of x, the
function z t-> {yl — A, s(z))"1 has poles inside D. By shrinking U if necessary, we
suppose that U has this property.

Then the calculation of the residues in Lemmas 9.2 and 9.4 is still valid because U
is disjoint from both a (A) and C(A). By Lemma 9.2, the limit

lim l((yl - A, s)2 - e2l)({yl - A, s)2 + e2/)"2 dn(s)

if / , A
= - - / (yl-A,

£ Jr
is a matrix-valued real analytic function for all y in a neighbourhood Ux oix contained
in U—a constant times the function

y H* lim[Gy+£«,(A) - Gy_em(A)], y € Ux.
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By assumption, Ux C A (A), so for all y e £/,, we have

(34) / (yI-A,s(z)r2z-ldz = O.

The point z = 0 is a removable singularity of the integrand in equation (34) because
yeUxc P(A).

Up until this point, we have worked locally with solutions z = 4>(y) of the equation
det((y/ - A, s(z))) = 0 for <p(y) belonging to a neighbourhood of T.

Now let us consider all solutions z = (j>(y) e C of the simultaneous equations

(35) det(/x/ - (A, s(z))) = 0,

(36) /x - (y, s(z)) = 0,

forv e U.2.
For z ^ 0, equation (35) is equivalent to det(zfil — (A, zs(z))) = 0 and the function

(/z,z) !->• det(z/i. — (A, zs(z))) is a polynomial in two variables. Equation (35)
therefore determines an algebraic function z/i(z) of z [1, Chapter 8, Definition 2].
Except for a finite set E of points in C, each function element (/it, £2) of /t can be
continued along any arc not passing through one of the exceptional points belonging
to I! [1, page 294]. It follows from Rellich's Theorem and equation (18) that E is
disjoint from T.

Suppose that (fij, J27) is a function element of /i such that £2, is disjoint from
£ U {0}. Then £ i->- (s\(£) : s2(£) : — //.;(£)), f e J2y, is a smooth local parametriza-
tion of the algebraic curve C(A)* of Section 7. If y e R2 and z e C satisfy (36) for
ix = /Xj (z), and /I'J (z) — {y, s)'(z) = 0, then by Lemma 7.1, y e C(A). Consequently,
if y $ C(A), then any solution ZQ of (35)-(36) with //, = /A, (Z) has the property that

Suppose that y £ C(A). By the remark after Lemma 7.6, there exists an open
neighbourhood Vy of y in K2 and an analytic function w H> 4>J(W), w e Vy, of two
real variables such that (w, s(<j>j (w))) = /Xj (0/ (w)) for all w e Vy. Hence,

det((w, s(4>j(w)))I - (A, s(4>j(w)))) = 0

and for every w € Vy the complex number 0, (w) is a pole of the function

ZH> (wl -A,s(z)rl.

Now according to (31), we are assuming that poles of function (33) exist inside D.
So there exist a nonzero integer k and 2k functions y !-• ±<j>j(y), j = I, . ..,lc,
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defined for y e Ux, that are analytic in two real variables and poles of (33) belonging
to D. We can also assume that they have the property that ±<j>j (j) ^ E U {0} for all
v e Ux and that they are constructed, as above, from the algebraic function zfi(z).

This is valid, because to any nonzero exceptional point z e E, there corresponds a
unique solution y e i 2 of (36) satisfying the equations

(37) y\sdz) + y2s2(z) = MyiJi(z) - y2s2(z) — Ji.

Here we use the observation that Si(z)s2(z) + s\(z)s2(z) = 0 if and only if |z| = 1
and E is disjoint from T. The point z = 0 is associated with points £ e cr(A) with
y\ + »y2 = £ a n d Hm^o zn-j (z) = £/2, for some function element (/z,, Qj) of /i with

With these preliminary observations out of the way, we will obtain a contradiction
from the assumption that (34) holds in a neighbourhood Ux of x.

Let X] e R(A) and suppose that t H-> y(t), 0 < t < 1, is a smooth curve in U2

such that y(0) = x and y ( l ) = *i . Suppose further that where / crosses a curve
belonging to C(A), it does so nontangentially and avoids all intersections, cusps and
isolated points. This is possible because there are only finitely many such points.
Furthermore, we suppose that y also avoids the image in K2 of the exceptional points
£ and the spectrum a (A) of A. Then in a neighbourhood of any point in y([0, 1]), the
functions {</>7 }*=I defined by the algebraic function zfL(z) from (35)-(36) in the manner
described above, do not take values in E U {0}. Moreover, we have <pj (y(l)) 6 T and
4>j (y(0)) e Ux C D for; = 1, . . . , * . Let

ib = sup{r > 0 : <pj (y(s)) e D for every 0 < s < t and j = 1 , . . . , k}.

ThenO < t0 < 1 and, by continuity, for some m = 1, ..., k, we must have <pm(y(to)) e
T. If ix'j(<t>m(y(t0))) - (y(to),s)'(4>m(y(to))) £ 0, then by Rellich's Theorem and
Lemma 7.6, there exists S > 0 such that <j)m{y{t)) e T for all / e (k — 8, to + S),
contradicting the definition of to. Hence y(to) e C{A) by Proposition 7.7.

According to our assumption, equation (34), the sum Res(y) of the residues of the
function z i-> (yl — A, s(z))~lz~* at ± 0 ; (v) and ±<pj (y)~l,j = 1, . . . , £ , is zero for
all y e Ux. The outer integral about the contour T\(x) in (34) surrounds ±(pj(y)~l

and the integral is calculated from the residues at ±<pj(y)~l by the Cauchy integral
formula.

For each 0 < t < t0, there exist contours r , (y(f)) c ~DC and P2(y(r)) C D and
neighbourhoods VY{I) of y(t) such that r ] (y(r)) surrounds {<t>j (y)~'}*=i an£l ^ 2 (y (0 )
surrounds {</>;(y)}*=1 for all y e Vy((), and the contours do not surround any other
poles of function (33) for any y e VY(D-

To see that this construction is possible, suppose that <pt is some other distinct
solution of simultaneous equations (35)-(36) such that £ = 4>e(y(t)) — </>i(y(0) e D,
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say, for some 0 < t < to. Then (y(t), s(£)) = /^(f) = ixx(X) for two eigenvalues
Ht(z) and fi\(z) of the matrix (A, s(z)), for all z € C in a neighbourhood of £.
Then £ must be a branch point of the eigenvalues of the matrix valued function
z (-»• (A, J(Z)), that is, £ e E. This contradicts our choice of the arc y. Hence, all
solutions of simultaneous equations (35)-(36) have distinct values at each point of y.
By continuity, for each 0 < t < t0 we can choose a neighbourhood VY(t) of y{t) in
which solutions of (35)-(36) have this property and contours T\{y(t)) and T2(y(t))
with the properties described above.

Then the function

Res(y) = - L I (yl - A, s ^ r V 1 rfz

defined for all y € Vyil) and 0 < t < to agrees on Ux P\ Vx with the sum Res(>>) of
residues defined above for y e Ux. Clearly, Res(y) is an analytic function of the two
real variables y, so by analytic continuation, Res(y (r)) = 0 for all 0 < t < to.

The point <j>n(y(to)) e T corresponds to where y crosses the curve C(A) at to
with <t>m(Y(to)) the direction of the unit normal. As mentioned above, y may have
crossed a curve in C(A) earlier, leading to the appearance of poles of the function (33)
additional to [<j>j (y)}j=1 for y e Vy^, but the chosen contours do not surround these.

Because y avoids all intersections, isolated points and cusps, for each j = 1 , . . . , k
with j ^ 7w, we have <pj (y(to)) ^ 4>m(y(to)) and (f>j (y(t)) is bounded away from T
for all 0 < t < to (the unit normal is unique). Any other poles (j> (y (to)) of (33) are not
associated with function elements of \L at which (19) holds for y — y(to). Otherwise,
by Proposition 7.7, y(to) would lie on the intersection of curves belonging to C(A)
with <f>(y (to)) e T, the unit normal to one of the curves.

However, it is impossible that Res(y(f)) = 0 for all 0 < t < to, because the
residues diverge at <t>m(y(to)) € T, but are uniformly bounded at <pj (y (f)), 0 < t < to
fory ^ m. This follows from an asymptotic analysis of (29) as y —y y(to) along y.
The asymptotic analysis is facilitated by the fact that fij and Pj are analytic in a
neighbourhood of 0m(y (/b)) by Rellich's theorem. Rather than repeat the calculation
here, see [7, Equation (4.24)], and the references there that follow that equation. The
original assumption that Res(y) = 0 for all y in a neighbourhood Ux of x must be
false, so that (31) is false. We have shown the inclusion K2 \ (R(A)U C(A)) C y (A).

If x e R(A)C D R(A) = 8R(A), then by Corollary 7.9, x is an element of C(A),
so it only remains to treat the case x e C(A). In this case, the asymptotic analysis
mentioned above ensures that we can actually make lim£_0+[G;

>,+£e0(A) — G>_£d0(A)]
diverge as y -*• x in some direction in C(A)C, namely, from the direction into which
the curvature vector points, proving that * e y(A). We have established the inclusion
K2\R(A)Cy(A). D
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10. Further developments

In this section, we consider which of the preceding arguments are applicable to a
more general situation. A plane wave decomposition formula similar to formula (9)
has been obtained for a d-tuple A = (A i, . . . , Ad) of bounded linear operators acting
on a Banach space X just under the assumption that the spectrum cr((f, A)) of the
bounded linear operator (£, A) = £^= 1 £/ Aj is real for each f € Rd [18, Lemma 2.5].
Actually, the plane wave decomposition is adopted as the definition of the Cauchy
kernel G(.)(A) off Krf in the case that the Weyl calculus does not exist, that is, when
the necessary exponential bounds for the d-tup\e A of operators fail. It agrees with the
power series expansion [18, Equation (5)] outside a sufficiently large ball and it agrees
with the Cauchy-Stieltjes transform of the Weyl functional calculus when this exists
[17, Equation (5)]. The same formula will work for a J-tuple A = (Ai , . . . , Ad) of
unbounded linear operators if the closure (£, A) of (£, A) is densely defined and has
real spectrum for each £ 6 Rd.

The monogenic spectrum y (A) of the d-tuple A is the set of singularities of the
Cauchy kernel G()(A), that is to say, y(A) is the complement of the largest set in
Rd+l on which a> \-> GW(A) is a monogenic function with values in a Clifford module
-%'(X)(d) over the bounded linear operators on the Banach space X.

In the Hilbert space setting with d = 2 and A = (A\,A2) bounded selfadjoint
operators, Definition 6.1 and the proof of Proposition 6.2 still make sense, so that
R(A)C is contained in the numerical range W(A) of the bounded linear operator
A = A] + iA2- The convex hull of y(A) is equal to the numerical range W(A).
However, we have no information about the relationship of R(A) and y(A) in the
infinite dimensional setting.

If we assume only that A = (Ai, A2) is a pair of matrices such that c((£, A)) is
real for each £ e R2, then we can no longer appeal to Rellich's Theorem, crucial to
the proofs of Sections 7 and 9. A pair of simultaneously triangularisable matrices,
each with real spectrum, falls into this category—such matrices need not be hermitian.
Moreover, the algebraic function zii(z) defined in Section 9 may now have a finite
number of singularities on the unit circle T.

Rather than use the Rellich formula (18), we could attempt to express the matrix

(yl -A,s(z))

in terms of the resolvent (fil — (A, s(z)))~l, [i e p((A,s(z))), of (A,s(z)) for
suitable z € C. The Cauchy kernel G()(A) of A can also be expressed in terms
of resolvent operators (fxl — (A, s))'1 by means of the plane wave decomposition.
This approach has the advantage of being applicable to a J-tuple of linear operators
acting in a Banach space. The preceding analysis applies to pair of matrices satisfying
the spectral condition just mentioned, although singularities of the algebraic function
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zfi(z) defined in Section 9 on the unit circle T must now be accounted for. A similar
remark was made in [7, Footnote 1]. The observation that a ^-tuple A of matrices
with the property that o((£, A)) is real for each £ e Rd has a Weyl functional calculus
is proved in [16] by operator-theoretic methods.

Finally, we note that for the triple a = (cru o2, CT3) of (2 x 2) Pauli matrices,
the monogenic spectrum y(<x) of a is the unit sphere § in IR3 [2, Theorem 4.1].
Points exterior to § belong to infinitely many tangent planes to §, but points inside
§ have none. Nevertheless, the interior of § is a lacuna of y(a) corresponding to
the fundamental solution of Weyl's equation. The simple equality y(A) = R(A)C,
suitably interpreted, does not go over to higher order systems A = (Au ..., Ad),
d > 2, without some additional connection between d and the size of the matrices
A i , . . . , Ad.
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