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Real Hypersurfaces
in Complex Two-Plane Grassmannians
with Vanishing Lie Derivative

Young Jin Suh

Abstract. In this paper we give a characterization of real hypersurfaces of type A in a complex two-

plane Grassmannian G2(C
m+2) which are tubes over totally geodesic G2(C

m+1) in G2(C
m+2) in terms

of the vanishing Lie derivative of the shape operator A along the direction of the Reeb vector field ξ.

0 Introduction

In the geometry of real hypersurfaces there were some characterizations of homoge-

neous real hypersurfaces of type A1, A2 in complex projective space CPm and of type

A0, A1, A2 in complex hyperbolic space CHm . As an example, we say that the shape

operator A and the structure tensor φ commuting with each other, that is Aφ = φA,

is a model characterization of this type hypersurface, which is a tube over a totally

geodesic CPk in CPm (See Okumura [8]), a tube over a totally geodesic CHk in CHm,

or a horosphere in CHm (See Montiel and Romero [7]).

Now let us denote by G2(Cm+2) the set of all complex two-dimensional linear

subspaces in Cm+2, which is said to be a complex two-plane Grassmannian. This

Riemannian symmetric space G2(Cm+2) is equipped with both a Kähler structure

J and a quaternionic Kähler structure J not containing J. Then for real hypersur-

faces M in G2(Cm+2) we have considered the two natural geometric conditions that

[ξ] = Span{ξ} or D⊥
= Span{ξ1, ξ2, ξ3} be invariant under the shape operator A

of M, where ξ = − JN and Jν = − JνN , ν = 1, 2, 3 for a unit normal vector field N

of M in G2(Cm+2). (See the details in [2, 3].)

The first result in this direction is the classification of real hypersurfaces in

G2(C
m+2)

satisfying both conditions mentioned above. Namely, Berndt and the present author

[2] have proved the following:

Theorem A Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3. Then both

[ξ] and D⊥ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic

QPn in G2(Cm+2).
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Vanishing Lie Derivative 135

In [3], Berndt and the present author have given a characterization of real hy-

persurfaces of type A in Theorem A when the shape operator A of M in G2(Cm+2)

commutes with the structure tensor φ, which is equivalent to the condition that the

Reeb flow on M is isometric, that is Lξg = 0, where L(resp. g) denotes the Lie deriva-

tive(resp. the induced Riemannian metric) of M in the direction of the Reeb vector

field ξ. Namely, we proved the following:

Theorem B Let M be a connected orientable real hypersurface in G2(Cm+2), m ≥ 3.

Then the Reeb flow on M is isometric if and only if M is an open part of a tube around

some totally geodesic G2(Cm+1) in G2(Cm+2).

When the Reeb flow on M in G2(Cm+2) is isometric in Theorem B, we say that the

Reeb vector field ξ on M is Killing. This means that the metric tensor g is invariant

under the Reeb flow of ξ on M. In this paper, specifically we assert a characterization

of real hypersurfaces of type A in Theorem A by another geometric Lie invariant, that

is, the shape operator A of M in G2(Cm+2) is invariant under the Reeb flow on M as

follows:

Main Theorem Let M be a connected orientable real hypersurface in G2(Cm+2), m ≥ 3.

Then the Reeb flow on M satisfies LξA = 0 if and only if M is an open part of a tube

around some totally geodesic G2(Cm+1) in G2(Cm+2).

1 Riemannian Geometry of G2(C
m+2)

In this section we give basic material about complex two-plane Grassmannians

G2(C
m+2),

for details see [2, 3]. The special unitary group G = SU (m + 2) acts transitively on

G2(Cm+2) with stabilizer isomorphic to K = S
(

U (2)×U (m)
)

⊂ G. Then G2

(

Cm+2
)

can be identified with the homogeneous space G/K, which we equip with the unique

analytic structure for which the natural action of G on G2

(

Cm+2
)

becomes analytic.

Now let us denote by g and k the Lie algebra of G and K, respectively, and by

m the orthogonal complement of k in g with respect to the Cartan–Killing form B

of g. Then g = k ⊕ m is an Ad(K)-invariant reductive decomposition of g. We put

o = eK and identify ToG2(Cm+2) with m in the usual manner. Since B is negative

definite on g, its negative restricted to m × m yields a positive definite inner product

on m. By Ad(K)-invariance of B this inner product can be extended to a G-invariant

Riemannian metric g on G2(Cm+2).

The Lie algebra k has the direct sum decomposition k = su(m)⊕ su(2)⊕R, where

R is the center of k. Viewing k as the holonomy algebra of G2(Cm+2), the center R

induces a Kähler structure J and the su(2)-part a quaternionic Kähler structure J on

G2(Cm+2). If J1 is any almost Hermitian structure in J, then J J1 = J1 J, and J J1 is a

symmetric endomorphism with ( J J1)2
= I and tr( J J1) = 0.

A canonical local basis J1, J2, J3 of J consists of three local almost Hermitian

structures Jν in J such that Jν Jν+1 = Jν+2 = − Jν+1 Jν , where the index is taken

modulo three. Since J is parallel with respect to the Riemannian connection ∇ of
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(

G2(Cm+2), g
)

, there exist for any canonical local basis J1, J2, J3 of J three local one-

forms q1, q2, q3 such that

(1.1) ∇X Jν = qν+2(X) Jν+1 − qν+1(X) Jν+2

for all vector fields X on G2(Cm+2).

2 Some Fundamental Formulas for Real Hypersurfaces in G2(C
m+2)

In this section we derive some basic formulae from the Codazzi equation for a real

hypersurface M in G2(Cm+2).

The induced Riemannian metric on M will also be denoted by g, and ∇ denotes

the Riemannian connection of (M, g). The Kähler structure J of G2(Cm+2) induces

an almost contact metric structure (φ, ξ, η, g) on M. Furthermore, let J1, J2, J3 be a

canonical local basis of J. Then each Jν induces an almost contact metric 3-structure

(φν , ξν , ην , g) on M. Using the expression for the curvature tensor R̄ of G2(Cm+2)

given in [2] and [3], the Codazzi equation becomes

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX,Y )ξ

+

3
∑

ν=1

{ην(X)φνY − ην(Y )φνX − 2g(φνX,Y )ξν}

+

3
∑

ν=1

{ην(φX)φνφY − ην(φY )φνφX}

+

3
∑

ν=1

{η(X)ην(φY ) − η(Y )ην(φX)}ξν .

The following identities can be proved in a straightforward method and will be

used frequently in subsequent calculations, (see [10, 11]):

(2.1)

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φξν = φνξ, ην(φX) = η(φνX),

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1,

where the index ν denotes ν = 1, 2, 3.

Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N

for any tangent vector X of a real hypersurface M in G2(Cm+2), where N denotes a

unit normal vector field of M in G2(Cm+2). Then from this and the formulas (1.1)

https://doi.org/10.4153/CMB-2006-014-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-014-8


Vanishing Lie Derivative 137

and (2.1) we have that

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX,(2.2)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX,(2.3)

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX − g(AX,Y )ξν .(2.4)

Moreover, from J Jν = Jν J, ν = 1, 2, 3, it follows that

(2.5) φφνX = φνφX + ην(X)ξ − η(X)ξν .

3 Proof of the Main Theorem

Before giving the proof of our theorem, let us determine which of the model hyper-

surfaces given in Theorem A satisfy the formula LξA = 0. First note that

(LξA)X = Lξ(AX) − ALξX

= ∇ξ(AX) −∇AXξ − A(∇ξX −∇Xξ)

= (∇ξA)X −∇AXξ + A∇Xξ

= (∇ξA)X − φA2X + AφAX

= 0

for any vector field X on M. Then the assumption LξA = 0 holds if and only if

(∇ξA)X = φA2X −AφAX. In this section we will show that only a tube over a totally

geodesic G2(Cm+1) in G2(Cm+2) satisfies the formula LξA = 0.

Now let us consider a real hypersurfaces of type A, that is, a tube over a totally

geodesic G2(Cm+1) in G2(Cm+2). By Proposition A of [11] we know that ξ∈D⊥ and

that the shape operator A and the structure tensor φ commute with each other. Then

this implies that ξ is principal, that is, Aξ = αξ, where α =

√
8 cot(

√
8r). Differen-

tiating this one, by (2.2) we have

(∇XA)ξ = ∇X(Aξ) − A∇Xξ

= α∇Xξ − A∇Xξ

= αφAX − AφAX.

On the other hand, by the equation of Codazzi and the assumption of LξA = 0

we have

(3.1) (∇XA)ξ = −φX −
∑

ν

{ην(ξ)φνX − ην(X)φνξ}

− 3
∑

ν

ην(φX)ξν + φA2X − AφAX,
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where
∑

ν denotes the summation from ν = 1 to 3. Then from these two formulas

we have

(3.2) αφAX − AφAX = −φX − φ1X +
∑

ν

ην(X)φνξ

− 3
∑

ν

ην(φX)ξν + φA2X − AφAX.

Now let us check case by case whether two sides in (3.2) are equal to each other as

follows:

Case 1. X = ξ = ξ1

In this case it can be easily checked that two sides are equal to each other.

Case 2. X = ξ2, ξ3

Then we may put Aξ2 = βξ2, Aξ3 = βξ3, where β =

√
2 cot(

√
2r). Then by

putting X = ξ2 in (3.2) we have

αβφξ2 = −3ξ3 − 3
∑

ν

ην(φξ2)ξν + β2φξ2.

From this we know β(α − β)φξ2 = 2ξ3, which implies that both sides are equal

to 2ξ3.

Case 3. X∈Tλ = {X|X ⊥ Hξ, φX = φ1X}
Then by putting X∈Tλ, λ = −

√
2 tan(

√
2r) in (3.2) we have

αλφX = −φX − φ1X +
∑

ν

ην(X)φνξ − 3
∑

ν

ην(φX)ξν + λ2φX,

from this it implies that λ(α − λ)φX = −2φX. This gives our assertion.

Case 4. X∈Tµ = {X|X ⊥ Hξ, φX = −φ1X}
By putting X∈Tµ, µ = 0, in (3.2) we know that both sides are all vanishing.

Accordingly we conclude that real hypersurfaces of type A in Theorem A satisfy

LξA = 0. In this section we are going to give the complete classification of real

hypersurfaces M in G2(Cm+2) satisfying LξA = 0.

Now let us take an orthonormal basis {e1, . . . , e4m−1} for the tangent space TxM,

x∈M, of a real hypersurface M in G2(Cm+2). Then by the equation of Codazzi we may

put
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(3.3) (∇ei
A)X − (∇XA)ei = η(ei)φX − η(X)φei − 2g(φei, X)ξ

+

3
∑

ν=1

{ην(ei)φνX − ην(X)φνei − 2g(φνei, X)ξν}

+

3
∑

ν=1

{ην(φei)φνφX − ην(φX)φνφei}

+

3
∑

ν=1

{η(ei)ην(φX) − η(X)ην(φei)}ξν ,

from which, together with the formulas (2.1) and (2.5) it follows that

(3.4)

4m−1
∑

i=1

g((∇ei
A)X, φei)

= −(4m − 2)η(X)

+
∑

ν

{g(φνX, φξν) + ην(X) Tr φφν + 2g(φ2

νξ, X)}

−
∑

ν

g(φνφX, φφνξ) −
∑

ν

η(X)g(φξν , φξν)

= −(4m − 2)η(X) − 3η(X) +
∑

ν

ην(ξ)ην(X) +
∑

ν
ην(X) Tr φφν

−
∑

ν

ην(ξ)g(φνφX, ξ) − 3η(X) +
∑

ν

η2(ξν)η(X)

= −4(m + 1)η(X) + 2
∑

ν

ην(ξ)ην(X) +
∑

ν

ην(X) Tr φφν ,

where in the second equality we have used the formulas
∑

ν

g(φνφX, φφνξ) =

∑

ν

ην(ξ)g(φνφX, ξ),

∑

ν

g(φξν , φξν) = 3η(X) −
∑

ν

η2(ξν)η(X),

∑

ν

g(φ2

νξ, X) = −3η(X) +
∑

ν

ην(ξ)ην(X),

and respectively in the third equality,

−
∑

ν

ην(ξ)g(φνφX, ξ) =

∑

ν

ην(ξ)ην(X) −
∑

ν

η(X)η2

ν(ξ).

Now let us denote by U the vector ∇ξξ = φAξ. Then by (2.2) its derivative can be

given by

∇ei
U = η(Aξ)Aei − g(Aei , Aξ)ξ + φ(∇ei

A)ξ + φA∇ei
ξ.
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Then its divergence is given by

(3.5) div U =

∑

i

g(∇ei
U , ei)

= hη(Aξ) − η(A2ξ) − g
(

(∇ei
A)ξ, φei

)

− g(φAei , Aφei),

where h denotes the trace of the shape operator of M in G2(Cm+2).

Now we calculate the squared norm of the following:

(3.6) ‖φA − Aφ‖2
=

∑

i

g
(

(φA − Aφ)ei , (φA − Aφ)ei

)

=

∑

i, j

g
(

(φA − Aφ)ei , e j

)

g
(

(φA − Aφ)ei, e j

)

=

∑

i, j

{g(φAe j , ei) + g(φAei , e j)}{g(φAe j , ei) + g(φAei , e j)}

= 2
∑

i, j

g(φAe j , ei)g(φAe j , ei) + 2
∑

i, j

g(φAe j , ei)g(φAei , e j)

= −2
∑

j

g(φAe j , Aφe j) + 2
∑

j

g(φAe j , φAe j)

= 2 Tr A2 − 2hη(Aξ) + 2
∑

i

g
(

(∇ei
A)ξ, φei

)

+ 2 div U ,

where
∑

i(resp.
∑

i, j) denotes the summation from i = 1 to i = 4m − 1(resp. from

i, j = 1 to 4m − 1) and in the final equality we have used (3.5). From this together

with the formula (3.4) it follows that

(3.7) div U =

1

2
‖φA − Aφ‖2 − Tr A2 + αh

+ 4(m + 1) − 2
∑

ν

η2

ν(ξ) −
∑

ν

ην(ξ) Tr φφν .

From this formula, together with the assumption LξA = 0 we want to show that

the structure tensor φ and the shape operator A commute with each other, that is,

φA−Aφ = 0. Then by Theorem B we are able to assert that M is a tube over a totally

geodesic G2(Cm+1) in G2(Cm+2).

Now let us take an inner product (3.1) with the Reeb vector field ξ. Then we have

(3.8) g
(

(∇XA)ξ, ξ
)

= −
∑

ν

ην(ξ)ην(φX) − 3
∑

ν

ην(φX)ην(ξ) − g(AφAX, ξ)

= −4
∑

ν

ην(ξ)ην(φX) + g(AX,U ).
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On the other hand, by the almost contact structure φ we have

φU = φ2Aξ = −Aξ + η(Aξ)ξ = −Aξ + αξ,

where the function α denotes η(Aξ). From this, differentiating and using (2.2) gives

(3.9) (∇Xφ)U + φ∇XU = −(∇XA)ξ − A∇Xξ + (Xα)ξ + α∇Xξ

− g(AX,U )ξ + φ∇XU .

Then by taking an inner product (3.9) with ξ and using U = φAξ we have

g
(

(∇XA)ξ, ξ
)

= g(AX,U ) + Xα − g(∇Xξ, Aξ)

= 2g(AX,U ) + Xα.

From this, together with (3.8), we have

(3.10) g(AX,U ) + 4
∑

ν

ην(ξ)ην(φX) + Xα = 0.

Now substituting (3.1) and (3.10) into (3.9) and using (2.2), we have

(3.11) 4
∑

ν

ην(ξ)ην(φX) + φ∇XU = φX +
∑

ν

{ην(ξ)φνX − ην(X)φνξ}

+ 3
∑

ν

ην(φX)ξν − φA2X + αφAX.

Then the above equation can be rewritten as follows:

φ∇XU = φX − φA2X + αφAX +
∑

ν

{ην(ξ)φνX − ην(X)φνξ}

+ 3
∑

ν

ην(φX)ξν − 4
∑

ν

ην(ξ)ην(φX)ξ.

From this, summing up from 1 to 4m − 1 for an orthonormal basis of TxM, x∈M,

we have

(3.12)
∑

i

g(φ∇ei
U , φei) = div U + ‖U‖2

= (4m − 2) − Tr A2 + η(A2ξ) + α{Tr A − α}

−
∑

ν

ην(ξ) Tr φφν

−
∑

ν

g(φνξ, φνξ) + 3
∑

ν

g(ξν , ξν) − 3
∑

ν

η2(ξν),
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where in the first equality we have used the notion of div U . Then it follows that

(3.13) div U = (4m − 2) − Tr A2 + α Tr A −
∑

ν

ην(ξ) Tr φφν

−
{

3 −
∑

ν

η(ξν)η(ξν)
}

+ 9 − 3
∑

ν

η2(ξν)

= 4(m + 1) + αh − Tr A2 −
∑

ν

ην(ξ) Tr φφν − 2
∑

ν

η2(ξν),

where we have used ‖U‖2
= ‖Aξ‖2 − α2 in (3.12).

Now if we compare (3.7) with the formula (3.13), we finally assert that the squared

norm ‖Aφ − φA‖2 vanishes, that is, the structure tensor φ and the shape operator A

commute with each other. Then by Theorem B in the introduction we are able to

assert that M is a tube over a totally geodesic G2(Cm+1) in G2(Cm+2). This completes

the proof of our Main Theorem.

Remark 3.1 Let M be a real hypersurface in complex two-plane Grassmannians

G2(Cm+2) satisfying Lξφ = 0. Then it is not difficult to show that the conditions

Lξφ = 0 and LξA = 0 are equivalent. So we remark here that a real hypersurface M

in G2(Cm+2) satisfying Lξφ = 0 is also congruent to a tube over a totally geodesic

G2(Cm+1) in G2(Cm+2).

Remark 3.2 In paper [10] due to the present author we have proved some non-

existence properties for real hypersurfaces in G2(Cm+2) with parallel shape operator

∇A = 0. Also in [11] we have investigated some real hpersurfaces M in G2(Cm+2)

when the structure tensors φν , ν = 1, 2, 3, commute with the shape operator A of M

in G2(Cm+2).
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