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Real Hypersurfaces
in Complex Two-Plane Grassmannians
with Vanishing Lie Derivative

Young Jin Suh

Abstract. In this paper we give a characterization of real hypersurfaces of type A in a complex two-
plane Grassmannian G,(C™*2) which are tubes over totally geodesic G,(C™*1) in G,(C"*?) in terms
of the vanishing Lie derivative of the shape operator A along the direction of the Reeb vector field .

0 Introduction

In the geometry of real hypersurfaces there were some characterizations of homoge-
neous real hypersurfaces of type A, A, in complex projective space CP" and of type
Ay, Ay, A, in complex hyperbolic space CH™ . As an example, we say that the shape
operator A and the structure tensor ¢ commuting with each other, that is Ap = @A,
is a model characterization of this type hypersurface, which is a tube over a totally
geodesic CP* in CP™ (See Okumura [8]), a tube over a totally geodesic CH* in CH™,
or a horosphere in CH” (See Montiel and Romero [7]).

Now let us denote by G,(C™*?) the set of all complex two-dimensional linear
subspaces in C™*2, which is said to be a complex two-plane Grassmannian. This
Riemannian symmetric space G,(C™?) is equipped with both a Kahler structure
J and a quaternionic Kahler structure J not containing J. Then for real hypersur-
faces M in G,(C™"?) we have considered the two natural geometric conditions that
(€] = Span{¢} or DL = Span{&,, &,, &5} be invariant under the shape operator A
of M, where ¢ = —JN and J, = —J,N, v = 1,2, 3 for a unit normal vector field N
of M in G,(C™*?). (See the details in [2, 3].)

The first result in this direction is the classification of real hypersurfaces in

G2 ((Cm+2 )

satistying both conditions mentioned above. Namely, Berndt and the present author
[2] have proved the following:

Theorem A Let M be a connected real hypersurface in Go(C™*2), m > 3. Then both
(¢] and D+ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G,(C™*!) in G,(C™*?), or
(B) miseven, say m = 2n, and M is an open part of a tube around a totally geodesic
QP" in Gy (C™*?).
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In [3], Berndt and the present author have given a characterization of real hy-
persurfaces of type A in Theorem A when the shape operator A of M in G,(C"*?)
commutes with the structure tensor ¢, which is equivalent to the condition that the
Reeb flow on M is isometric, that is L¢g = 0, where L(resp. g) denotes the Lie deriva-
tive(resp. the induced Riemannian metric) of M in the direction of the Reeb vector
field £. Namely, we proved the following:

Theorem B Let M be a connected orientable real hypersurface in G,(C™?), m > 3.
Then the Reeb flow on M is isometric if and only if M is an open part of a tube around
some totally geodesic G,(C™1) in G,(C™*2).

When the Reeb flow on M in G,(C™*?) is isometric in Theorem B, we say that the
Reeb vector field £ on M is Killing. This means that the metric tensor g is invariant
under the Reeb flow of £ on M. In this paper, specifically we assert a characterization
of real hypersurfaces of type A in Theorem A by another geometric Lie invariant, that
is, the shape operator A of M in G,((C"*2) is invariant under the Reeb flow on M as
follows:

Main Theorem Let M be a connected orientable real hypersurface in G,(C™*?), m > 3.
Then the Reeb flow on M satisfies LeA = 0 if and only if M is an open part of a tube
around some totally geodesic G,(C™1) in G,(C™*2).

1 Riemannian Geometry of G,(C"™*?)

In this section we give basic material about complex two-plane Grassmannians
Gy (C™),

for details see [2, 3]. The special unitary group G = SU (m + 2) acts transitively on
G,(C™*2) with stabilizer isomorphic to K = S(U(2) x U(m)) C G. Then G, (C™*?)
can be identified with the homogeneous space G/K, which we equip with the unique
analytic structure for which the natural action of G on G, (C"*?) becomes analytic.

Now let us denote by g and f the Lie algebra of G and K, respectively, and by
m the orthogonal complement of f in g with respect to the Cartan—Killing form B
of g. Then g = ¥ & m is an Ad(K)-invariant reductive decomposition of g. We put
0 = eK and identify T,G,(C™?) with m in the usual manner. Since B is negative
definite on g, its negative restricted to m x m yields a positive definite inner product
on m. By Ad(K)-invariance of B this inner product can be extended to a G-invariant
Riemannian metric g on G,(C™*?),

The Lie algebra f has the direct sum decomposition f = su(m) G su(2) &R, where
R is the center of f. Viewing f as the holonomy algebra of G,(C™*2), the center R
induces a Kéhler structure J and the su(2)-part a quaternionic Kihler structure J on
G,(C™2), If J; is any almost Hermitian structure in J, then JJ; = J1J,and J]; is a
symmetric endomorphism with (J];)> = I and tr(JJ;) = 0.

A canonical local basis J;, J5, J3 of § consists of three local almost Hermitian
structures J, in J such that J,J,41 = J,+2 = —J,4+1/J,, where the index is taken
modulo three. Since J is parallel with respect to the Riemannian connection V of
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(Gz((Cm”), g) , there exist for any canonical local basis J;, ], J5 of J three local one-
forms q, 42, g3 such that

(11) vX]V — qu+2(X)]1/+l - ql/+l(X)]1/+2

for all vector fields X on G,(C"*?).

2 Some Fundamental Formulas for Real Hypersurfaces in G,(C"™*?)

In this section we derive some basic formulae from the Codazzi equation for a real
hypersurface M in G,(C™*?).

The induced Riemannian metric on M will also be denoted by g, and V denotes
the Riemannian connection of (M, g). The Kihler structure J of G,(C™*?) induces
an almost contact metric structure (¢, £, 7, g) on M. Furthermore, let J;, ], /3 bea
canonical local basis of 3. Then each J, induces an almost contact metric 3-structure
(¢v, &, My, 8) on M. Using the expression for the curvature tensor R of G,(C™+?)
given in [2] and [3], the Codazzi equation becomes

(VxA)Y — (VyA)X = n(X)Y —n(Y)pX — 2g(¢X, Y)¢

3
+> {m(X0eY — 0, (V)X — 28(6,X,Y)E, }
v=1

3
+> {n(@X)dydY — 0, (6Y ), ¢X}
v=1

3
+ > X (@Y) — (Y )0, (6X)}E,.-
v=I1

The following identities can be proved in a straightforward method and will be
used frequently in subsequent calculations, (see [10, 11]):

Gvr1& = —&ua2, B = Eusa,
*& = €, M (9X) = n(e,X),
v Pri1X = QuaX + M1 (X)Ey,
Gur10vX = =2 X + 0y (X)Ep41,

(2.1)

where the index v denotes v = 1, 2, 3.
Now let us put

]X = ¢X + U(X)N7 ]I/X = ¢I/X + WV(X)N

for any tangent vector X of a real hypersurface M in G,(C™*?), where N denotes a
unit normal vector field of M in G,(C™*?). Then from this and the formulas (1.1)

https://doi.org/10.4153/CMB-2006-014-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2006-014-8

Vanishing Lie Derivative 137

and (2.1) we have that

(2.2) (Vx@)Y =n(Y)AX — g(AX,Y)§, Vx§ = QAX,
(23) vau - QV+2(X)§1/+1 - ql/+1(X)€1/+2 + ¢1/AX,
(24) (VX¢V)Y - _ql/Jrl(X)(bI/JrZY + qlx+2(X)¢1/+1Y + nV(Y)AX - g(AX, Y)fl/

Moreover, from JJ, = J,J, v = 1,2, 3, it follows that

(2-5) ¢¢UX = ¢II¢X + nu(X)g - W(X)é.y-

3 Proof of the Main Theorem
Before giving the proof of our theorem, let us determine which of the model hyper-
surfaces given in Theorem A satisfy the formula LA = 0. First note that
(LeA)X = Le(AX) — ALX

= V(AX) — Vax§ — A(VX — Vx§)

= (VeA)X — Vax€ + AVxE

= (VeA)X — pA’X + ApAX

=0
for any vector field X on M. Then the assumption LA = 0 holds if and only if
(VeA)X = ¢pA*X — APAX. In this section we will show that only a tube over a totally
geodesic G,(C™1) in G,(C™*?) satisfies the formula LcA = 0.

Now let us consider a real hypersurfaces of type A, that is, a tube over a totally
geodesic G,(C™*1) in G,(C™?). By Proposition A of [11] we know that £€D+ and
that the shape operator A and the structure tensor ¢ commute with each other. Then
this implies that & is principal, that is, A = af, where o = /8 cot(v/8r). Differen-
tiating this one, by (2.2) we have

(VxA)§ = Vx(A) — AVxE
= aVxé —AVxE
= apAX — AGAX.

On the other hand, by the equation of Codazzi and the assumption of LA = 0
we have

(3.1) (VxA)E = =¢X = > {n.(O)d.X —1,(X)$,E}

-3 Z 771/(¢X)£1/ + ¢A2X - A¢AX,
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where ) denotes the summation from v = 1 to 3. Then from these two formulas
we have

(3.2) QGAX — APAX = =X — $1X + > 0, (X)$,¢

=3 m(¢X)&, + pA’X — AGAX.

Now let us check case by case whether two sides in (3.2) are equal to each other as
follows:

Casel. X=¢(=¢&

In this case it can be easily checked that two sides are equal to each other.

Case2. X =6&,&

Then we may put A&, = (&, AL = (&, where § = V2 cot(v/2r). Then by
putting X = &, in (3.2) we have

Bl = =36 =3 n,(66)8, + F k.

From this we know B(a — 8)¢&, = 2&3, which implies that both sides are equal
to 253

Case3. XeT) = {X|X LH¢, ¢X = 1 X}
Then by putting XeT), A = —+/2 tan(v/27) in (3.2) we have

aAGX = —¢X — ¢ X+ n(X)p€ — 3D n(¢X)E, + N¢X,

from this it implies that A(a — A)pX = —2¢X. This gives our assertion.

Case4. XeT, = {X|X L HE, ¢X = —¢1 X}
By putting X€T,,, u = 0, in (3.2) we know that both sides are all vanishing.

Accordingly we conclude that real hypersurfaces of type A in Theorem A satisfy
L¢A = 0. In this section we are going to give the complete classification of real
hypersurfaces M in G,(C™"?) satisfying LA = 0.

Now let us take an orthonormal basis {ey, . . ., €s,,—; } for the tangent space T,M,
xEM, of a real hypersurface M in G,((C"*?). Then by the equation of Codazzi we may
put
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(3.3) (Ve A)X — (VxA)ei = n(e))pX — n(X)ge; — 2g(ei, X)§

3
+3 {nle)dX — 0 (X)pue; — 2g(der, X)6, }

v=1

3
+> {nu(de)dudX — n,(6X) by dei}
v=1

3
+ > " {n(emu(¢X) — n(Xm, (de) }E,
v=1

from which, together with the formulas (2.1) and (2.5) it follows that
4m—1

(34) ) (V4 A)X, ge)
i=1

= —(4m — 2)n(X)

+ > {8(60X, 6,) + 0 (X) T 6, +2g(02€, X) }
> g0, 0X, 66,6) = > n(X)g(Ey, $E,)

= —(4m = 2)n(X) =300 + YO (X0 + Y 0, (X) Tt 69,
= > (g dX, &) — 3n(X) + Y 7’ (&)n(X)

= —4(m+1)nX) +2> 0,0 + > 0 (X) Tr ¢y,

where in the second equality we have used the formulas

> 86X, 66u8) = > mu(©)8(du X, &),
> 808, 66) = 3n(X) = Y A (EInX),

> 8626, X) = —3n(X) + Y 0 (E)nu(X),

and respectively in the third equality,

=Y (gD, dX, &) =Y m(On(X) = > n(X)(&).
Now let us denote by U the vector V£ = ¢AE. Then by (2.2) its derivative can be

given by
VU = n(A&)Ae; — g(Aei, A)E + p(V,A)E + pAV ,E.
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Then its divergence is given by
(35)  divU =) g(V,U,e)

= hn(A€) — n(A%€) — g((V,A)E, dei) — g(¢Aei, Adey),

where h denotes the trace of the shape operator of M in G,(C™*?).
Now we calculate the squared norm of the following:

(3.6) [[¢A —Ag|* = g((pA — Ad)ei, (pA — Ad)e;)

= Zg(((bf\ — Ad)ei ;) g((pA — Ad)ei ;)

ij
= Z{g(¢Ae]-, e;) + g(PAe;, e) Hg(pAej, ;) + g(PAei, e)) }

i
=2 Zg(¢Ae]-, e;)g(pAej, e;) +2 Zg((bAej, €;)g(@Ae;, €))

ij ij
=2 Zg(qﬁAej,Agbej) +2 Zg(quej, pAe;)
j j
= 2Tr A> — 2hn(A€) +2 Zg( (V,A)E, dei) +2divU,
where ). (resp. Zi_j) denotes the summation from i = 1 to i = 4m — 1(resp. from

i,j = 1to4m — 1) and in the final equality we have used (3.5). From this together
with the formula (3.4) it follows that

1
(3.7) divU = E\|<;5A—A¢||2—TrA2+om

+a(m+1) =2 n2(€) = Y nu(&) Tr ¢y

From this formula, together with the assumption LA = 0 we want to show that
the structure tensor ¢ and the shape operator A commute with each other, that is,
@A — A¢p = 0. Then by Theorem B we are able to assert that M is a tube over a totally
geodesic G,(C™1) in G,(C™*2).

Now let us take an inner product (3.1) with the Reeb vector field £. Then we have

(3.8)  g((VxAEE) == m(On(dX) =3 n,(6X)n,(€) — gAGAX, &)

= 4> 0, (Onu(¢X) + g(AX, U).
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On the other hand, by the almost contact structure ¢ we have

QU = P*AE = —AE +1(AE)E = —AE + g,
where the function « denotes 77(A¢). From this, differentiating and using (2.2) gives

(3.9) (Vxd)U + ¢VxU = —(VxA){ — AVxE + (Xa)§ + aVxE
—g(AX, U)¢ + o VxU.

Then by taking an inner product (3.9) with £ and using U = ¢A¢ we have

g((VxA)E, €) = g(AX,U) + Xar — g(Vx&, AS)
=2¢(AX,U) + Xa.

From this, together with (3.8), we have
(3.10) gAX,U) +4) " 0 (E)n,(X) + Xa = 0.
Now substituting (3.1) and (3.10) into (3.9) and using (2.2), we have
(G114 N (dX) + ViU = X + Y _{m ()X — 1,(X)E}
+33 i (¢X)S, — GA’X + agAX.
Then the above equation can be rewritten as follows:
GVxU = 06X — pAX + agAX + Y {0, (O, X — 1,(X)$,¢}

+3> m(6X)& — 4> () (@X)E.

From this, summing up from 1 to 4m — 1 for an orthonormal basis of T,M, xeM,
we have

(3.12) > g(@V,U,¢e) =divU + U]

= (4m —2) — Tr A* + n(A*¢) + o{Tr A — o}

= > (&) Tr ¢,

= g€, 08 +3) gl6,6) — 3> (&),
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where in the first equality we have used the notion of div U. Then it follows that

(3.13) divU=(4m—2) —TrA>+aTrA— Zny(g) Tr ¢,

- {3 - Zn(flz)ﬂ(fu)} +9-3 an(gu)

=4m+1)+ah—TeA =Y 0, () Trdp, —2 1),

where we have used ||U||* = ||A¢||? — o in (3.12).

Now if we compare (3.7) with the formula (3.13), we finally assert that the squared
norm ||A¢ — @A||? vanishes, that is, the structure tensor ¢ and the shape operator A
commute with each other. Then by Theorem B in the introduction we are able to
assert that M is a tube over a totally geodesic G,(C™*!) in G,(C™*?). This completes
the proof of our Main Theorem. ]

Remark 3.1 Let M be a real hypersurface in complex two-plane Grassmannians
G,(C™*2) satisfying L¢p = 0. Then it is not difficult to show that the conditions
L¢p = 0and LA = 0 are equivalent. So we remark here that a real hypersurface M
in G,(C™*?) satisfying L¢p = 0 is also congruent to a tube over a totally geodesic
G, (C™1) in Gy (C™*2).

Remark 3.2 In paper [10] due to the present author we have proved some non-
existence properties for real hypersurfaces in G,(C™*?) with parallel shape operator
VA = 0. Also in [11] we have investigated some real hpersurfaces M in G,(C™"?)
when the structure tensors ¢, v = 1, 2, 3, commute with the shape operator A of M
in G,(C™*?),
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