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Abstract. T. Fukuiintroduced an invariant for the blow-analytic equivalence of real singularities.
For a nondegenerate analytic function (germ) f, he discovered a formula for computing the
one-dimensional invariant, denoted by A(f) := 4,(f). We find a formula for A(f") for any f
(real or complex, degenerate or not). We then define, and characterise, various notions of stability
of A(f), using the formula. For real analytic f, the Fukui invariant with sign is defined, and
computed by a similar formula. In the case where f is an analytic function of two complex
variables, A(f") can also be computed using the tree-model of 1.
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1. Introduction

Let /: (K", 0) — (KK, 0) be a given germ of analytic function, K =R or C, not
identically zero. Take any analytic arc

W) = (Ga(D), ..., 2nD): (K, 0) = (K", 0),

where 1;(¢) are convergent power series in ¢, 4;(0) = 0. As f(A(¢)) is a power series in ¢,
its order in ¢, O(f(A(?))), is a positive integer, or oco. We call the set of orders
A(f) = {O(f(A(1)))} for all choices of A, the Fukuiinvariant of f . This was introduced
by Fukui [3] as an invariant for the blow-analytic equivalence of singularities defined
in [8]. In his paper, Fukui actually introduced an invariant, 4,,(f), for each positive
integer m; but he only gave a formula for computing A(f):= A;(f), for
nondegenerate functions f .

We shall give, in Section 3, a formula for computing A(f"), for any f, using a
simplification (desingularisation) of f~1(0).

The reader is referred to the survey article [4] for more on blow-analyticity.
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Let us exclude a trivial case in the outset. Suppose that f is already a normal
crossing:

X1y ..., Xp) = (unit) X' ... x% , ¢ = 0.
1 n

It is easy to see that

4t = { Eomer1m =1} v o,

From now on, we assume that f is not a normal crossing, whence at least one
exceptional divisor must appear when f is desingularised.
Let N denote the set of positive integers.

PROPERTY 1.1. If c € A(f) and k € N, then kc € A(f).

This is clear because O(f(A(tX))) = kO(f(A(1))) .
It follows from this property that A(f) is an infinite set (unless f is identically
zero). Let us write

A(f)={a1,az,...,a;,...}U{o0}, aj <ay <---<a <--- (I e N).

We say that A(f") is stably periodic if there exist ¢, ¢, d € N such that g, = a; + kd
forc <j < c+qgandk € N . The smallest value of ¢ for which this holds is called /e
stable period.

We say A(f) is stably interval-like if there exist ¢,d,m € IN such that
amyi=c+id, i=0,1,2,....

PROPERTY 1.2. A(f) is stably interval-like if and only if there exist s, d, m € NN such
that apyyi = (+0id, i=0,1,2,....

This is also clear. By Property 1.1, there exists s € N such that ¢ + sd = 2¢. Hence,
c=sd, ayi=(+i)d.
In case d = 1, we say A(f) is stably unit-interval-like.

EXAMPLE 1.3. Let /: (K2, 0) > (K,0), K=R or C, be a polynomial function
defined by f(x, y) = x* +°. Then

A(f)=1{4,6,8,12,13,14, ..} U {oo} in the case K = C,
A(f)=1{4,6,8,12,16, 18,20,24, ...} U {0}
=4N U 6N U {oo} in the case K=R.

In both cases, A(f) is stably periodic. In the complex case A(f) is stably
unit-interval-like, but in the real case A(f) is not even stably interval-like.
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This example gives rise to the following natural questions:

QUESTION 1.4. In either case, is A(f) always stably periodic?

QUESTION 1.5. In the complex case, is A(f) always stably interval-like?

In Section 3, we shall give a formula to compute the Fukui invariant A(f), using a
simplification of /~1(0).

Using the formula for A(f) in Section 3, we can answer Question (1.4) in the
positive.

However, the answer to Question 1.5 is ‘No’. An example is given in the next
section. This example leads to the discovery of the characterisation of the stable
interval-likeness in Section 5. We can then see why it is easier for the Fukui invariant
to be stably interval-like in the complex case than in the real case.

In the real case, we define, in Section 7, some new invariants, which are slightly
better than the Fukui invariant. We call them the Fukui invariants with sign. They
can be computed by a similar formula (Theorem VII).

In the complex two variables case, we shall give another formula (Section 8) to
compute the Fukui invariant, using the tree-model. The notion of tree-model
was introduced in [7]. In Sections 9 and 10, we prove this formula.

The Fukui invariant is a kind of dual to the valuation in algebraic geometry. To be
more precise, let us consider the ‘inner product’

(g, A) := O(g(A(r))), A any arc.

If we take a fixed A on f~'(0), and vary g in the function field of f~!(0), we get a
valuation. But if we take g to be f, and vary A, we find A(f).

Some interesting observations, in the case of two complex variables, are as follows.

Suppose f(x, y) is irreducible. Let C denote the germ £ ~!(0), and I(C, C’) denote its
intersection multiplicity with any other germ C’.

Each analytic arc, 4, can be identified with an irreducible curve germ. Hence

A(f) = {I(C, C") | C irreducible}.
On the other hand, it is well known in Algebraic Curves that the semigroup
I'(C):={I(C, C") | C' any germ},

which is obviously generated by A(f'), has a conductor, c, so that, in particular, I'(C)
contains all integers ¢ + i for all i = 0. Thus, I'(C) is stably unit-interval-like in
our sense. Moreover, A(f) is also unit-interval-like. This follows from our
Theorem (II1.C).

However, if f(x, y) is not irreducible, then Example (2.1) shows that, in general,
A(f) need not be stably interval-like.
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2. A Negative Example for Question 1.5
For a positive integer e € N, let Ny, ={me N | m > e}.

EXAMPLE 2.1. Let f: (Cz, 0) — (C, 0) be a homogeneous polynomial function
defined by

Fxp) = (x — )2 (x = 20 (x = 3p)° (x — 4p)".

Then A(f)=((2NU3N)NN, p)U{oo}. Therefore A(f) is not stably
interval-like.

Proof. Let Z: (C,0) — (C?,0) be an analytic arc. Then (1) = (X(), Y(¢)) can be
expressed in the following way:

X(t)=apt + ay T -, Y() =bot" + b 4

where ag, by #0 and u,v=1. If X =0 (resp. Y =0), let u = oo (resp. v = 00).

In the case A=0or X(t) =kY(¢), k=1,2,3,4, we have O(f o 1) = 0.

We next consider the case where / is not identically zero and X(¢) # kY(),
k=1,2,3,4. If u<v, then O(fold)=12u. Therefore {O(fol)| A with
u < v} = 12IN. Similarly we have {O(f o 1) | A with u > v} = 12IN. Thus it remains
to consider the case u =v.

Case I: agp = by . In this case, we have

XO =YW=t e+ (a1 £0,w = u),
XO)—kYO)=dit"+---(d #0,k=2,3,4).

Therefore {O(fold) | A} ={12+2p | p € N}.

Case II: ay = 2by . Similarly we have {O(fol) | A} ={12+3p | p € N}.
Case III: ay = 3by. We have {O(fol) | 4} ={12+43p | p € N}.

Case IV: ag = 4by. We have {O(f o) | A} ={12+4p | p € N}.

Case V: Otherwise. {O(f o 4) | A} = 12N,

It follows that

A(f)=12NU{12+2p | pe N}U{12+3p | p € N} U {o0}

=(2NU3N)N N 12) U {oo}.
For a finite number of positive integers s1, ..., s, let GCD(sy, ..., s;) denote the
greatest common divisor of them. In case k =2, we write (s1, 52) = GCD(sy, $7)

as usual.
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OBSERVATION 2.2. In Example 2.1, set s; =2, 55 =3, s3 =3 and s4 = 4. Then
s=51 45 +s53+s54 =12 and GCD(sy, 52, 53,54) = 1. Note that there is no j,
j=1,2,3,4, such that (s,s;,) = 1.

Let sq,...,s; be positive integers. Set s =51 + - -+ + s, r = GCD(sy, ..., s;) and
dy = GCD((s, 51), ..., (s, 8¢)). Then it is easy to see that r = d .

OBSERVATION 2.3. The following conditions are equivalent.

(1) There is j, 1 <j <k, such that (s,s;) =r.
(2) There is j, 1 <j <k, such that (s,s;) =dp.

3. A Formula for A(f) Using Simplification

Let/: (K", 0) — (K, 0) be an analytic function germ, K = R or C . In [3], Fukui gave
a formula to compute A(f) using a toric resolution, in case f is a nondegenerate
function. In this section, we give a formula for A(f) in the general case, using
the Hironaka—Bierstone-Milman desingularisation ([1, 2, 5]).

Let X be a complex manifold. By an arc through x € X, we mean a complex
analytic mapping 4 into X of a neighbourhood of 0 € C such that A(0) = x.

LetIl: (X, E) — (C",0), E = H_I(O)red, be a simplification of f~'(0), namely, ITis
a composition of a finite number of blowings up, X is smooth and f o Il is a normal
crossing. Here, we call a function normal crossing if it can be locally expressed as a
product of powers of a number of local coordinates. Let D = (f o H)_I(O)red be
its reduction and D = D; U - - - U D, the decomposition into irreducible components.
Since we are concerned with divisors around E, we may assume that D, N E #
(i=1,...,s). For a subset

I={i,....5,)cS={l,...,s
of subscripts, let {ji,...,j;}, p+q =s, denote the complement / in S and put
Dy =D N---ND)\(Dj, U---UD,).

This is a manifold of codimension p (if it is not empty). The family {D,} gives a
stratification of D. We put C={I : D;NE # ¢} for a simplification IT. Since
DiNE#@,ieS, wehave J,..I=S.

Remark 3.1. By choosing a suitable II, we can assume that E is also a normal
crossing divisor. Then E is a union of some D; and if / € Cand I Cc J C S, thenJ € C.

Each divisor D; has natural multiplicity m;, which is the multiplicity of f oIl ata
generic point of D;. Let us put

Q(f) = (myy N +---+m; N) U {oo},
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for I = (i1, ..., i,) € C. This is nothing but the set of values of the orders of f o 4 for
various arcs on X through a point of D; N E.

Next let us consider the real case. Exactly as in the complex case, a simplification
I: (X%, ER) - (R",0), E® = I171(0), exists by the real desingularisation theorem
[S, 1, 2]. Then we can similarly define D® = D]]R u---u Dlg, R c 28, D}R
(I € C%), the multiplicities m}R and Q;(f).

Remark 3.2. In the real case, there is a simplification of the complexification which
is the composition of a finite number of blowings up with real centres. Then its real
part is a real simplification and the real hypersurfaces D® and DI-R are, respectively,
the real parts of the complex divisors D and D; which are invariant with respect
to the auto-conjugation. The multiplicities m,* of D are equal to m; of the
corresponding complex divisors D; .

We can write down the Fukui invariant A(f), using Q;(f).
THEOREMI. Let f: (K", 0) — (K, 0) be an analytic function germ, K = R or C, and

I1 be a simplification of f~1(0). Then we have A(f) = U cc Qu(f).
Proof. Obviously we only have to prove that

A(f)\ {00} = [ Qu(/)\ foo}.

IeC
Suppose that k € A(f) \ {o0} . Then there exists an arc A through 0 € K" such that
O(f o 4) = k. By the universality of blowing up ([6], Definition 1), there exists a
lifting u: U — X . Let & be the unique intersection point of the image of 4 and
E, which belongs to an unique D; (I ={i,...,i,}). Obviously ¢ e E implies

I € C. There exists a local coordinate system (xi, ..., x,) centered at £ such that
foll=xIl-..xk and u is given by

xp=ot™ ot 4.,
Xp = anltum +O€nzl“”2 B

at &, where o;; #0, 0 <a;) <ap <---, i=1,...,n. Since the set of nonzero
elements of {/\, ..., /,} coincides with {m;,, ..., m;}, we have

k=0(fold)=0(follop) =anly +-+anl, € 4(f).
The converse is now obvious.

COROLLARY II. The Fukui invariant A(f) is stably periodic.

https://doi.org/10.1023/A:1013784111756 Published online by Cambridge University Press


https://doi.org/10.1023/A:1013784111756

COMPUTATIONS AND STABILITY OF THE FUKUI INVARIANT 55

4. A Formula for A(f) in the Two Variables Case

Although the formula for the Fukui invariant given in the previous section looks
simple, it is not so easy to compute it in general, for the actual task of finding a
desingularisation of f~!(0) can be horrendous. In the two variables case, however,
we can give a more explicit formula for the Fukui invariant, because in this case
at most two divisors can intersect at a given point.

Let f: (K2, 0) — (K, 0) be an analytic function germ, K = R or C . As stated in the
introduction, we exclude the case where f is already a normal crossing.

Let us factor f(x, y) into irreducible components

k
fp) =] |fitx )7,
=1

J

where f; are irreducible over K{x, y}. Let II: (X, E) — (K2,0), E=T1"'0), be a
simplification of f~!(0) and E =E;U---UEy, where E; are the irreducible
exceptional divisors. Then the E;’s together with the strict transforms Z; of
];*1(0), 1 <j <k, form a normal crossing family of smooth curves in a neighbour-
hood of E.

Let m; denote the multiplicity of E;, 1 <i< N. The multiplicity of Z; is s,
1 <j <k (if Z; is not empty).

There are three kinds of points on E which interest us.

Take any E;. Then take a generic point P; on E;. In terms of our stratification in
Section 3, P; is a point of the unique one-dimensional stratum contained in E;. Let

N
A(P;) = m;N, M:UMW~

i=1

Next, take any pair (E;, E;) such that E;NE; #0. Let H; denote the point of
intersection. The point Hj; is also a stratum of our stratification. Define
Ay = Ui.j (m;IN + m;IN),where the union is taken over all pairs (i, /), i #j, with
ENE #0.

The third kind are those points where the strict transforms Z; meet the exceptional
divisors. Take any Z; . Let E,; denote the exceptional divisor which meets Z; . Define
As = Uy (5N +myN).

THEOREM 1IIC. For K = C, A(f) = AgU Ay UAg U {co}.

EXAMPLE 4.1. Consider f(x, y) = x> — y*. In Figure 1, the second component of
each bracket indicates the multiplicity of the divisor. The resolution tree gives:

A(P1) = A(P>) = 2N, Ay = 2N +4N, Ag=4N+ N.

Hence, A(f) =1{2,4,5,6,...} U{oco}.
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Figure 1.

When K = R, the formula in Theorem IIIC is still valid. However, Ag has to be
interpreted properly, because the (real) strict transform Z; is empty if
f;7'(0)={0}. For instance, x*+y*> is desingularised by one blow-up, to
X%(1 4+ Y?). The real strict transform, defined by 1 + Y2, is empty. For each f; with
];fl(()) # {0}, the real strict transform Z; meets some E,; at a real point, say
Q; . Define

A_H;\ = U (SJN +mu(j)N)»

J

where the union is taken over all j with f/’l(O) #{0}. Thus we have
THEOREM IIIR. For K=R, A(f)=Ac¢UAz U A? U {oo}.

EXAMPLE 4.2. Consider the function of Example 1.3, f(x, y) = x* +1°, in R{x, y}.
The resolution tree (Figure 2) gives

Ag =4NU6N U 12N = 4N U 6N,
Ay = {AN 4+ 12N} U (6N + 12N}, A =0.

Hence A(f) =4NU6N U {c0}.

We next compute the Fukui invariant of a degenerate function, using our formula.

(E1,4) (E.,6)
H;s H;
(Es,12)
t P. ) P
Figure 2.
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EXAMPLE 4.3. Let f: (K?,0) - (K,0), K= R or C, be a polynomial function
defined by

F(x, p) = x4 3x129% 433709 + x50 4 2x3p10 4 14,
Note that
54361252 130094 4+ x6)6 = X0 4 %),
X098 4 2310 4 14 = (3 48,
We consider the resolution tree (Figure 3). Here, £, means Ey6, i =2, 3,4,5. We

have used the notation E] to clarify our resolution process. In the real case, the strict
transforms Z4, Zs do not appear. The resolution tree gives:

A =12NU 14N U28NU42N U 44N U46NU48N U 15N U 30IN
U33NU36I,

Ag = (12N +42N) U (28N + 42N) U (14N + 28N) U (421N + 44N)
U(@44N +46N)U (46N +48N) U (12N + 30N) U (15N + 30N)
U(BON + 33N) U (33N + 36N),

As = (N +48N) U (IN + 36IN).

(Eq,42) (Es, 30)
(Eq,12)
(214 (B3,15)
(Ej,28) i
(EG’ 46) (E;a 33)
(Es, 44)
(Z31 1)
l | ----------- e (Za1)
l (E7,48)
---------- Akl Z5, 1
(Z171) (Z271) ( )
(Es, 36)

Figure 3.
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Hence,

A(f)=12NU 14N U 15N U 33N U (N + 36N) U {00}
— {12, 14, 15, 24, 28, 30, 33, 36, 37, 38, .. .} U {00).

In this case, A(f") is stably unit-interval-like.
We can also compute this 4( ) by the orthodox method as in Example 2.1. But it is
complicated. In fact, it is not so easy to find an arc 1 by which 37 € A(f) is attained.
Let A(f) = (X(¢), Y(2)) be an analytic arc defined by

X(t) =ar?, Y(t) = 4 byt + b3t°,
where o = —1, 4b3 = 1 and b3 # 0. Then O(f o 1) = 37.

5. Stable Interval-Likeness

We first consider the case n = 2. We keep the notations in Section 4. Namely, f(x, y)

is factored into irreducible components f(x,y) = ]_[J].‘=1 fi(x,»)¥, and

I: (X, E) — (K?,0) is a simplification of f~(0), where E = II"'(0) is the union

of the exceptional divisors FE|,...,Ey. Then m; is the multiplicity of E;,

1 <i< N, and s; is the multiplicity of the strict transform Z; offjfl(O), 1<j<k.
If E;NE; #0,i+#j, we define

Vi = (mi, my), I'g = U vy},

where the union is taken over all pairs (i, j), i # j, with E; N E; # ¢ For each strict
transform Z; meeting some E,;, define

k
7 = (8j, M), I's = U {7}
=1

When K = R, we need the following interpretation: I's consists only of those y; for
which £;71(0) # {0} .

In the case where £~!(0) = {0} and the simplification is given by one blow-up, the
resolution tree consists of only one exceptional divisor. Let m be the multiplicity.
Then A(f) = mN U {00}, thus A(f) is stably interval-like. In this case, set I' = {m}.

In the case where f~1(0) # {0} or the simplification cannot be given by only one
blow-up, each exceptional divisor intersects another exceptional divisor or some
strict transform. In other words, I'r or I'y is not empty. Set =Tz UT.

We can characterise the stable interval-likeness as follows:

THEOREM 1V. Let d denote the greatest common divisor of the numbers in I'. Then

A(f) is stably interval-like if and only if d € I'. In particular, A(f) is stably
unit-interval-like if and only if 1 e I'.
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Let M = Ufi | {m;} and M, = U;;l {myg)}. The next corollary follows imme-
diately from Theorem IV.

COROLLARY V. Let dy denote the greatest common divisor of the numbers in I's.
Suppose that every m; € M \ My is divisible by some y; € U's. Then A(f") is stably
interval-like if and only if dy € T's .

This corollary may not be so useful in the real case, because I'gs may be empty.

EXAMPLE 5.1. Take a homogeneous form
fx,y) = (ax+by)" ... (arx + bry)™, aibj — ajb; # 0 (i # ).

There is only one exceptional divisor in the resolution tree, whose multiplicity is
s=s1+---+5;. In this case, M = My={s}. Thus M\ M, is empty and
I's = U]];l {(s,s;)}. By Corollary V, A(f) is stably interval-like if and only if
dy = GCD((s, 51), ..., (s, s¢)) € I's. Let r=GCD(sy,...,s:). It follows from
Observation (2.3) that A(f") is stably interval-like if and only if r € I's.

Using a criterion for stable interval-likeness in Example (5.1), we can easily
construct negative examples to Question (1.5). We give an example different from
Example 2.1:

EXAMPLE 5.2. Let f: (C*,0) = (C,0) be a homogeneous polynomial function
defined by

Fy) = (x — 1) (x = 20 (x = 3p)>.

Then s=2+3+425=30 and r=GCD(2,3,25 =1. It follows that
r¢ I's ={2,3,5}. Therefore A(f) is not stably interval-like.

As seen in Example 5.1, stable interval-likeness is determined by {sy, ..., s¢} in the
homogeneous case. It is natural to ask if this is valid in general. The answer is no.
Namely, stable interval-likeness cannot be determined merely by {si, ..., s}.

EXAMPLE 5.3. Let f: (K2, 0) — (K, 0) be a polynomial function defined by
JOup) =3+ 7+
The resolution tree (Figure 4) gives
M\ M, = {10, 18, 21}, I's ={(2,30), (3,42)} = {2, 3}.

Thus me M\ My, 1is divisible by some yeIls. On the other hand,
dy=2,3)=1¢Ts. It follows from Corollary V that A(f) is not stably
interval-like.
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(Es, 30) (E%,18)

(E17 10)

(Z4,2)
l { (E4, 42)

(Ez, 18) I
(E3,21) (Z,3)

Figure 4.
EXAMPLE 5.4. Let /: (K?,0) — (K, 0) be a polynomial function defined by

Fxy) =2+ (x + ).

The resolution tree (Figure 5) gives 1 = (3,7) € I'. By Theorem IV, A(f) is stably
unit-interval-like.

We next consider the general case. Let f/: (K", 0) — (K, 0) be an analytic function
germ, K=R or C, and let IT: (X, E) — (K", 0) be a simplification of f/~1(0).
For the simplification Il, we define C in the same way as in Section 3. For
I=(,..., i) eC, set

M[ = Ci(jD(l/l’l,l sy I’Vl,'p).

Then we have

(E;3,18)
{ (E137)
(Z273) (Ez’g)
(Z17 2)

Figure 5.
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THEOREM VI. Let d denote the greatest common divisor of the numbers in
{M; | I €C}. Then A(f) is stably interval-like if and only if d € {M; | I € C}.

Theorem 1V, Corollary V, Example 5.1 and Theorem VI are criteria for stable
interval-likeness. We call them GCD tests.

Attention should be paid to the fact that although the statements of the tests are
the same for the real and the complex cases, the actual meaning in each case is quite
different.

Thus, let us take an analytic function with real coefficients. When considered as a
complex analytic function, it has a (complex) resolution tree which, in general,
can contain many more exceptional divisors than the real resolution tree. As a result,
the complex Fukui set can be much larger than the real Fukui set; the former can be
easily stably interval-like while the latter is not.

This explains why stably interval-like examples are much more numerous in the
complex case than in the real case.

6. Proofs of Theorems IV and VI
Before starting the proofs of Theorems IV and VI, we prepare some lemmas and
recall the notion of the conductor of two positive integers.
LEMMA 6.1. Let 11, ..., 14 be positive integers such that
7,22, 1<j<q and GCD(ty,...,79) =1.
Then tyNU---U1,N is not stably interval-like in our sense.

Proof. Assume that 1IN U - - - U 7, N is stably interval-like. Then there are positive
integers k, d such that

(@ NU---UtgN)N N3 pqq, = k1. 1y, kT1ooty+d, ktyoooty+2d, ..}

(6.2)
Set A=(tNU---UtyN)N Ny 4., . For simplicity, let t; = min(zy, ..., 7).
Then d = 7. Since GCD(ty, ..., 1,) =1, there is j, 2 <j < ¢, such that 7; is not

divisible by 7. Then there 1is a positive integer m such that
mty < 1; < (m+ 1)ty . By (6.2),

kti...tg+mty =kty...1y+md € A,
kty...tg+m4+ Dy =kty...ty+(m+1)d € A,
kti...ty+ 1 ¢ A

On the other hand, kty---t4+ 71 =(kti- - 7_1Tj01 -1+ 1)1;€ 4. This is a
contradiction.

The next lemma follows from this lemma.
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LEMMA 6.3. Let d, 11, ..., 14 be positive integers such that
17,22, 1<j<q, and GCD(r,...,79) =1

Then 11dN U --- U t,dN is not stably interval-like.

Let a, b be positive integers such that (a, b) = d. It is well-known that there is a
positive integer ¢ such that

@N+bIN)NNs . ={c, c+d, c+2d,...}.

The smallest integer ¢ for which this holds is called the conductor of a and b.

Proof of Theorem I'V. We prove the complex case. The real case follows similarly,
because Theorem IV is obvious when f~!(0) = {0} and the simplification is given
by one blow-up. Let us consider the complex case. Each exceptional divisor intersects
another exceptional divisor or some strict transform. By Theorem IIIC,

A(f)ZAgLJAHUAsLJ{OO}.

Let e be an arbitrary element of A(f"). By the definition of T, ¢ is divisible by some
o; € I'. Therefore e is divisible by d, where d is the greatest common divisor of the
numbers in I".

We first show that d € I' implies the stable interval-likeness of A(f). By
assumption, there is o; € I' such that o; =d. Then there is y; € I'p with y; =d
or y; € I's with y; = d . Assume that y; = d. In case y; = d, the argument is similar.
Let ¢ be the conductor of m; and m;. Then

mN+mN)NNs.={c, c+d, c+2d,...}.
It follows from the divisibility of any element of A(f) by d that
A(f)NNs.={c, c+d, c+2d,...}.

Therefore A(f") is stably interval-like.
We next show the converse. Let I' =T'g UT'g = {a1, ..., o,}. It is obvious in case
g = 1. Therefore we assume that ¢ > 2. Set I ={(i,)) | y; € T'g}.
Let ¢;; be the conductor of m; and m; for (7, j) € I, and let ¢; be the conductor of s;
and m, for 1 <j < k. Then
(m;N +m;N)N N, = ¢;; +7;({0} U N),

Note that each y; or y; is some a, € I'. Set

k

B = 1_[ C,:/' l_[Cj.
J

(ij)el j=1
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Then

k q
A(f)NNs 5 = (( U y[jN) U (Uy,N>> NNspz= (chiN) NN 3.

(i.pel J=1

Set a; = 1;d for 1 <i < gq. Then

A(f)ﬂN;Bzd(Lqu,-N> NN p

i=1

such that GCD(xy, ..., 1,) = 1. If A(f) is stably interval-like, then d(|JL, 7;IN) is
also stably interval-like. Therefore it follows from Lemma 6.3 that there is i,
1 < iy < g, such that 7;, = 1. Then o;, = 1;,d = d, namely, d e I'.

Proof of Theorem V1. Using the following lemma, we can show this theorem in the
same way as above.

LEMMA 6.4. Let oy, ..., o, be positive integers, and let d = GCD(ay, ..., o). There
is a positive integer ¢ such that

N+ +a,N)NNs . ={c, c+d, c+2d,...}.

7. The Fukui Invariants with Sign
Let f: (R",0)— (R,0) be an analytic function germ, and let
I: (X%, E®) = (R",0), ER =T171(0), be a simplification of £~'(0) in the sense
of Section 3. As in Section 3, we can likewise define D® = Dj*U...uU DR,
C* C 2%, D} (I e C®), the multiplicities m,* and Q;(f).

Let us put

P(f)={xe X |follx)>0}, N(f)={xeX |foll(x) <0},
Ct={IeC|D'NE*NP(f)#0), C-={eC|D}NEXNN(S) +# ),
where the overlines indicate the closures in X.

Recall that an arc through 0 € R” is the germ of a real analytic map 4: U — R”
with A(0) = 0, where U denotes a neighbourhood of 0 € R. An arc 4 through 0
is nonnegative (resp. nonpositive) for f if f o () = 0 (resp. < 0) in a positive half
neighbourhood [0, 5) C U. Then we define the Fukui invariants with sign by

AT(f)={O(f o 4) | 4 is a nonnegative arc through 0 for f},
A (f)=1{O(f o) | Ais a nonpositive arc through 0 for f},

respectively. It is obvious that A(f) = AT (f)U A (f).

Remark 7.1. Fukui [3] introduced a set 4,(f') of blow-analytic equivalence classes
of real analytic function germs ¢: (X, D) — (R, 0), where X are n-dimensional
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manifolds and D are compact subspaces such that f oI is not a zero divisor. Our
A(f) is obtained from Fukui’s A;(f) forgetting the sign and A*(f) (resp.
A=(f)) can be interpreted as the set of Fukui’s [(k)T]e 4i(f) (resp.
[(k)7]1 € A1(f)). Fukui gave a formula to compute A4;(f) for a nondegenerate
function.

Using an argument similar to the proof of Theorem I, we can show the following.

THEOREM VIIL. Let f: (R",0) — (R, 0) be an analytic function. Then we have

=) 4=

Iect IeC™

EXAMPLE 7.2. Let f, g: (R% 0) — (R, 0) be polynomial functions defined by
Sy =x"+)" and glx,y) =x*—)"

Then A(f)= A(g) =1{3,6,8,9,12,15,16, 18,21, 24,25,26, ...} U{oo}. Therefore,
by merely using A(f), we cannot distinguish the blow-analytic types of /" and g.

We consider the resolution trees of / and g with sign (Figures 6 and 7). By Theorem
VII, we have 8 € 4,.(f), 8¢ A_(f), 8¢ A (g), 8 € A_(g). Therefore f and g are
not blow-analytically equivalent.

The functions in Example 7.2 are nondegenerate. Thus, we can distinguish f from
g, using the Fukui’s result on 4;(f). But Theorem VII is also applicable in the
degenerate case.

8. A Formula for A(f ) Using the Tree-Model

Take a germ of holomorphic function

S, p) = Hpu(x, y) + Hpg1 (x, ) + - - -

(E4,15) (Ey, 3)

4 -] o
(2,1)  (Es,8) . I + |
- ‘ + +
; l N l ; 5 (Es, 24)

Figure 6.
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(Eq,15) (E1,3)

Figure 7.

which is mini-regular in x of order m, namely, H,,(1,0) # 0. The Newton-Puiseux
factorisation has the form

m

S0, y) = (unit) [ = B0,
i=1

where the roots f§; are fractional power series with O,(f(y)) = 1.
Given a fractional power series y(y), O,(y) = 1, we can write, as in Zariski [10],

YY) =ay+ -+ bly/ll/dl 4 a bzy#z/dldz 4 bgy#g/dl'“dg -

where b; #0, d; > 1, (u;,d)) =1, 1 <i<g, to expose the Puiseux characteristic
sequence {(y;, d1), ..., (Kg, dg)}. We call w,;/d, - - - d; the ith characteristic exponent
of y. For convenience, we set y, = dy = 1 and also call 1 = u,/dy the Oth charac-
teristic exponent. We write, as abreviation, Dy = dj---dj .

Take y,(y) and y,(y). Their order of contact is defined by

O, 72) = Oy () — 720)-

Take a positive rational number ¢ € Q" . We say y, and y, are congruent modulo gq,
written as y; =7y, mod ¢, if O(y;,7,) = ¢. This equivalence relation gives rise to
a lattice of subsets of {f;,..., f,,}, as follows:

Take any ;. Then take any f; and let

B ={Bi | OBy, B:) = O(B;, B)}-

The lattice, by definition, consists of all B obtained in this manner. It is partially
ordered by the inclusion of sets.

In [7], this lattice is called the tree-model of f(x,y) and B is called a bar. The
number of f8; in B is the multiplicity of B, denoted by m(B). We also call

h(B) = min{O(B;, Br) | B;, Pr € B}
the height of B.

https://doi.org/10.1023/A:1013784111756 Published online by Cambridge University Press


https://doi.org/10.1023/A:1013784111756

66 S. IZUMI ET AL.

8w
] W

B:

B,

Figure 8.

EXAMPLE 8.1. Consider a function defined by f(x, y) = (x — y*)(x* — »*)(x? — ).
The tree model is shown in Figure 8 with A(By) =3/2, m(B)) =5, h(B)) =2,
m(By) =3, h(B3) = 5/2, m(B3) = 2.

Note that by taking f8; = f3;, we obtain a bar of height co, whose multiplicity is that
of the root ;. In Example 8.1, there are 5 bars of height co, with multiplicity 1.

In the following, we shall define two sets of integers, j(B) and j(B), for each bar B,
then prove the next result.

THEOREM VIII. Let f(x, y) be a holomorphic function mini-regular in x of order m.
Then we have

A(f)=mNU (U (I(B)U }(B))> U {o0}.
B

Take a bar B. Take any f; € B. Let 5 denote f; with all terms )*, e = h(B),
omitted. We call iz the truncation of B.

The largest characteristic exponent of 5 is called the characteristic of B, denoted
by char(B). Note that char(B) < h(B). In Example 8.1, char(B;)) =1, i=1,2,3.

If B D B’ with B # B’ and there is no other bar in between, we call B’ a postbar of
B.

ASSERTION 8.2 (proved in Section 9). Every bar Bmust be one of the following three
kinds:
First kind. For all (postbar) B, char(B') = h(B).
Second kind.  For all B', char(B') = char(B).
Third kind. There is a unique (postbar) B*, char(B*) = char(B) and
char(B') = h(B) for all B # B*.

In Example 8.1, Bj is of the first kind, B, the second kind and B the third kind.
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Take any y(y). We define the following function:
M, (r) = number of f; such that O(y, ;) >r,0 < r < oco.

This is an integer-valued, decreasing, step function.

Let us take fiz as y. The resulting function will be written simply as Mg(r),
0<r<oo.

Take any bar B. Let us write

Hie—1
char(B) = ————, d;i>1, (d, u) =1,
(B) a do (di, 1;)
and then write
Hy
hB)=—L——, di>=1.
B di ... did *

Note that if di = 1, then B is of the second kind. The converse is also true as
we shall see in Section 9. Note also that Bz(p) is a finite series and fz(tP1) is a
polynomial in ¢.

Take a postbar B’ of B. We can write

/

HB) = h(B) + s

T /215 /’ /:1'
Taa W, d)

Suppose that B is of the first kind. Then, clearly, O(8g, ;) = h(B) for all §; € B.
Using Abel’s identity, we find
o 1 D D
A Mp(r) dr = Oy(f(Bp(y). y)) = mot(f(ﬂzz(l =), ).
Hence the following numbers
h(B) h(B)
J(B) = Dk Mp(r)dr,  I(B) = Dy Mp(r) dr
0 0
are integers. We define
J(B) = J(B)N (integral multiples).

We also define

I(B.B) = {dI(B)+um(B’)|d>1, T L Z}

U

and, taking union over all postbars B, j(B) =Up j(B, B).
Next, suppose that B is of the second kind. We still define I(B), J(B) as above.
Since d; = 1, they are integers. We also define I(B), J(B) as above.
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Finally, suppose that B is of the third kind. In this case,

char(B) = char(B*) = d“"iji,
1. i1

char(B') = h(B) = — 1% (B # BY).
dy...dy
We still define I(B) as above. This is clearly an integer. We also define 1(B, B)
and I(B) as above. As for J(B), the definition is more subtle, the reason
being that Dj_, th(B)./\/l p(r) dr may not be an integer. (In Example 8.1,

f:(&) Mp,(r) dr =5 x 3/2.) Let us write
‘u*
B* — hr B B ——— *21,
h(B") = char(B) + 7—7—. d

and rewrite

i

h(B) = char(B) + ———,
B) B) di...dwd

where, of course, d = d, it = wy, — py_1dk-

ASSERTION 8.3. The number

h(B)

J(B) = Dkl{ Mpg(r) dr — (W(B) — char(B))m(B*)}
0

is an integer.

We then define

J(B) = {dJ(B) +um(BY) |d=1, p>1,

Q=
N
QU=
A
&|‘:

* *
—_—

This completes the definitions of I (B) and j(B).

EXAMPLE 8.4. Consider x” — y?, p < ¢g. There is only one bar of finite height, ¢/p,
which is of the first kind,

AP — y?) = pNU¢gN U (pgN + N) U {oo}.
Next, consider x(x*> — y*). This time the bar is of the third kind,

mB)=3, IB)=9, J(B)=4,
IB)=9N+N,  JB) ={4d+pu|1/2<p/d <oo}=1{56,7,...}.
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Hence

A(X3 — xy3) = {3, 5, 6, 7, . } U {OO}

9. Proofs of Assertions 8.2 and 8.3

Take a weighted homogeneous form, W(x, y), say with weights w(x) = ¢, w(y) = p,
(»,q) = 1. Suppose that 1 < p < ¢. Then

W(x,y) = ax’y* [ & = ey, ¢; #0, a#0.
i

Ignoring the factor y¢, all roots have the form x = ¢y/? and characteristic exponent
q/p, with one exception: if ¢ > 0, then x = 0 is a root with characteristic exponent 1.
If p =1, the above is no longer true, all roots have characteristic exponent 1.
Assertion 8.2 is basically a consequence of the above phenomenon.
Let us take a bar B with truncation (i and
Hye—1

Hy
har(B) = ————, h(B) =
char(B) = o0 —. h(B) = ot

There is a polynomial ¢(z) of degree m(B), having the following property. Take
any root b of ¢(z) = 0, (b = 0 allowed,) say of multiplicity m’ . Then there are exactly
m' elements f; in B of the form

(dr = 1).

Bs() + by"® 4 term of order > h(B).

More precisely, ¢(z) can be obtained as follows:
Consider X =x— fi(y), Y =y, and

FOXCY) =f(X +Bp(Y), V) =D c;X'YD, D=Diy.

Let us plot a dot at (7, j/ D) for every ¢;; # 0, then construct the Newton polygon of F.
(In [9], this is called the Newton polygon of f relative to the arc x = fg(y).) There is a
Newton edge Ep with angle @p, associated to B, such that tan®p = A(B). Let us
collect terms of F on Ep:

Op(X. Y) =Y X' YP, (i, JD) € Ep.

This is a weighted homogeneous form with weights w(X) =y, and w(Y) = Dy
Putting Y = 1, we obtain ¢(z) = ®p(z, 1).
In Example 8.1, for B, ® = — X3 Y3 + X2Y>, and ¢(z) = z>(1 — z). The root z = 0
leads to x = +)°/2, and z = 1 leads to x = )?.
Now, in case d;, = 1, h(B) is not a new characteristic exponent, B is a bar of the
second kind. In case d; > 1 and X is not a factor of ®, B is of the first kind, while

if X is a factor, B is of the third kind.
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Turning to Assertion 8.3, let us consider f*(x,y) = ]_[j (x = B;(»), where the
product is taken over all §; which are conjugate to some root in B*. We know
f*1is a holomorphic function of x, y, and so is the quotient f(x, y) = f(x, y)/f*(x, y).

Take any 7, let MT and ./\~/ly denote respectively the step functions for y defined for
f* and f. Of course,

My(r) = My(r) + M), 0 < r < 0.

In the tree-model of f, B=B—B* is a bar of the first kind. Hence,
Dy f: B M 5(r) dris an integer. Note that B* is a bar of the tree-model of /*, hence
Dy, f(;'h”"(B ) Ms.(r) dr is also an integer. The following identity is obvious:

h(B)
Mp(r) dr — (h(B) — char(B))m(B")

h(B) char(B)
= M(r) dr +/ M. (r) dr,
0 0

whence J(B) is an integer.

10. Proof of Theorem VIII

Take y(y). We write O(y, f) = max{O(y, f;) | | <i<mj}. Let By denote the largest
bar in the lattice, m(Br) = m.

Take any y with O(y, f) = u/d < h(Bp). Then, clearly, dO,(f(y(»), y)) = pm. This
kind of y gives rise to numbers in mIN. Taking u =d =1 gives m € A(f), hence
mIN C A(f).

Now, take y with O(y, f) > h(Br). Choose f3; such that O(y, f) = O(y, f;). Then
choose a bar B whose height /4(B) is largest such that f; € B and O(y, f) = h(B).

Case 1. B is a bar of the first kind, A(B) = w/do - - - di.
Let us first examine a very special case, namely, O(y, f) = h(B) and h(B) is not a

characteristic exponent of y. (For instance, take iz and y =0 in Example 8.1.)
The situation is modelled in Figure 9.

Bi

Figure 9.
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Figure 10.

When we omit all terms )¢, e > h(B), in y(y), we obtain 5. We can take fztobe y.
Then we find

J(B) = Di—10,(f(Bp(»), y)) € A(S).
Let p,/dy - - - ds be the largest characteristic exponent of y. Then

DO,(f(y(), ») = DO (f (Bs(»), »))

is just a multiple of J(B). Thus, this kind of y gives rise to multiples of J(B).

Next, suppose that O(y, ;) = h(B) for all ; € B, and h(B) is a characteristic
exponent of v, as illustrated in Figure 10. (In Example 8.1, take B; and
7(») = 2y°/%)) In this case, Dy is the smallest integer for which 7(¢?¢) is integral
in ¢. Here y denotes y with terms )¢, e > h(B), omitted. We have

DO, (f(7(»). ) = diJ(B).

Therefore, this kind of y also gives rise to multiples of I(B) = dyJ(B).
Finally, consider the case O(y, f8;) > h(B). There is a postbar B’, containing f3; and
O(y, B;) < h(B'), as illustrated in Figure 11. We can write

U
0 )= h(B) 4+ —— >
(. i) = h(B) do...dd’ d=1,

!/

u

B)=hB)+——— "> 1,
WB') = h( )+d0...dkd/’ d
L
B
—
Figure 11.
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where 0 < u/d < i/'/d". Let y be y with terms »°, e > O(y, f5;), omitted. Then dDj is
the smallest integer for which 7(¢?P¢) is integral. Therefore
h(B) u
O,(f((»), ») = Mp(r) dr + ——m(B'),
0 Did

and

dDOy(f(7(»). y)) = dI(B) + pm(B').

This number and its multiples are in I (B, B'). All numbers in I (B) can be realised in
this way.
Case 2. B is of the second kind.

This case is similar and simpler. First suppose that O(y, f8;) = h(B) for all §; € B.
Then y gives rise to J(B) and its multiples. Now supposeAthat O, B;) > h(B).
Let us take B’ as before. Then y gives rise to numbers in /(B, B). All numbers
in7 (B) can be attained in this way.

Case 3. B is of the third kind.

The subtle case is where f; € B*, O(y, ;) = h(B). Let us write
u
O(y, p;) =char(B* )+ ————, d = 1.
() = char(B) + o
Then

/i(B)

O,(f (), ») = | Mp(r) dr + (O, f;) — h(B))m(B")

h(B)
= { M(r) dr — (h(B) — char(B*))m(B*)}
0

1% *
T dad "B
It follows that J(B) C A(f), and every number of J(B) can be realised in this way.
Now suppose that O(y, ;) = h(B) forall B; € B. If ;¢ B*, then we can replace it by
some f3; € B. The proof is therefore reduced to the previous case.
Finally, suppose that ;¢ B* and O(y, ;) > h(B) . This case is similar to Cases 1 and
2, v leads to the numbers in 1 (B).
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Addendum. Recently we have noticed the striking works of Denef and Loeser
(See [D-L] below) on the structure of the space of truncated arcs which are in contact
with a complex algebraic variety. The invariants introduced by them are finer than
that of Fukui. However, it is not yet clear to us whether or not they can be used
to distinguish blow-analytic equivalence classes.

[D-L]

Denef, J. and Loeser, E: Geometry on arc spaces of algebraic varieties, NATO ASI/EC Summer
School, New Developements in Singularity Theory (URL: http://www.newton.cam.ac.uk/
programs/sgt - ws.html).
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