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Abstract
We extend Poincaré duality in étale cohomology from smooth schemes to regular ones. This is achieved via a
formalism of trace maps for local complete intersection morphisms.
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Introduction

Let S be a base scheme and let Λ denote the constant sheaf Z/𝑛Z for an integer n which is invertible on
S. For a locally of finite type1 S-scheme X, define the Borel–Moore homology2 of X (relative to S) as
cohomology with coefficients in 𝐾𝑋 := 𝑓 !(Λ); that is,

H∗(𝑋/𝑆,Λ) = H−∗(𝑋, 𝐾𝑋 ),

where 𝑓 : 𝑋 → 𝑆 is the structural morphism. Our starting point is the following classical result.

Theorem 1 (Poincaré duality). Let X be a smooth S-scheme of relative dimension d. Then there is a
canonical isomorphism

𝑓 !(Λ) � Λ(𝑑) [2𝑑]

1Classically, the !-operations were constructed for compactifiable morphisms between quasi-compact, quasi-separated schemes
(see [SGA4, Exposé XVII]), which by Nagata is the class of separated morphisms of finite type. In [LZ], they were extended to
locally of finite type morphisms.

2If S is regular and 𝑓 : 𝑋 → 𝑆 is separated of finite type, then 𝐾𝑋 is a dualising complex on X by [ILO, Exposé XVII,
Thm. 0.2]. Professor Illusie has informed me that this definition of ‘Borel–Moore homology’, as cohomology with coefficients in
𝐾𝑋 , is in fact due to Grothendieck. See also [La1, §2].
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2 Adeel A. Khan

in the derived category D(𝑋ét,Λ) of étale sheaves of Λ-modules on X, where 𝑓 : 𝑋 → 𝑆 is the structural
morphism. In particular, there is a canonical isomorphism

H∗(𝑋/𝑆,Λ) � H2𝑑−∗(𝑋,Λ(𝑑)). (0.1)

See [SGA4, Exposé XVIII, Thm. 3.2.5] and [LZ, Thm. 0.1.4] in case X is not separated of finite
type. Theorem 1 is proven by constructing a formalism of traces3

tr 𝑓 : 𝑓!Λ(𝑑) [2𝑑] → Λ

for flat morphisms f whose geometric fibres are of dimension� 𝑑 (see [SGA4, Exposé XVIII, Thm. 2.9]).
By adjunction, the trace gives rise to a fundamental class

[𝑋] ∈ H2𝑑 (𝑋/𝑆,Λ) (−𝑑),

and the isomorphism (0.1) can be realised as cap product with [𝑋].
In this article, our goal is to prove an ‘absolute’ version of Theorem 1, where X is a regular scheme

over a regular base scheme S and the morphism 𝑓 : 𝑋 → 𝑆 is only assumed to be locally of finite type.
To that end, we construct a formalism of traces for local complete intersection morphisms.
Theorem A. Let X and Y be schemes on which n is invertible. For every local complete intersection
morphism 𝑓 : 𝑋 → 𝑌 of relative virtual dimension d, there is a canonical morphism

tr 𝑓 : 𝑓!Λ(𝑑) [2𝑑] → Λ,

in D(𝑌ét,Λ) satisfying the following properties:
(i) Functoriality. Given another local complete intersection morphism 𝑔 : 𝑌 → 𝑍 of relative virtual

dimension e, the composite 𝑔 ◦ 𝑓 is a local complete intersection morphism of relative virtual
dimension 𝑑 + 𝑒 and there is a commutative diagram

𝑔! 𝑓!Λ(𝑑) [2𝑑] (𝑒) [2𝑒] 𝑔!Λ(𝑒) [2𝑒]

(𝑔 ◦ 𝑓 )!Λ(𝑑 + 𝑒) [2𝑑 + 2𝑒] Λ

tr𝑔
tr𝑔◦ 𝑓

in D(𝑍ét,Λ). If 𝑓 = id𝑋 , then tr 𝑓 = id : Λ→ Λ.
(ii) Transverse base change. Given any morphism 𝑞 : 𝑌 ′ → 𝑌 , form the Cartesian square

𝑋 ′ 𝑌 ′

𝑋 𝑌.

𝑔

𝑝 𝑞

𝑓

If this square is Tor-independent (e.g., if q is flat), then g is a local complete intersection morphism
of relative virtual dimension d and there is a commutative square

𝑔!Λ(𝑑) [2𝑑] Λ

𝑞∗ 𝑓!Λ(𝑑) [2𝑑] 𝑞∗Λ

tr𝑔

𝑞∗ (tr 𝑓 )

in D(𝑌 ′ét,Λ).

3Throughout the note, all functors are implicitly derived (wherever necessary).
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(iii) Purity. Denote by

gys 𝑓 : Λ(𝑑) [2𝑑] → 𝑓 !Λ

the morphism in D(𝑌ét,Λ) obtained from tr 𝑓 by transposition. If f is smooth, or if X and Y are
regular, then gys 𝑓 is an isomorphism.

(iv) If f is smooth, then tr 𝑓 agrees with the trace morphism of [SGA4, Exposé XVIII, Thm. 2.9] (or,
rather, [LZ, Thm. 0.1.4] in the noncompactifiable case).

(v) If f is a regular closed immersion, then gys 𝑓 coincides with the Gysin morphism Cl 𝑓 : Λ →
𝑓 !Λ(−𝑑) [−2𝑑] constructed in [ILO, §2.3] and [Azu, §1] (i.e., gys 𝑓 = Cl 𝑓 (𝑑) [2𝑑]). In particular,
it refines the local cycle class of [Cycle, §2.2].

Here local complete intersection (lci) morphisms are defined as in [SGA6, Exposé VIII, §1, Déf. 1.1].
For us the relevant description will be as follows: a morphism of schemes is lci if and only if it is
locally of finite presentation and has perfect relative cotangent complex of Tor-amplitude [−1, 0] (under
cohomological grading conventions). See, for example, [KRy, Prop. 2.3.14] for this equivalence.4

Remark 1. Fix a base scheme S on which n is invertible. From Theorem A we can now read off:

(i) If X is an lci S-scheme of relative virtual dimension d, then it admits a fundamental class

[𝑋] ∈ H2𝑑 (𝑋/𝑆,Λ) (−𝑑),

given by the morphism gys𝑝 (−𝑑) [−2𝑑] : Λ→ 𝑝!Λ(−𝑑) [−2𝑑], where 𝑝 : 𝑋 → 𝑆 is the structural
morphism.5

(ii) If X and S are regular and 𝑑 = dim(𝑋) − dim(𝑆), then gys𝑝 : 𝑝!Λ � Λ(𝑑) [2𝑑] gives rise to
canonical isomorphisms (‘absolute Poincaré duality’)

∩[𝑋] : H∗(𝑋,Λ) → H2𝑑−∗(𝑋/𝑆,Λ) (−𝑑).

(iii) For any lci morphism 𝑓 : 𝑋 → 𝑌 between S-schemes, gys 𝑓 : Λ(𝑑) [2𝑑] → 𝑓 !Λ gives rise to Gysin
pullbacks

𝑓 ! : H∗(𝑌/𝑆,Λ) → H∗+2𝑑 (𝑋/𝑆,Λ) (−𝑑).

(iv) For any proper lci morphism 𝑓 : 𝑋 → 𝑌 of relative virtual dimension d, tr 𝑓 gives rise to Gysin
pushforwards in cohomology

𝑓! : H∗(𝑋,Λ) → H∗−2𝑑 (𝑌,Λ(−𝑑)).

Remark 2. Claim (iii) in Theorem A contains in particular the statement that for any closed immersion
𝑖 : 𝑋 → 𝑌 between regular schemes X and Y, there is an isomorphism 𝑖!(Λ) (𝑑) [2𝑑] � Λ in D(𝑋ét,Λ).
This is Grothendieck’s absolute purity conjecture, proven by Gabber (see [SGA5, Exposé I, 3.1.4],
[Azu], [ILO, Exposé XVI, Thm. 3.1.1]). However, the proof of (iii) uses this as input; that is, we do not
provide a new proof of absolute purity.

1. Deformation to the normal stack

The main ingredient is deformation to the normal stack, a variant of deformation to the normal cone
that makes sense not just for closed immersions.

4Surprisingly, this does not appear in [SGA6] or other classical references. In fact, it seems to be a common misconception
that this requires Noetherianness or that it relies on Quillen’s conjecture.

5If S is a field and X is quasi-projective, then this is the image of the fundamental class in the Chow group A𝑑 (𝑋 ) by the cycle
class map.
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4 Adeel A. Khan

Given an lci morphism 𝑓 : 𝑋 → 𝑌 of schemes, the normal stack 𝑁𝑋/𝑌 is the ‘total space’ of the
(−1)-shifted cotangent complex 𝐿𝑋/𝑌 [−1]. To make sense of this, recall that the total space construction
E ↦→ V𝑋 (E) = Spec𝑋 (SymO𝑋

(E)) defines an equivalence between finite locally free sheaves and vector
bundles over X. This extends to an equivalence between perfect complexes of Tor-amplitude [0, 1] and
vector bundle stacks over X, so that we can write

𝑁𝑋/𝑌 := V𝑋 (𝐿𝑋/𝑌 [−1]).

See [Kh, §1.3], [BF, §2], [SGA4, Exposé XVIII, §1.4]. In [BF] this is called the ‘intrinsic normal cone’
or ‘intrinsic normal sheaf’ (they agree for lci morphisms).

If f is a closed immersion, then 𝐿𝑋/𝑌 [−1] is just the conormal sheaf in degree zero so 𝑁𝑋/𝑌 is just
the normal bundle. In general, 𝐿𝑋/𝑌 [−1] will typically have nonzero cohomology in degree 1, which
is why 𝑁𝑋/𝑌 will only exist as an algebraic stack. For example, if f is smooth, then 𝐿𝑋/𝑌 [−1] is the
cotangent sheaf in degree −1, so 𝑁𝑋/𝑌 is the classifying stack 𝐵𝑇𝑋/𝑌 of the tangent bundle (viewed as a
group scheme over X under addition). If there is a global factorisation of f through a regular immersion
𝑖 : 𝑋 ↩→ 𝑀 and a smooth morphism 𝑝 : 𝑀 → 𝑌 , then 𝑁𝑋/𝑌 is isomorphic to the stack quotient

𝑁𝑋/𝑌 � [𝑁𝑋/𝑀/𝑖
∗𝑇𝑀/𝑌 ]

where 𝑁𝑋/𝑀 is the normal bundle of i and 𝑇𝑀/𝑌 is the relative tangent bundle of p. No choices are
involved in the definitions of 𝐿𝑋/𝑌 and 𝑁𝑋/𝑌 ; that is, they are intrinsic to f.

Deformation to the normal stack is an A1-family of algebraic stacks which deforms 𝑓 : 𝑋 → 𝑌 to
the zero section 0 : 𝑋 → 𝑁𝑋/𝑌 .

Theorem 2. Let 𝑓 : 𝑋 → 𝑌 be an lci morphism. Then there exists a commutative diagram of algebraic
stacks

𝑋 𝑋 × A1 𝑋 ×G𝑚

𝑁𝑋/𝑌 𝐷𝑋/𝑌 𝑌 ×G𝑚

𝑌 𝑌 × A1 𝑌 ×G𝑚

0

0 𝑓 ×id

𝑖 𝑗

0

(1.1)

where each square is Cartesian and Tor-independent.

Proof. See [Kr, §5.1] and [Ma, Thm. 2.31]. At the referee’s request we include the more ‘intrinsic’
construction using derived algebraic geometry mentioned in [Kh, §1.4] (a more general and detailed
version of the following argument will appear in [HKR]).

Denote by 𝐷𝑋/𝑌 → 𝑌 × A1 the derived Weil restriction of 𝑓 : 𝑋 → 𝑌 along 0 : 𝑌 → 𝑌 × A1. Thus,
𝐷𝑋/𝑌 is a derived stack such that for a derived scheme T over𝑌 ×A1, the T-points of 𝐷𝑋/𝑌 are given by

Hom𝑌×A1 (𝑇, 𝐷𝑋/𝑌 ) � Hom𝑌 (𝑇
R
×
A1

0, 𝑋) (1.2)

where 𝑇 ×R
A1 0 is the derived fibre over 0. In particular, for every derived scheme 𝑇0 over Y, we have

natural isomorphisms

Hom𝑌 (𝑇0, 𝐷𝑋/𝑌
R
×
A1

0) � Hom𝑌×A1 (𝑇0, 𝐷𝑋/𝑌 )

� Hom𝑌 (𝑇0
R
×
A1

0, 𝑋) � Hom𝑌 (𝑇0, 𝑁𝑋/𝑌 )

https://doi.org/10.1017/fms.2021.74 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.74


Forum of Mathematics, Sigma 5

where 𝑇0 is regarded over 𝑌 × A1 by composing with 0 : 𝑌 → 𝑌 × A1 and the last isomorphism comes
from the identification

𝑇
R
×
A1

0 = 𝑇 ×
0

0
R
×
A1

0 � Spec𝑇 (O𝑇 ⊕ O𝑇 [1])

with the trivial square-zero extension (in the derived sense) over T and the universal property of the
cotangent complex in derived algebraic geometry. By the Yoneda lemma, it follows that 𝑁𝑋/𝑌 is the
derived fibre of 𝐷𝑋/𝑌 → A1 over 0. Similarly, the fibre over G𝑚 is 𝑌 ×G𝑚 since

Hom𝑌×G𝑚 (𝑇𝜂 , 𝐷𝑋/𝑌 ×A1
G𝑚) � Hom𝑌×A1 (𝑇𝜂 , 𝐷𝑋/𝑌 )

� Hom𝑌 (𝑇𝜂 ×
G𝑚

G𝑚 ×
A1

0, 𝑋) � Hom𝑌 (∅, 𝑋)

is naturally isomorphic to Hom𝑌×G𝑚 (𝑇𝜂 , 𝑌 ×G𝑚) � {∗} for all 𝑇𝜂 over 𝑌 ×G𝑚.
Through (1.2) we get a canonical morphism 𝑋 ×A1 → 𝐷𝑋/𝑌 corresponding to id𝑋 ∈ Hom𝑌 (𝑋, 𝑋),

which factors 𝑓 × id : 𝑋 × A1 → 𝑌 × A1. The commutativity of the two upper squares in (1.1) is
witnessed by two isomorphisms in the mapping∞-groupoids

Hom𝑌×A1 (𝑋, 𝐷𝑋/𝑌 ) � Hom𝑌 (𝑋 × 0
R
×
A1

0, 𝑋),

Hom𝑌×A1 (𝑋 ×G𝑚, 𝐷𝑋/𝑌 ) � Hom𝑌 (𝑋 ×G𝑚 ×
A1

0, 𝑋) � {∗}.

Both squares are homotopy Cartesian since the lower two squares and both vertical composite rectangles
are.

So far we have constructed the diagram (1.1) in the∞-category of derived stacks. To show that 𝐷𝑋/𝑌
is algebraic, we can appeal to either of two algebraicity results for derived Weil restrictions. The first
is [HP, Thm. 5.1.1], which is stated for mapping stacks but applies in view of the formula for derived
Weil restriction in [HP, Proposition 5.1.14]. Alternatively, in our lci situation there is a more general
and easier result in [HKR]. Briefly, the question of algebraicity is local, so using the local structure of
lci morphisms ([KRy, Prop. 2.3.14]) and the fact that derived Weil restriction commutes with fibred
products, it boils down to the case where 𝑋 = V𝑌 (E) is a vector bundle over Y, whose derived Weil
restriction along 0 : 𝑌 → 𝑌 × A1 is the vector bundle stack

V𝑌×A1
(
0∗(E∨)∨

)
.

This argument also shows that 𝐷𝑋/𝑌 is in fact a classical algebraic stack. Thus, (1.1) is a diagram
in the ordinary category of algebraic stacks and homotopy Cartesianness of the squares translates to
Cartesianness and Tor-independence. �

2. Borel–Moore homology of stacks

Using the extension of the six operations to algebraic stacks defined in [LZ],6 we can define Borel–
Moore homology of an algebraic stack X (locally of finite type over some base S) again by the formula

H𝑘 (X /𝑆,Λ) = H−𝑘 (X , 𝑝! (Λ))

where 𝑝 : X → 𝑆 is the structural morphism. Equivalently, these are the homology groups of the
complexes

RΓ(X /𝑆,Λ) := RΓ(X , 𝑝!Λ)

� Rlim
←−−
(𝑇 ,𝑡)

RΓ(𝑇, 𝑡∗𝑝!Λ) � Rlim
←−−
(𝑇 ,𝑡)

RΓ(𝑇, (𝑝 ◦ 𝑡)!Λ) (−𝑑𝑡 ) [−2𝑑𝑡 ],

6If we work over a base satisfying some strong hypotheses, which hold, for example, for spectra of finite or separably closed
fields, then we can also use the formalism of [LO]; cf. [LZ, §6.5].
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6 Adeel A. Khan

where the homotopy limits are over pairs (𝑇, 𝑡) where T is a scheme and 𝑡 : 𝑇 → X is a smooth
morphism of relative dimension 𝑑𝑡 . (By Zariski descent, T can also be taken affine.)

It is straightforward to deduce that the localisation exact triangle extends to stacks.

Proposition 1 (Localisation). If 𝑖 : Z → X is a closed immersion with open complement 𝑗 : U → X ,
then we have an exact triangle

RΓ(Z/𝑆,Λ) 𝑖∗−→ RΓ(X /𝑆,Λ) 𝑗!

−→ RΓ(U/𝑆,Λ),

whence a long exact sequence

· · · → H𝑘 (Z/𝑆,Λ)
𝑖∗
−→ H𝑘 (X /𝑆,Λ)

𝑗!

−→ H𝑘 (U/𝑆,Λ)
𝜕
−→ H𝑘−1(Z/𝑆,Λ) → · · · .

For example, consider the closed/open pair (𝑖, 𝑗) from (1.1). The boundary map gives rise to a
specialisation map

sp𝑋/𝑌 : RΓ(𝑌/𝑌,Λ)
incl
−−→ RΓ(𝑌/𝑌,Λ) ⊕ RΓ(𝑌/𝑌,Λ) (1) [1]

� RΓ(𝑌 ×G𝑚/𝑌,Λ) [−1] 𝜕−→ RΓ(𝑁𝑋/𝑌 /𝑌,Λ). (2.1)

We will also need homotopy invariance for vector bundle stacks:

Proposition 2. Let E be the total space of a perfect complex of Tor-amplitude [0, 1] over X, say of
virtual rank r. Then there is a canonical isomorphism in the derived category of Λ-modules

RΓ(E/𝑌,Λ) � RΓ(𝑋/𝑌,Λ) (𝑟) [2𝑟] .

In particular,

H𝑘 (E/𝑌,Λ) � H𝑘−2𝑟 (𝑋/𝑌,Λ) (𝑟)

for all 𝑘 ∈ Z.

Proof. Since the projection 𝜋 : E → 𝑋 is smooth of relative dimension r, we have the Poincaré duality
isomorphism

RΓ(E , 𝜋! 𝑓 !Λ) � RΓ(E , 𝑓 !Λ) (𝑟) [2𝑟],

where there is an implicit 𝜋∗ on the right-hand side. This is the homotopy limit over (𝑇, 𝑡) of the Poincaré
duality isomorphisms

RΓ(𝑇, (𝜋 ◦ 𝑡)! 𝑓 !Λ) (−𝑑𝑡 ) [−2𝑑𝑡 ] � RΓ(𝑇, 𝑓 !Λ) (𝑟) [2𝑟]

for the smooth morphism 𝜋 ◦ 𝑡 : 𝑇 → X → 𝑌 of relative dimension 𝑑𝑡 + 𝑟 .7
Secondly, there is a canonical map

𝜋∗ : RΓ(𝑋, 𝑓 !Λ) → RΓ(E , 𝑓 !Λ)

which (as a consequence of étale descent) can be described as the homotopy limit of the maps 𝜋∗𝑈 ,
where 𝜋𝑈 : E ×𝑌 𝑈 → 𝑈, taken over smooth morphisms 𝑈 → 𝑌 with U affine. Therefore, the claim is
local on Y and we may assume that the perfect complex defining E admits a global resolution, so that E

7Note that to form this homotopy limit, we need the Poincaré duality isomorphism for schemes to be functorial in a homotopy
coherent sense; however, this coherence comes for free using a standard t-structure argument; see [LZ, Thm. 6.2.9, Rem. 4.1.10].
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is globally the stack quotient [𝐸1/𝐸0] of a vector bundle morphism 𝐸0 → 𝐸1. In this case, 𝜋∗ factors
through isomorphisms

RΓ(𝑋, 𝑓 !Λ) → RΓ(𝐸1, 𝑓 !Λ) ← RΓ(E , 𝑓 !Λ)

by homotopy invariance for the vector bundle 𝐸1 → 𝑋 (follows by descent from the case of trivial
bundles, see [SGA4, Exposé XV, Cor. 2.2]) and for the 𝐸0-torsor 𝐸1 � E (can be checked after base
change to affines, over which vector bundle torsors are split). �

3. Construction of the trace

We return to the situation of an lci morphism 𝑓 : 𝑋 → 𝑌 , say of relative virtual dimension d. The
(−1)-shifted cotangent complex 𝐿𝑋/𝑌 [−1] is perfect of Tor-amplitude [0, 1] (of virtual rank −𝑑), so
Proposition 2 yields a canonical isomorphism

RΓ(𝑁𝑋/𝑌 /𝑌,Λ) � RΓ(𝑋/𝑌,Λ) (−𝑑) [−2𝑑] .

Combining this with the specialisation map (2.1) produces now a canonical map

RΓ(𝑌/𝑌,Λ)
sp𝑋/𝑌
−−−−→ RΓ(𝑁𝑋/𝑌 /𝑌,Λ) � RΓ(𝑋/𝑌,Λ) (−𝑑) [−2𝑑] .

In particular, the image of the unit 1 ∈ RΓ(𝑌/𝑌,Λ) gives rise to a canonical element (a relative
fundamental class)

[𝑋/𝑌 ] ∈ RΓ(𝑋/𝑌,Λ) (−𝑑) [−2𝑑] . (3.1)

Our Gysin morphism is then the corresponding morphism

gys 𝑓 : Λ(𝑑) [2𝑑] → 𝑓 !Λ (3.2)

in D(𝑋ét,Λ) and the trace morphism tr 𝑓 : 𝑓!Λ(𝑑) [2𝑑] → Λ is its transpose.
It will also be useful to note that these can be refined to natural transformations

gys 𝑓 : 𝑓 ∗(𝑑) [2𝑑] → 𝑓 ! (3.3)

tr 𝑓 : 𝑓! 𝑓 ∗(𝑑) [2𝑑] → id. (3.4)

For example, tr 𝑓 is the composite

𝑓! 𝑓
∗(−)(𝑑) [2𝑑] � (−) ⊗ 𝑓!Λ(𝑑) [2𝑑]

id⊗tr 𝑓
−−−−−→ (−) ⊗ Λ = id

where the isomorphism is the projection formula. Note that when (3.2) is invertible, (3.3) will also be
invertible on dualisable objects in D(𝑌ét,Λ) (but not necessarily on arbitrary ones).

4. Proofs of the asserted properties

We begin by noting that, in case f is a closed immersion, our construction of the Gysin morphism
obviously coincides with that of [DJK, §3.2], which itself agrees with Gabber’s construction [ILO,
Exposé XVI, §2.3] by [DJK, Paragraph 4.4.3]. The base change and functoriality properties are proven
exactly as in the case of closed immersions, using respectively Tor-independent base change of the
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deformation space 𝐷𝑋/𝑌 (see [Kh, Thm. 1.3(ii)]) and the double deformation space associated to lci
morphisms 𝑋 → 𝑌 → 𝑍 ,

𝐷𝑋/𝑌 /𝑍 := 𝐷𝐷𝑋/𝑍 ×𝑍 𝑌 /𝐷𝑋/𝑍
,

the deformation to the normal stack of the morphism 𝐷𝑋/𝑍 ×𝑍 𝑌 → 𝐷𝑋/𝑍 . See the proof of [DJK,
Thm. 3.2.21].

Let us show that if f is smooth of relative dimension d, then gys 𝑓 is the Poincaré duality isomorphism
𝑓 !(Λ) � Λ(𝑑) [2𝑑]. Form the Cartesian square

𝑋 ×𝑌 𝑋 𝑋

𝑋 𝑌

pr2

pr1 𝑓

𝑓

.

The diagonal morphism Δ : 𝑋 → 𝑋 ×𝑌 𝑋 is lci of relative virtual dimension −𝑑 and the natural
transformation trΔ : Δ !Δ∗(−𝑑) [−2𝑑] → id (3.4) gives rise to

𝜂 𝑓 : id = pr2,!Δ !Δ
∗pr∗1

trΔ
−−→ pr2,!pr∗1 (𝑑) [2𝑑] � 𝑓

∗ 𝑓!(𝑑) [2𝑑] .

We claim that 𝜂 𝑓 and tr 𝑓 form the unit and counit of an adjunction ( 𝑓!, 𝑓 ∗(𝑑) [2𝑑]). Indeed, it is easy
to check that both composites

𝑓! 𝑓! 𝑓
∗ 𝑓! (𝑑) [2𝑑] 𝑓!

𝑓 ∗(𝑑) [2𝑑] 𝑓 ∗ 𝑓! 𝑓
∗(2𝑑) [4𝑑] 𝑓 ∗(𝑑) [2𝑑]

𝑓! (𝜂 𝑓 ) tr 𝑓 ∗ 𝑓!

𝜂 𝑓 ∗ 𝑓
∗ (𝑑) [2𝑑 ] 𝑓 ∗∗tr 𝑓 (𝑑) [2𝑑 ]

are identity by using the functoriality of the trace for the composite pr1◦Δ (respectively for the composite
pr2 ◦Δ) and by base change for the trace of f. This argument shows not only that gys 𝑓 is an isomorphism
but also that it agrees with the Poincaré duality isomorphisms of [SGA4, Exposé XVIII, Thm. 3.2.5]
and [LZ, Thm. 0.1.4] or, equivalently, that tr 𝑓 agrees with the trace of [SGA4, Exposé XVIII, Thm. 2.9]
or [LZ, Thm. 0.1.4]; indeed, both are counits for the same adjunction.

It remains to show that if X and Y are regular (in which case 𝑓 : 𝑋 → 𝑌 is automatically lci), then
gys 𝑓 gives the isomorphism 𝑓 !Λ � Λ(𝑑) [2𝑑] asserted in Theorem A(iii). But invertibility of gys 𝑓
can be checked after inverse image along a Zariski cover, and by functoriality we have for any open
immersion 𝑗 : 𝑈 ↩→ 𝑋 a commutative diagram

Λ(𝑑) [2𝑑] 𝑗 !Λ(𝑑) [2𝑑] 𝑗 ! 𝑓 !Λ

Λ(𝑑) [2𝑑] ( 𝑓 ◦ 𝑗)!Λ,

gys 𝑗 𝑗! (gys 𝑓 )

gys 𝑓 ◦ 𝑗

where gys 𝑗 is invertible. Thus, we may localise on X and choose a global factorisation through a closed
immersion 𝑖 : 𝑋 ↩→ 𝑋 ′ and a smooth morphism 𝑝 : 𝑋 ′ → 𝑌 . By functoriality of Gysin morphisms again
and the fact that gys𝑝 is an isomorphism by above, we reduce to the case of a closed immersion between
regular schemes (note that 𝑋 ′ is still regular). Finally, since gys 𝑓 agrees with Gabber’s construction in
this case, the claim now follows from absolute purity [ILO, Exposé XVI, Thm. 3.1.1].
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5. Remarks

Using the formalism of [LZ], our construction of the traces tr 𝑓 immediately extends to the case where
the schemes X and Y are algebraic stacks. Absolute Poincaré duality also extends to regular algebraic
stacks with the same proof.

We can also allow X and Y to be derived (schemes or stacks) and 𝑓 : 𝑋 → 𝑌 to be any quasi-smooth
morphism. Indeed, an lci morphism is precisely a quasi-smooth morphism whose source and target
happen to be classical (underived). The construction of Theorem A goes through mutatis mutandis,
since the deformation space 𝐷𝑋/𝑌 exists in that setting (see [Kh, §1.4]): it is simply the Weil restriction
of X along 0 : 𝑌 ↩→ 𝑌 × A1 (in the derived sense). For a quasi-smooth morphism, the trace is a kind
of categorification of Kontsevich’s virtual fundamental class (cf. (3.1)) and gives rise, for example, to
the Gromov–Witten theory of smooth projective varieties in arbitrary characteristic. On the other hand,
absolute Poincaré duality does not hold for derived schemes whose classical truncations are not regular.

Finally, the construction can be refined from étale cohomology to motivic cohomology. For this one
can use the limit-extended motivic cohomology of algebraic stacks defined in [KRa, §12] as a substitute
for [LZ]. Note that the trace formalism for flat maps (as developed in [SGA4, Exposé XVIII, Thm. 2.9])
has recently been extended to motivic cohomology by Abe (see [Abe]). Note that in this setting our proof
of absolute Poincaré duality goes through only in equicharacteristic, since absolute purity in motivic
cohomology is open in general (see [DFJK, Thm. C.1] for the equicharacteristic case).

In the setting of rational and étale motivic cohomology, the results of this article appeared in a
somewhat different form in the preprint [Kh]. The present article is an attempt to give a short and
self-contained account without using the language of motives or derived algebraic geometry.

In a future paper, I will explain how to use deformation to the normal stack to generalise Verdier’s
specialisation functor [Ve]. This will be combined with a derived version of Laumon’s homogeneous
Fourier transform [La2] to give an analogue of microlocalisation in the sense of Kashiwara–Schapira
[KS] for singular schemes.
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