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A Forcing Axiom Deciding the Generalized
Souslin Hypothesis

Chris Lambie-Hanson and Assaf Rinot

Abstract. We derive a forcing axiom from the conjunction of square and diamond, and present a
few applications, primary among them being the existence of super-Souslin trees. It follows that for
every uncountable cardinal A, if A** is not a Mahlo cardinal in Gédel’s constructible universe, then
2% = A+ entails the existence of a A*-complete A**-Souslin tree.

1 Introduction

1.1 Trees

A tree is a partially ordered set (T, <) with the property that for every x € T, the
downward cone x| := {y € T | y <r x} is well-ordered by <r. The order type of
(xy, <) is denoted by ht(x), and the a-th level of the tree is the set

Ty :={x€T|ht(x) = a}.

The tree (T, <) is said to be y-complete if for every chain C ¢ T of size less than y,
there is x € T such that C < x, U {x}.

If « is a regular uncountable cardinal, then a x-Aronszajn tree is a tree of size x
having no chains or levels of size , and a k-Souslin tree is a tree of size x having no
chains or antichains of size k. As tree levels are antichains, any x-Souslin tree is a
x-Aronszajn tree.

In 1920, Mikhail Souslin [24] asked whether every ccc, dense, complete linear or-
dering with no endpoints is isomorphic to the real line. (Here, ccc is a consequence of
separability, asserting that every pairwise-disjoint family of open intervals is count-
able.) In [12], Kurepa showed that a negative answer to Souslin’s question is equivalent
to the existence of an X;-Souslin tree. Attempts to settle the question by constructing
an R;-Souslin tree proved unsuccessful but did lead to Aronszajn’s construction of an
R;-Aronszajn tree, which is described in [12]. The question remained open until it
was proved in [9,11,23,26] that, in contrast to the existence of ®;-Aronszajn trees, the
existence of R;-Souslin trees is independent of the usual axioms of set theory (ZFC).

As these objects proved incredibly useful and important, a systematic study of their
consistency and interrelation was carried out. Following standard conventions, we let
TP, stand for the nonexistence of k-Aronszajn trees (the tree property at x), SH, stand
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for the nonexistence of x-Souslin trees (the Souslin Hypothesis at k), and CH, stand
for 2* = A*. Two early results read as follows.

Theorem 1.1 (Specker [25]) For every cardinal A, CH} implies the failure of TP ++.
By a cardinal, we always mean an infinite cardinal.

Theorem 1.2 (Jensen [10]) In Gddel’s constructible universe, L, for every regular un-
countable cardinal x, the following are equivalent:

° TPK;

* SHy;

* « is a weakly compact cardinall.

We remind the reader that a cardinal x is weakly compact if and only if it is un-
countable and Ramsey’s theorem holds at the level of «, i.e., every graph of size «
contains a clique or an anticlique of size «.

Ever since Jensen’s result, the general belief has been that the consistency of SH,
for x of the form A** requires the consistency of a weakly compact cardinal. This
conjecture is supported by the following later results.

Theorem 1.3 (Mitchell and Silver [15])  The existence of a regular cardinal A for which
TPy++ holds is equiconsistent with the existence of a weakly compact cardinal. In partic-

ular, the consistency of a weakly compact cardinal gives the consistency of ~CH) together
with S HA++ .

Theorem 1.4 (Laver and Shelah [14])  For every cardinal A, if there is a weakly compact
cardinal above A, then there is a forcing extension by a A* -directed closed forcing notion
in which CH, and SH++ both hold.

Theorem 1.5 (Rinot [17]) For every cardinal A, if CH), CH,+, and SH)++ all hold,
then A** is a weakly compact cardinal in L.

Whether the hypotheses of Theorem 1.5 are mutually consistent, relative to any
large cardinal assumption, is a major open problem.

In this paper, we are interested in a possible converse for Theorem 1.4. As of now,
the best result in this direction gives a lower bound of an inaccessible cardinal. Recall
that a cardinal « is inaccessible if it is regular, uncountable, and strong limit, and Mahlo
ifit is inaccessible and has stationarily-many inaccessible cardinals below it. Note also
that any weakly compact cardinal has stationarily-many Mahlo cardinals below it.

Theorem 1.6 (Shelah and Stanley [20])  For every cardinal A, if CH) and SH)++ both
hold, then A** is an inaccessible cardinal in L.

Here, we establish the following theorem.

Theorem A  For every uncountable cardinal A, if CH, and SH)++ both hold, then A*™*
is a Mahlo cardinal in L.
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The following table provides a clear summary of these results.

Theorem A CH, |CH,+ [SH++ | lower bound upper bound
1.3 regular X v 4 weakly compact
L5 arbitrary v v v | weakly compact
1.4 arbitrary | v/ X 4 weakly compact
1.6 arbitrary v X 4 inaccessible
A uncountable | v X 4 Mahlo

1.2 Combinatorial Constructions

In order to prove Theorem A, we develop a general framework for carrying out com-
binatorial constructions. It turns out that, in this and other applications, it is often
desirable to be able to construct an object of size k™, where « is a regular uncountable
cardinal, using approximations to that object of size less than x. When one attempts
to carry out such a construction using only the axioms of ZFC, though, one naturally
runs into problems: the construction seems to require x* steps, but the approxima-
tions may become too large after only « steps.

The usual way to attempt to overcome this problem is to assume, in addition to
ZFC, certain nice combinatorial features of « or k*. One such feature, whose defini-
tion is motivated by precisely such constructions, is the existence of a (x,1)-morass
(see [4, $4] or [5, Chapter VIII]). Velleman [30] and Shelah and Stanley [20] present
frameworks for carrying out constructions of objects of size x* using a (x,1)-morass.
In both instances, these frameworks take the form of forcing axioms that turn out to
be equivalent to the existence of morasses.

Another combinatorial assumption that can be helpful in these constructions is
the existence of a diamond sequence. In a series of papers on models with second
order properties, culminating in a general treatment in [19], Shelah et al. developed a
technique for using ¢ () to build objects of size x* out of approximations of size < .
Ideas from these papers were used by Foreman, Magidor, and Shelah [7] to prove,
assuming the consistency of a huge cardinal, the consistency of the existence of an
ultrafilter U on w; such that |w®'/U| = ¥, and later by Foreman [6] to prove, again
assuming the consistency of a huge cardinal, the consistency of the existence of an
R;-dense ideal on R,.

In this paper, we present a framework for constructions of objects of size k™ using
¢(x) and 02, a weakening of O, that, unlike 0O, itself, is implied by the existence
of a (x,1)-morass. As in [20,30], our framework takes the form of a forcing axiom.
Specifically, in Section 2, we isolate a class of forcing notions P, introduce the notion
of a sharply dense system, and formulate a forcing axiom, SDFA (P, ), that asserts that
for every P from the class P, and every sequence (D; | i < k) of sharply dense systems,
there is a filter G on P that meets each D; everywhere.

The last two sections of the paper are devoted to the proof of the following theorem.

Theorem B For every regular uncountable cardinal x, if ¢ (x) and 02 both hold, then
so does SDFA(P,).
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In Section 3, we give a few simple applications of the forcing axiom SDFA (P, ). We
open by pointing out that the Cohen forcing Add(x, x*) is a member of the class P,.
Then we show that SDFA(P,) entails k¥ = x and 0. This has three consequences.
First, it shows that our square hypothesis in Theorem B is optimal.

Theorem B’ Suppose that « is a regular uncountable cardinal and (k) holds. Then
the following are equivalent:

 0F holds;

» SDFA(P,) holds.

Second, by Shelah’s theorem [18] stating that CH, entails ¢ (1*) for every uncount-
able cardinal A, it gives cases in which the diamond hypothesis is optimal, as well:

Theorem B"  For every successor cardinal k > ¥, the following are equivalent:

* (k) and O both hold;
» SDFA(P,) holds.

Third, it implies that SDFA (P, ) entails the existence of a strong stationary coding
set, i.e., a stationary subset of [x*]<* on which the map x — sup(x) is injective. This
is of interest because the existence of such a set was previously obtained by Shelah and
Stanley [21] from their forcing axiom S, (¢), which is equivalent to the existence of
a (x,1)-morass with a built-in diamond sequence, and later (though earlier in terms
of publication date) by Velleman [29] from the existence of a stationary simplified
(x,1)-morass.

Section 4 is dedicated to the study of super-Souslin trees. For a cardinal A, a A**-
super-Souslin tree is a A**-tree (T, <r) with a certain highly absolute combinatorial
property that ensures that (T, <r) has a A**-Souslin subtree in any ZFC extension
W of the universe V that satisfies " (1) = PV(1) and (A**)" = (A*)V. These
trees were introduced in a paper by Shelah and Stanley [20], where the existence of
super-Souslin trees provided the primary application of the forcing axiom isolated in
that paper. In particular, they proved that the existence of a A**-super-Souslin tree
follows from the existence of a (A*,1)-morass together with CH,. In [21,30] the same
hypotheses are shown to entail the existence of a A**-super-Souslin tree that is also
A*-complete. Here, we prove the following analogous result.

Theorem C  For every cardinal A, SDFA(P,+) entails the existence of a A -complete
A** -super-Souslin tree.

By Theorems B and C and the fact that for any super-Souslin tree (T, <r), there
exists some x € T such that (x', <1) is Souslin, we obtain the following corollary.

Corollary 1.7  For every cardinal A, if ¢(A*) and OY, both hold, then there is a
At -complete A**-Souslin tree.
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Recalling Jensen’s theorem [10] stating that if O, fails, then x* is a Mahlo cardinal
in L, and Shelah’s theorem [18] stating that CH, entails ¢(A1*) for every uncountable
cardinal A, we see that Theorem A follows from Corollary 1.

We also obtain a corollary concerning partition relations. Recall that, for ordinals
a, B, and y, the statement a — (3, y)? asserts that for every coloring c: [«]* — {0,1},
either there exists B C « of order type 8 that is 0-monochromatic, or there exists
C ¢ a of order type y that is 1-monochromatic. By a recent theorem of Raghavan and
Todorcevic [16], the existence of a k*-Souslin tree entails x* + (x*,log, () +2)?,
where log, (k") denotes the least cardinal v such that ¥” > x. We thus obtain the
following corollary.

Corollary 1.8  Suppose that A is an uncountable cardinal. If CH, and
A++ N (/1++)/1+ + 2)2
both hold, then A** is a Mahlo cardinal in L.

Note that by a theorem of Erdds and Rado, CH, entails A** — (A**, A* +1)2.
1.3 Notation and Conventions

If x is a set, 7 is a function, and x € dom(), then 7“x denotes the set {7(y) | y € x}.
We write c.0.i. as a shorthand for “continuous, order-preserving injection.” In particu-
lar, a c.0.i. is a map 7 from a set of ordinals into the ordinals such that 7 is continuous,
order-preserving, and injective, and, moreover, dom() is closed in its supremum.
Thus, when we write, for example, “m: y - «* is a c.0.1.”, it is implicit that y is closed
in its supremum. For ordinals 6 < y, let (4) := {Im(7) | m:6 - pisac.oil}sie., (4)
consists of all closed copies of 8 in y.

For a set of ordinals x, otp(x) denotes the order type of x and, for all i < otp(x),
x(i) denotes the unique element a of x such that otp(x N &) = i. We write

ssup(x) :==sup{a+1|aex}, acc(x):={aex|sup(xna)=a>0},
nacc(x) := x \ acc(x), acc’(x) == {a < ssup(x) | sup(x na) = a > 0},
c(x) = xuacc(x).

By convention, ssup(@) = sup(@) = 0. For sets of ordinals x and y, we write x C y
if and only if y is an end-extension of x, i.e., y N ssup(x) = x. For cardinals A <
wlet EY = {a < p | cf(a) = A}, let E¥, = {a < p | cf(a) < A}, let [p]** ==
{xcp||x| <A}, and let [u]* = {(a,B) | @ < B < u}. Also, let H, denote the
collection of all sets of hereditary cardinality less than .

Throughout the paper, « stands for an arbitrary regular uncountable cardinal. For
simplicity, the reader can assume that « = ;.

2 The Forcing Axiom

We begin by introducing the class P, of forcing notions that will be of interest.
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Definition 2.1 P, consists of all triples (IP, <p, Q) such that (P, <p) is a forcing
notion, 1p € Q € IP, and all of the following requirements hold.

(1) (Realms) For all p € P, there is a unique x, € [x*]*, which we refer to as the
realm of p. The map p ~ x, is a projection from (P, <p) to ([« ]**,2):
(@) x1, = &

(b) forall g <p p, we have x4 2 x,;
(c) forall pePand x € [« ] with x 2 x, there is g <p p with x4 = x.

(2) (Scope) Forall y ¢ «*,1letP, := {p e P | x, € y} and Q, := Q nP,. Then
Py = {1p} and P, € H,.

(3) (Actions of c.0.i.’s) For every y € x* and every c.oi. my — x*, mactson P, in
such a way that, for all p, g € IP,:

(@) m.pisin P with x; , = 7%, and if p € Q,, then 71.p is in Qs

(b) m.q <p m.pifand onlyif g <p p;

(c) if  is the identity map, then 7.p = p;

(d) ifn":y" - x* isa c.o.d. with Im(7) € 3/, then 7'.(m.p) = (7' o m).p;

(e) if n":y" - " isa co.i. with x, € y/, then 7} x,, = 7’ I x, implies that 77.p =
m'.p.

(4) (Restrictions) Forall p € Pand a < %, there is a unique <p-least condition r such
that x, = x, N & and p <p r. This condition r is referred to as p | «. Moreover:
(a) ifpeQ, thenplac@Q;

(b) ifg<p p,thengta <p pta.

(5) (Vertical limits) Suppose that & < « and (p, | < &) is a sequence of conditions
from P such that, for all 7 < 1" < & we have p, = p, t ssup(x,, ). Then there
is a unique condition p € P such that x, = U, x,, and, forall y < & p, =
p I ssup(x,, ). Moreover, if p, € Q for all 7 < &, then p € Q.

(6) (Sharpness) For all g € Q, x, is closed in its supremum. Moreover, for all p € P,
there is g <p p with x4 = cl(x,) such that g € Q.

(7) (Controlled closure) Suppose that & < x and (g, | n < &) is a decreasing sequence
of conditions from Q. Let x := U, Xq,. Suppose that & < ssup(x) and that
7 € Qgsup(xna) is @ lower bound for (g, ta | 7 < §). Then there is g € Q such that
(@) gtssup(xna)=r;

(b) x4 =cl(xrux);
(c) qisalower bound for (g, | 1 < ).

(8) (Amalgamation) For all p € Q, a < ssup(x,), and q € P, with g <p p }'a, we
have that p and g have a unique <p-greatest lower bound r. Moreover, it is the
case that x, = Xq UXp andrta = q.

We now introduce the class of families of dense sets that we will be interested in
meeting.

Definition 2.2 (Sharply dense set) Suppose that (P,<p,Q) € P, and D is a non-
empty subset of . Denote xp := N{x, | p € D}. We say that D is sharply dense if and
only if for every p € PP, there is g € D with g <p p such that x, = cl(x, U xp).
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Definition 2.3 (Sharply dense system) Suppose that (P, <p, Q) € P,. We say that
D c P(P) is a sharply dense system if and only if there exists an ordinal 65 < x such

that D is of the form {D, | x € (g;)}, where for all x € ((';;)

* D, is sharply dense with xp_ = x;

* for every p € P, and every c.o.i. m: y — x* with x € x, € y, we have p € D, if and
only if m.p € Dyx.

Definition 2.4 Suppose that (P, <p,Q) € P, and D is a sharply dense system. We
say that a filter G on P meets D everywhere if and only if, forall D € D, Gn D # @.

We are now ready to formulate our forcing axiom for sharply dense systems.

Definition 2.5 SDFA(P,) is the assertion that, for every (P, <p, Q) € P, and every
collection {D; | i < k} of sharply dense systems, there exists a filter G on IP such that,
for all i < x, G meets D; everywhere.

3 Applications

In this section we present a few applications of SDFA (P, ). First, let us point out two
features of members of the class P,.

Proposition 3.1 Suppose that (P, <p, Q) € P,.

(i) Then (Q, <p) is k-closed.

(ii) Forallx ¢ k*, denote D, := {q € Q| x4 2 x}. Thenforall 6 < «, {Dx | x € (%)}
is a sharply dense system.

Proof (i) Suppose that £ < x and § = (g, | # < &) is a decreasing sequence of
conditions from Q. Note that if x := U, ¢ x4, is empty, then 1p is a lower bound for
g» so we may assume that x is nonempty. Since 1p € Q and Py = {1p}, we infer from
clause (4) (of Definition 2.1) that {q, 10 | # < &} = Qg = {1p}. So, by clause (7), using
a := 0 and r := 1p, we infer that § admits a lower bound.

Part (ii) can be inferred from clauses (3a) and (6) of Definition 2.1. [ |

Next, we show that the actions of c.0.i.’s behave as expected with respect to the
restriction operation.

Proposition 3.2 Suppose that (P,<p,Q) € Py, p e P, a € xp, and my - «* isa
coi withx, €y Ccx®. Thenm.(pta) = (m.p) tm(a).

Proof Letr:=m.(pta). Since p <p p }a, clause (3b) (of Definition 2.1) implies that
7.p <p r. In addition, by clauses (2a) and (4), and since « € y, we have:
Xp =M %Xpra = 1 (xp N &) = %y N7a = 1%p N 71(&) = X7 N7 (ax).

This shows that r is a candidate for being (7.p) tn(«). To finish the proof, fix an
arbitrary q € P such that x; = x; ,Nn7(a) and 77.p <p q. We have to verify that r <p q.

Let 7’ := {(8,¢) | (&,8) € n}, so that 7’ is a c.o.i. and 7’ o w and 7 o 7’ are the
identity maps on their respective domains. Since 77.p <p q and x, € Im(7), and by
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clauses (3¢) and (3d), we have p = 7’.(7.p) <p n’.q. Moreover, X 4 = x, N &, s0,
by clause (4), p ta <p 7’.q. Now another application of clauses (3b) and (3¢) yields
r<pq. |

3.1 A Warm-up Example

Let us point out that P := Add(x, ") belongs to the class P,. Specifically, p € P if
and only if p is a function from a subset of k™ x x to 2 and [p| < k. Let p <p q if

and only if p 2 g. Let x, := { € «* | In[(B,%) € dom(p)]}. Let Q := {p € P |
xp = cl(x,)}. Whenever 7 is a c.o.i. from a subset of k™ to ™ and p € Pyqm(r), we let

m.p = {((n(B) ). i) | ((B1). i) € p}. Wealsolet p ta = {((B.1). ) € p | B < a).

The reader is now encouraged to verify that, with this definition, (P, <p, Q) € P,.
3.2 Cardinal Arithmetic

In this subsection, we identify a simple member of P, and use it to prove that
SDFA(P,) implies ¥ = .

Definition 3.3 P consists of all pairs p = (x, f) such that the following hold:

(1) xe[x"]

(2) f is a function satisfying

(@) |f<x
(b) dom(f) € x x x;

(©) f(B,n)cBnxforall (B,4) € dom(f).

The coordinates of a condition p € IP will often be identified as x,, and f,, respec-
tively.

Definition 3.4 Forall p,q € P, welet q <p p ifand only if x; 2 x, and f; 2 f,.
Definition 3.5 Q:={peP|x,=cl(xp)}.

Definition 3.6  Suppose that 7 is a c.0.i. from a subset of x* to k™. For each p «
Pdom(x)> We let 7. p be the condition (x, f) such that

(D) x=7m"%p;

@) f=A{(=(B): ), 7°2) [ ((B.n)2) € f}-

Definition 3.7  Suppose that p € P and a < x*. Then we define p '« to be the
condition (x, f) such that

D x=xpna;

@) f={((Bm):2) € fp | B < a}.

It is readily verified that, with these definitions, (P, <p, Q) is a member of P,.

Theorem 3.8  Suppose k** > k. Then (P, <p, Q) witnesses that SDFA(P,) fails.

Proof We commence with a simple observation.
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Claim 3.8.1 'There exists a cardinal A < « for which |(;)| > K.

Proof Since « is regular, we have k<* = 3, ., A*. So, since x* > x* and x* is regular,
we can fix a cardinal A < « such that A* > x*. For every A ¢ A, let

Ca=acc(A)u{a+1]acA}.

Then A ~ C, is an injection from P(1) to (j\\), and we are done. ]

Fix a cardinal A < « such that |(;)| > k. For each x ¢ (f:l), let D, be the set of all
conditions (xy, f,) € P satisfying
* X C Xp;
* there is 7 < x with (max(x), #) € dom(f,) such that

fp(max(x),#) = x nmax(x).

Evidently, D := {Dy | x € ( /\":1)} is a sharply dense system.

Towards a contradiction, suppose that SDFA (P, ) holds. In particular, there exists
afilter G on PP that meets D everywhere. Let f := U,cq fp so that f is a function from
a (possibly proper) subset of k* x x to P(x*). Put

A={f(An)|3n<«x[(A,n)edom(f)]}.

Clearly, |A| < . Finally, let C (i) be arbitrary. Since C U {1} € ( f:l), we have

G N Dcuqay # @, and hence C € A. It follows that (:\\) € A, contradicting the fact that

()] > x> Al [

Corollary 3.9 SDFA(P,) entails x** = .

3.3 Baumgartner’s Square

In unpublished work, Baumgartner introduced the principle 0, which is a natural
weakening of Jensen’s O, principle.

Definition 3.10 A O3 -sequence is a sequence (Cg | B € I') that satisfies

(1) EX cTcace(x);
(2) forall €T, Cgis club in 8 and otp(Cp) < «;
(3) forall feT andall a € acc(Cp), we have « € ['and Cy = Cg N a.

The principle 0 asserts the existence of a 02 -sequence.!

Some basic facts about 0F can be found in [30], where it goes by the name
“weak 0O,” In particular, it is shown in [30] that O follows from the existence of
a (x,1)-morass.

Theorem 3.11  Suppose that SDFA(P,) holds. Then so does 002,

INote that 02 is equivalent to the principle O (k*, £, ) from [1, §1].
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The rest of this subsection is devoted to proving Theorem 3.11. We must first iden-
tify a relevant member of P, which will be a slight modification of the poset used to
add 02 in [30, §1.3].

Definition 3.12 P consists of all pairs p = (x, f) satisfying the following:
(1) xe[xt]™
(2) f isa function from x to P(x) such that for all § € x:

(a) f(B)isaclosed subset of 3 (we say that c is a closed subset of 3 if and only if
ccpfandforeverya<pf,cna# @ = sup(cna)€c)

(b) forall a € acc(f(f)), we have f(a) = f(f) na.

The coordinates of a condition p € IP will often be identified as x;, and f,, respec-
tively.

Definition 3.13 Forall p,q € P, welet q <p p if and only if:

. f(fr:ill %’e xp, we have f,(B) € f5(B);
» forall B € x,, if sup(x, N B) = B, then f,(B) = f,(B).

Definition 3.14 Q is the set of all conditions p € IP such that

(1) xp=cl(xp);
(2) forall B € nacc(xp) \ {min(x,)}, we have max(f,(f)) = max(x, n f3).

In order to show that (P, <p,Q) € P,, we must define the actions of c.0.i.’s on P
and a restriction operation.

Definition 3.15 Suppose that 7 is a c.0.i. from a subset of k* to x*. For each p €
Pgom (x> We define 7.p to be the condition (x, f) € P such that

(1) x=7m"xp;
(2) forall o € xp, we have f(m(a)) = 7“fp ().

Definition 3.16 Suppose that p € Pand a < k™. Then p  « is the condition (x, f) €
Psuch that x = x, naand f = f,  x.

Naturally, for each p € P, we let x,, denote the realm of p. With these definitions, it
is immediate that (P, <p, Q) satisfies clauses (1)-(5) of Definition 2.1. We now verify
clauses (6)-(8), in order.

Lemma 3.17  If p € P, then there is q € Q with q <p p such that x4 = cl(x,).

Proof Set x, := cl(x, ), so that nacc(x,) = nacc(x,) and acc(xy) 2 acc(x,). Next,
define f: x4 - P(x4) by

fp(a) u{max(xs na)} ifaenacc(xy) \ {min(xy)},
fq((x) =10 if(xexq \ Xp,
fo(@) otherwise.
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It is clear that g := (x4, f;) is as desired. ]

Lemma 3.18  Suppose that & < k and (q, | n < §) is a decreasing sequence of condi-
tions from Q. Let x := Uy<¢ x4, and suppose that a < ssup(x) and r € Qqsup(xna) is @
lower bound for (q, ta | n < &). Then there is q € Q such that

(1) gtssup(xna)=r;

(2) x4 =cl(x, Ux);

(3) q is a lower bound for (q, | n < &).

Proof We will construct a condition g = (x4, f;) as desired. We are required to let
x4 = cl(x, U x) and to ensure that f; [ x, := f,. As x, E xg, it remains to determine
fq P (xq N ssup(x na)). We will define f,(8) by recursion on 8 € (x4 \ ssup(x N «)),
maintaining the hypothesis that (x,n(+1), f; I (8+1)) isan element of Q and a lower
bound for (g, t (8 +1) | n < &). For notational ease, if 8 € nacc(x,) \ {min(x4)},
then let B~ := max(x, N B).

» If B € acc(x), then fix 5 < Esuchthat e Xqy,0 andlet f3(B) := Uyeln,,8) fg,(B)-
There are two possibilities to consider here. Ifthereis * € [, §) such that sup(x,,. N
B) = B, then it follows from Definition 3.13 that f,(B) = fg,. (B)-

If, on the other hand, there is no such #*, then the fact that each x,, is closed
in its supremum implies that, for all # € [#g, £), we have 8 € nacc(x,,) and hence
max(fg, (B)) = max(x,, N p). Since B € acc(x), it then follows that f,(f) is club
in 8.

» If f € acc™(x) \ x, then let y := min(x \ (B +1)). Thereis g < & such that for all
1 €[np, &), wehave y € x4, and x4, N B # @. For all such 7, let §, := max(xg, N ). It
follows that sup{d, | # € 13, &)} = B and, for all 7 € [, ), we have max(f,, (y)) =
8. We can therefore let f5(B) := Uye(n,, &) fa, (¥)-

» If B € nacc(x) and 8~ ¢ x, then, by the construction in the previous case, we
have f,(B7) = Uy<t fg, (B). We can therefore let f, () := f,(B7) u{B~}.

» If B € nacc(x) and B~ € x, then there is 75 < & such that {8,587} ¢ x,, . But
then, for all 7 € [#, &), we have f;, (B) = fq”ﬁ (B) and max(f,,(B)) = B~ We can

therefore let f, () = fq”ﬁ (B).

It is easily verified that g, constructed in this manner, is as desired. |

Lemma 3.19  Suppose that p € Q, « < ssup(x,), g € Po, and q <p p to. Then p and
q have a <p-greatest lower bound, r. Moreover, we have x, = x, Uxq and r fa = q.

Proof Let x, = x, U x4, so that x, N & = x4. Define f,:x, - P(x,) by

_JJa(B) ifp<a
$(B) = {fp([S) otherwise.

To see that r := (x,, f,) is a condition, we fix arbitrary 8 € x, and y € acc(f,(f)),
and verify that f,(y) = f,(f) ny. To avoid trivialities, suppose that § > a > y. Since
fr(B) = fp(B) € xp, we have sup(x, Ny) = y, so, since g <p p }'a, we infer that

fa) = £ (y) = fp(B)ysice, fr(y) = fr(B) Ny

It is now readily checked that r has the desired properties. ]
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It follows that (IP,<p,Q) € Py. For each x ¢ (K;), let D, == {p e Q| xp 2 x}.
By Proposition 3.1(ii), D := {Dy | x € (K3 )} is a sharply dense system, so we can
apply SDFA(P,) to obtain a filter G on PP that meets D everywhere. For all 8 € Ef,
let Cp := U{fp(B) | p € G, B € x,}. Note that for all p € G and 8 € x, we have

(Bl < lxp| <.

Claim 3.20 Suppose that 3,y € E,’f. Then the following hold.
(i) Cgisclubin f and otp(Cg) = &;
(ii) Forall a € acc(Cp) nacc(Cy), we have Cgna = Cy N a.

Proof (i) By the definition of P and the fact that G is a filter, it follows that Cg is
a subset of f3, closed in its supremum, such that every proper initial segment of Cg
has size < «. It thus suffices to verify that Cs is unbounded in . To this end, fix
a < f. Since G meets D everywhere, we can find p € G N Dy, g g1y Since cf (B) =
and |x,| < «, we have 8 € nacc(x,). Therefore, since p € Q, we have max(f,(f)) =
max(x, N f) > a,s0 Cg N [a,B) # 2.

(ii) Given & € acc(Cg) Nnacc(Cy ), we fix p € G N Dyq,4,,)- As in the previous case,
we have max(f,(f)) > « and max(f,(y)) > a. Consequently, Cg na = f,(f) N«
and C, na = f,(y) N . By the definition of IP, it then follows that Cs n & = f,(a) =
Cyna. |

LetT := EX U U{acc(Cp) | B € EX"}. Foreacha € T\ EX', find § € EX" such that
« € acc(Cp), and let Cy := Cg N «. By the preceding Claim, this is independent of the
choice of B. It follows that (C, | & € T} is a 02 -sequence, thus completing the proof
of Theorem 3.11.

3.4 Strong Stationary Coding Sets

In [21], Shelah and Stanley derive a stationary coding set from the existence of a
(%,1)-morass with built-in ¢. Specifically, they obtain a stationary subset 8 of [«*]<*
on which the map x — sup(x) is one-to-one. By Theorem 3.11 and the next proposi-
tion, this also follows from the forcing axiom SDFA(P,).

Proposition 3.21 (Folklore) If002 holds, then there exists a stationary subset of [k ]
on which the map x — sup(x) is one-to-one.

Proof Let(Cp|p €T)beanf-sequence. Enlarge it to a sequence C = (Cg | B < k)
by letting, for all limit 8 € x \ T, Cg be an arbitrary club in § of order type cf(3), and
letting Cp.q := {f} forall f < x.

Let p:[k*]? > « denote the associated maximal weight function from [27, §6.2].
For each f < «*, let pig: f —  denote the fiber map p{*( -, 3). Note that
o forall B < «*, pig[Cg] = otp(Cp);
o forall B < «*, pip is (< k)-to-1;
» forall B €T and « € acc(Cg), we have pio € pyp.
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In particular, for every 3 € Eﬁ;, we have that

xp = (p1p) " [otp(Cp)]

is a cofinal subset of f of size < k. Thus, we are left with proving the following claim.
Claim 3.22 {xp|fe EX'} is stationary in [k*]<*.

Proof Given a function f:[«*]<“ — «*, let us fix some y € EX such that f“[y]< c
y. Define g: ¥ — « by letting

g(e) = sup(ply“f“[pl_yl[e]]<“’) forall & < k.

Fix e € acc(x) such that g[e] € €. Put 8 := C, (¢), so that otp(Cg) = eand pyg S py,.
To see that f“[x]<“ ¢ xp,let{a; | i < n} € [xg]“ bearbitrary. Since x5 = (p15) '[€]
and pig € p1y, we have

{pry(ai) [ i <n}={pip(a;) [ i <n}e[e].

Fix a large enough ¢ < e such that {«; | i < n} € [pl‘yl[s]]“”. Since g(¢) < €, we then

have f({a; |i<n}) € xp. u
This completes the proof of Proposition 3.21. ]

Note that, by [8, §3], strong stationary coding sets can be seen as a GCH-free ver-
sion of ¢. For more information on stationary coding sets, see [31].

4 Super-Souslin Trees

Throughout this section, A denotes an arbitrary cardinal.

The notion of a A**-super-Souslin tree was isolated by Shelah in response to work
by Laver on trees with ascent paths. Ascent paths provide obstacles to a tree being
special; super-Souslin trees are designed to present a similar obstacle that entails the
existence not only of a nonspecial tree but of a Souslin one. In Subsection 4.1, we
provide, as a means of helping to motivate and provide context for the definition of
super-Souslin trees, some remarks on the connection between these notions. In Sub-
section 4.2, we will prove the following theorem.

Theorem C  Suppose that SDFA(P,+) holds. Then there exists a A*-complete A*™-
super-Souslin tree.

4.1 Introduction to Super-Souslin Trees

A tree (T,<r) is said to be a k-tree if for every a < «, T, is a nonempty set of size
less than x and T, = @. The tree is said to be splitting if every node in the tree admits
at least two immediate successors. It is said to be normal if, for all @ < 8 < x and all
u € Ty, there is v € Tg such that u <7 v. It is said to be Hausdor(f if for all limit a < «
and all u,v € Ty, the equality 4, = v, implies u = v. For convenience, we will not
require that a tree be Hausdorff. Note, however, that any splitting (resp. normal) tree
(T, <) can easily be turned into a splitting (resp. normal) Hausdorff tree (T’, <1)
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by shifting all levels T, to be T..; and, for limit a < «, letting T/ consist of unique
limits of all branches through U p<a Tp that are continued in Tj.

Definition 4.1 Let 6 be an arbitrary cardinal. For each a < , let T? denote the
collection of all injections a: @ — T,. Let T denote Uq., TY.

An element of T? will be referred to as a 6-level sequence from T (or, simply, a level
sequence from T). For a,b € TY, we abuse notation and write a <r b if and only if ,
foralli < 0, a(i) <r b(i). Likewise, a < b ifand onlyif a(i) <r b(i) forall i < 6.

Definition 4.2 [T°]?:={(a,b) e T® x T | a <1 b}.

Definition 4.3 (Shelah [20]) A A**-super-Souslin tree is a normal, splitting
A**-tree (T, <r) for which there exists a function F:[T*]*> — A* satisfying the fol-
lowing condition: for all a, b, c € T* with a <1 b, ¢, if F(a,b) = F(a, c), then there is
i < A such that b(i) and c(i) are <r-comparable.

Fact 4.4 (Shelah [20]) Suppose (T,<r) is a A**-super-Souslin tree. If W is an outer
model of V with the same P()) and A*™, then, in W, there exists some x € T such that
(x',<r) is a A**-Souslin tree.

The next lemma shows that the two-dimensional function F witnessing that a tree
(T, <r) is A**-super-Souslin cannot be replaced by a one-dimensional function.

Lemma 4.5 Suppose that (T, <r) is a normal splitting k-tree, and 0, y are cardinals
less than « (e.g., k = A+, u = A*, and 0 = ).) There exists no function F: T® — u such
that, for every a,b € T®, if F(a) = F(b), then there is i < 0 such that a(i) and b(i)
are <p-comparable.

Proof Suppose for sake of contradiction that there is such a function F. We first
argue that (T, <) is a k-Souslin tree.

Claim 4.5.1 Suppose W is an outer model of V in which « is not collapsed. Then
(T, <7) is a x-Souslin tree in W.

Proof Workin V. As the proof of [3, Claim A.71] makes clear, the fact that (T, <)
is normal and splitting implies that for every u € T, we can find some a, € T? such
that u <7 a,(i) for all i < 8. Next, let us work in W, where W is an outer model
of V in which « is not collapsed. Since (T,<r) is a splitting x-tree, to show that
(T, <7) is x-Souslin, it suffices to show that it has no antichains of size k. Towards a
contradiction, suppose that U := {u, | @ < k} is an antichain. While it is possible
that U € W \ V, we nevertheless have {a,, | « < x} € V. Since « is not collapsed,
we can find ordinals & < 8 < & such that F(ay,) = F(ay,). Pick i < 6 such that
ay, (i) and a, (i) are <r-comparable. Then u, and ug are <r-comparable. This is a
contradiction. ]
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Now force over V with the forcing notion P := (T, >r) (i.e., the order of P is the
reverse of the tree order). As (T, <) is a k-Souslin tree in V, we have that IP has the
k-c.c. and does not collapse x. Therefore, the preceding claim implies that (T, <r)
is a k-Souslin tree in V¥, contradicting the fact that > adds a cofinal branch through
(T, <r). |

The next lemma shows that the range of the function F witnessing that a tree
(T,<r) is A**-super-Souslin cannot be smaller than A*. In particular, there is no
straightforward generalization of the notion of super-Souslin tree to inaccessible car-
dinals.

Lemma 4.6 Suppose that (T, <r) is a normal, splitting k-tree, and 0, y are cardinals
less than k. If u* < «, then there exists no function F:[T°]? — yu such that, for all
a,b,c e T® with a <t b,c, if F(a,b) = F(a,c), then there is i < 0 such that b(i) and
c(i) are <r-comparable.

Proof Suppose that F is a counterexample. Fix an arbitrary a € T?. As the proof of
[3, Claim A.7.1] makes clear, the fact that (T, <r) is normal and splitting implies that
there exists some large enough 8 < x and an injection b: u* x 6 — Tj such that for all
n<wu*andalli<6,a(i) <r b(n,i). Foreachn < u*,define b,: 6 — Tj by stipulating
by (i) :=b(#n,i). Now, findn < { < u* suchthat F(a, b,) = F(a, b;). Then there must
exist some i < 6 such that b, (i) and b¢ (i) are <r-comparable, contradicting the fact
that b, (i) and b¢ (i) are two distinct elements of Tg. [ |

Now, we move on to deal with the notion of an ascent path.

Definition 4.7 (Laver) Suppose that 6 is a cardinal < « and J is a family sat-
isfying 6 € F < P(0). An F-ascent path through a x-tree (T,<r) is a sequence
f={f«a| & <x)suchthatforall a < < «:

(1) fq isafunction from 0 to T,;

@ {i <01 fuli) <r fo(i)} €.

Definition 4.8  For every cardinal 6, write Fi" := {Z c 0 | |0 \ Z| < w}, F5¢ ==
{Zc6|sup(O\ Z)<0},and Fg := P(0) ~ {@}.

By [22],if (T, <r) is a special A*-tree that admits an F5%-ascent path, then cf () =
cf(A). By [28],if A is regular and (T, <r) is a special A*-tree that admits an Fp-ascent
path, then 6 = A. A construction of a special A*-tree with an S"Ef( »)-ascent path may

be found in [13]. Constructions of k-Souslin trees with F1i"-ascent paths may be found
in [3].

Proposition 4.9 (Folklore) Any A**-super-Souslin tree (T, <r) admits an F) -ascent
path.

Proof Suppose (T,<r) isa A**-super-Souslin tree and F:[T*]? - A* is a witness-
ing map. Fix an arbitrary a € T*. Let € be such that @ € T?. By normality of
(T,<r), for each f € A** \ €, we may fix ag € Tg with a <7 ag. Pick a cofinal
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subset B € A** \ € on which the map 8 = F(a, ag) is constant. Then (ag | § € B)

induces an Fy-ascent path f = (f, | & < A**), as follows. For every & < A**, let
B(a) := min(B \ «), and define f,: A — T, by letting f, (i) be the unique element of
T, such that fo (i) <T ag(a)(i). [ |

Aiming for an F24-ascent path, one may want to strengthen Definition 4.3 to assert
that for all a, b, c € T* with a <7 b, ¢, if F(a,b) = F(a, c), then

I(b,c):= {i <A|b(i)and c(i) are <T—comparable}

is in 5. However, this is impossible, by the following result.

Lemma 4.10  Suppose (T, <r) is a normal, splitting A\**-tree, F:[T*]* - A*, and F
is a proper filter on A. Then there are (a,b), (a, ¢) € [T*]? with F(a, b) = F(a, c) such
that I(b,c) ¢ F.

Proof Towards a contradiction, suppose that for all (a,b),(a,c) € [T*]? with
F(a,b) = F(a,c), we have I(b,c) € F. Foralla e T* and 5 < A*, let U, := {b ¢
T' |a <r byand U] = {b € U, | F(a,b) = }. Now, fix some a € T* arbitrarily,
and, for every 1 < A%, let U" := {b € U, | U, n U/ # @} be the downward closure of
U within U,.

Claim 4.10.1 Suppose that 5 < A* and b, c € U". Then I(b,c) € F.

Proof Pick b’ € U, n U, and ¢’ € U, n U.. Since F(a,b’) = # = F(a,c’), and by
assumption, we have that I(b’, ¢’) € J.

Let 3,5, 7,y  besuch that b € T}, b’ e T[;‘,, ceT) and (' e T)f‘,. Without loss of
generality, 8’ < y’. Now, there are two relevant configurations of the other ordinals to
consider.

Case 1: B < B/ < y. In this case, for all i € I(b’,¢"), we have b(i) <r b’(i) and
b'(i),c(i) <7 ¢'(i), so b(i) and c(i) are <r-comparable.

Case 2: 3,y < 8'. In this case, for all i € I(b’,c"), we have b(i), c(i) <r b'(i) and
again, b(i) and c(i) are <r-comparable. [ |

For any two distinct ordinals 7, { below A*, let §,, ; denote the least ordinal & below

A** such that there are b € U n T} and ¢ € U n T} for which I(b, ¢) = @, if such an
ordinal exists; otherwise, leave d, ; undefined.

Claim 4.10.2  Suppose 8, ¢ is defined. Then U n U® c U{TéL | B <8yt

Proof Towards a contradiction, suppose that d € U" n U¢ n Tg for some B > 6, ;.
Since U and U* are downward closed, we can simply assume that 8 = O.¢

Using the fact that f = 8, ¢, fixb e U"n T} and c € U’ Té such that I(b, ¢) = @.
By Claim 4.10.1, since b,d € U" and ¢, d € U*, we have that I(b,d) and I(c, d) are in
F. In particular, I(b,d) nI(c,d) # @, contradicting the fact that I(b, ¢) = @. [ |
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As AT < A%, let B < A** be large enough so that, if #, { are two distinct ordinals
below A" and §, ¢ is defined, then §, ; < B. By increasing f3 if necessary, we can
assume that U, N Té‘ #@. Fixd e U, n T;. By the fact that (T, <) is splitting, for
each i < A we can fix eo (i) # e;(i), both in Tg,y, with d(i) <1 eg(i),ei(i). Let 7 :=
F(a,eo) and { := F(a, e;). Clearly, I(ep,e;) = &, so that §, . is defined. So, by our
choice of B, we have §, < . However, since d <1 e, e;, we have d € U n Uén T[é,
contradicting Claim 4.10.2. ]

4.2 Proof of Theorem C

The rest of this section is devoted to proving Theorem C. We will define a poset
(P, <p, Q) € Py+ and acollection {D; | i < A*} of sharply dense systems such that any
filter that meets each D; everywhere gives rise to a A*-complete A**-super-Souslin
tree. We intend to construct a tree (T, <r) with underlying set A** x A*, such that,
furthermore, T, = {a} x A* for all « < A**. We start by defining P.

Definition 4.11 P consists of all quintuples p = (x,<°, ¢, <!, f) satisfying the fol-

lowing requirements.

1) xe[AHH]A

(2) <Y is a partial ordering on x such that for all § € x, predg (B) ={aex|a<®B}
is a closed subset of 3 that is well-ordered by <°.

(3) te[xxA*]*". In a slight abuse of notation and anticipating the generic object,
for all & € x, we let t, denote t n ({a} x A*) and ¢} denote the set of injective
functions from A to t,. For each a in t} := Uy, t}, we let Lev(a) denote the
unique ordinal a such that a € 1.

(4) <!is a tree order on f such that, for all § € x and all v € tg, letting pred;(v) =
{uet|u<'v}, wehave {(x €x| pred})(v) Nty # @} = predg(ﬁ). Let [t1]? :=
{(a,b) | a,b € t},a <' b}, where for a,b € t}, we write a <' b if and only if
a(i) <" b(i) foralli< A

(5) f isa partial function from [t*]? to [A*]*" \ {@} and |f] < A.

(6) Suppose that (a,b), (a,c) € dom(f). If f(a,b) n f(a,c) # @ and Lev(b) <°
Lev(c), then [{i < A | b(i) <! c(i)}| = A.

(7) Forall (a,c) € dom(f) and all b € t* such that a <! b <! ¢, we have (a,b) €

dom(f) and f(a,b) 2 f(a,c).

The coordinates of a condition p € P will often be identified as x,, <2, tps <},, and
fp» respectively.

Definition 4.12 For all p, g € P, we let q <p p if and only if the following hold:

U

(] xqup; o < <:;
< <i;

° tqgtp; .

« dom(f,) 2 dom(f, )
e forall (a,b) € dom(f,), we have f,(a,b) 2 fy(a,b).

1S}

0
q
1
q

ST o
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Definition 4.13 Q is the set of all conditions p € IP such that

(1) xp=cl(xp);
2) <g is the usual ordinal ordering on x,,.

We now show that (P, <p, Q) is in P,+. For p € P, x,, is the realm of p. We next
describe how c.o.i.’s act on IP. In order to make it easier to refer to and manipulate
level sequences in our conditions, we introduce the following notation.

Notation 4.14 By SDFA(P,+) and Corollary 3.9, CH, holds. Therefore, we can let
(05 | 8 < A*) injectively enumerate *A*. Forall @ < A** and § < A*, let a, 5:1 —
{a} x A* be defined by stipulating a, 5(i) := (&, 05(i)). Note that every level se-
quence in our desired tree (T, <) will be of the form a, s for a unique pair («, 8) €
AT AT

Definition 4.15 Suppose that 7 is a c.0.i. from a subset of A** to A**. For each
P € Paom(x)» we define 7.p to be the condition (x, <%, t,<', f) € P such that

(D) x=m"%p;

@) <"={(n(a),7(B)) | (@ B) e<p}s

() t={(m(a), n) | (@ n) e tp};

@) <= {((x(@), n), (m(B), ) | ((@> 1), (B, €)) €< }s

(5) f = {((aﬂ(oc),&’ an(ﬁ),E)’Z) | ((aa,§> aﬁ,e)’z) € fp}

Finally, we describe the restriction operation.

Definition 4.16 Suppose that p € Pand a < A**. Then p } « is the condition (x, <°

,t, <!, f) such that
* X =Xxp,Na;
. <°:<g nxZ;
s t=t,n(axA");
o =< nt%

f={U(ab).2) e fp | (a,b) e [t']*}.

With these definitions, it follows easily that (P, <p, Q) satisfies clauses (1)-(5) of
Definition 2.1. We now verify clauses (6)-(8), in order.

Lemma 4.17  Suppose p € P. Then there is g € Q with q <p p such that x4 = cl(x,).

Proof We need to define g = (x4, <2, tg,<y» fp). Of course, we let x, := cl(x,) and
let < be the usual ordinal ordering on x,. Thus, the main task is in finding suitable
tg> <q and fq. Our strategy is to define the first two and then derive f; by minimally
extending f, so as to satisfy Definition 4.11(7). To be precise, once ¢, and <1q are
determined, we will let

dom(fy) = dom(f,)
u{(a,b)e [t;}]2 | ce t;}(a <}1 b <11 cand (a,c) edom(f,)) },
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and for all (a, b) € dom( f;), we will let

fq(a,b) = fy(a,b) uU{fp(a,c) | (a,¢) e dom(f,) and a <; b <}1 c}.

We now turn to defining ¢, and <1 to ensure that clauses (4) and (6) of Defini-
tion 4.11 hold. By our intended deﬁnltlon of f, and < , these clauses dictate that, for
all B € x4 and a € x4 N (B + 1), the following hold:

(4") forallv € (t4)p, there is some u € (t;)q with u S; v;
(6") for all (a,b),(a,c) € dom(f,) with f,(a,b) n f,(a,c) # @,if b € (t,)} and
ce (tp);‘;,then [{i <A [b(i) <gc(i)}] =

In order to satisfy clause (4'), it is possible that we will have to add new nodes to
tg» i.e., that £y \ t, # @. However, we will do so in such a way that each element of
tq N t, will be a <}1-predecessor of an element of t,. Consequently, to define t; and
<i» it suffices to specify predz(v) forallvet,.

Now, by recursion on 8 € x,, we define pred;(v) for all v € (t,)p in a way that
ensures that clauses (4') and (6') hold for all & € x4, N (B +1). Suppose that 8 € x,
and, for all « € x, N 3, we have specified pred;(u) for every u € (t,)q. Let t.g denote
the underlying set of the tree we have defined thus far, i.e.,

u ( pred;(u) u{u}).

aex,NPue(ty)a

If predg( B) = @ and v € (t,)p, then let B be a maximal branch through ¢.g. It
might be the case that B is bounded below f, i.e., there is y € x, N 8 with Bn ({y} x
A*) = @. If this is the case, then, for each such y, add a new element from {y} x A* to
ty and require that these new elements, together with B, form a branch whose levels
are unbounded in x; N B. Let this unbounded branch be denoted by B*, and set

pred1 (v) := B*.
If pred (B) is unbounded in 3, then, forall v € (¢, )g, we are obliged to let pred (v)

be precisely Uuepred, () (pred, (u) U {u}).
It remains to consider the case in which pred () is nonempty and bounded in f.

Put §’ := sup(pred0 (B)). Since pred (B)isa closed nonempty subset of 3, we have
B’ € x,. If there is no y € x,, with ﬁ <y < B, then, for all v € (t,)p, we are again
obliged to let pred;(v) = Usepred! () (pred;(u) U {u}). Thus, from now on, suppose
that x, 1 (8',) £ 2.

Let ((ag, be, ce) | € < A) enumerate all triples (a, b, ¢) such that
* (a,b),(a,c) edom(f,);
s fp(a,b) N fp(a,c) # 25
°ce (tp)g and there is a € x, n (', B) such that b € (£,)2.
Moreover, assume that each such triple is enumerated as (a,, be, ¢,) for \-many € < A.
(If there are no such triples, then simply define pred; (v) arbitrarily for each v € (,)p
subject to the constraint pred; (v)2 pred; (v).)

https://doi.org/10.4153/CJM-2017-058-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-058-2

456 C. Lambie-Hanson and A. Rinot

Now, by recursion on € < A, we choose nodes v € (t,)s and specify pred;(w).
Suppose that £ < A and we have chosen v, and predfl (ver) forall &' < €. Consider the
triple (ae, b, Cg).

Suppose first that ap € (t,). We have that, for all i < A, a,(i) <}, be(i), ce(i).
In p?rtlcul.ar, since ﬁ": max(predg ([3)), we have, for all i < A, pl‘?d;(bg(l)) =)
pred,, (c(i)). Choosei < Asuchthatce(i) ¢ {ve | €' < €},setve :=ce(i),andlet Bbe
a maximal branch through g with b, (i) € B. As in the case in which pred;),( B) =2,
extend B, by adding nodes if necessary, to a branch B* whose levels are unbounded
in x4 N B, and set pred}i(w) := B*,

Suppose next that ap € (t,)p. Let ¢’ € (tp)?;, be the unique level sequence such

1

that a, <p

¢’ <}, ce. Since p € P, we have

(ae.c’) edom(f,) and fy(ae c) 2 fp(ae, ce).

In particular, f,(ae,c") N f,(ae, be) # @, so, by our inductive hypothesis, we know
that, for A\-many i < A, we have ¢’(i) <j be(i). Choose such an i with c,(i) ¢
{ver | € < £} and let v, := ¢,(i). As in the previous case, by adding nodes if nec-
essary, fix a branch B* whose levels are unbounded in x4 N  with b, (i) € B*, and set
pred;(w) = B*.

At the end of this process, if there are nodesin (t,) g\ {v¢ | € < A}, then assign their
<1q-predecessors arbitrarily. We must verify that we have maintained the inductive
hypothesis. To this end, fix (g, b, ¢) such that

* (a,b),(a,c) edom(fp);
s fr(a,b)nfp(a,c) 25

°ce (tp)?; and there is a € x, N B such that b € (,)%.

Suppose first that « < f’. This implies that a € (tp)i/;,. Therefore, we can let
¢ e (tp)?g, be the unique level sequence such that a <}, c <}, c. Then fy(a,c") 2
fp(a, c), so, by the inductive hypothesis applied at ', we have that, for \-many i < A,
b(i) <} ¢ (i) <j ¢(i), so we are done.

Next, suppose 8’ < a < f. In this case, for A-many £ < A, we have (a,b,¢) =
(ae, be, ce). For each such ¢, at stage € of the construction, we chose a distinct i < A
and ensured that b, (i) <£I ce(i), so, for A-many i < A, we have b(i) < c(i), as
desired. [ ]

Lemma 4.18  Suppose that & < A and (q,, | n < &) is a decreasing sequence from Q.
Let x = Uy<¢ xg,. Suppose that o < ssup(x) and that r € Qgeup(xna) is @ lower bound
for (qy ta | n < &). Then there is q € Q such that

* qis a lower bound for (q, | n < &);

e gissup(xna)=r;

o x4 =c(x, Ux).

Proof x,and <2 are determined by the requirements of the lemma. We now specify
tg» <}], and f,. We must let g } ssup(x N «) = r, so we only deal with the parts of t,,
<11, and f, related to levels at ssup(x N «) or higher.
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Fix B € x, N ssup(x na). If B € x, then let (¢,)p = Uy<s(tq,)p- If B # x, then let
yi=min(x « B), and let (tg)g = {(8:0) | (1) € Upee(far)y -

We define <1q by specifying pred;(v) for all v € t,. This is already done for all
v € (tg)<ssup(xna)- We take care of the v € (f4)sssup(xna) Dy recursion on the 8 € x,
such that v € (4)g. Thus, suppose f3 € x4 \ssup(xNa), and we have defined pred;(u)
forall u € (t4)<p.

Suppose first that f ¢ x, and let y := min(x \ B). If v = (B,{) € (tg)p, let v’ :=
(9, ¢) € (t4)y and let predz (v) be the <} -downward closure of U, pred;ﬂ (v").

Suppose next that f € x and ' := sup(x, N ) ¢ x. If v = (B, () € (t4)p, then let
vii= (B, {) € (tq)p:» and predlq(v) ={v'}u predlq(v’).

Finally, suppose that 8 € x and sup(x,nf) € x. Then, forallv € (t4)g, let pred;(v)
be the <} -downward closure of U, ¢ predlq” (v).

To finish, we define f,. Suppose that 8 € x, \ (ssup(x Nna)ux) and b € (tq)g. Let
yp = min(x \ B), and let b’ € (tq);‘ﬂ be given by letting b’ (i) be the unique (yg, )
such that b(i) = (8, {). Note that b <11 b’. We set

dom(f,) = dom(£) U dom(f,
{(a, b) | IBexy~ (ssup(x na)ux)(be (tq)ﬁ and (a,b’) € WL;JEdom(fqn))}.

If (a,b) € dom(f,), then we set f,(a,b) := f,(a,b). If (a,b) € Uygdom(fy,) ~
dom(f;), then we let f,(a,b) := U, fq,(a,b). If (a,b) is such that b € (tp)g for
some 3 € x, \ (ssup(x N &) U x) and (a,b") € U,z dom(fy,), then let f,(a,b) =
U< fg,(a:b") = fy(a, b"). It is easily verified that g is as desired. [ |

Lemma 4.19  Suppose p € Q, a < ssup(x,), and q < p t & with q € P,. Then there is
r € IP that is a greatest lower bound for p and q. Moreover, we have x, = x, U x4 and

rfta=gq.

Proof We construct such an r by doing as little as possible while still satisfying Def-
inition 4.11 and extending both p and q. Let x, := x, U x,, and require that r f & = g.
Suppose that 8 € x, \ a. Let

pred’ () := predg(ﬁ) U U predg(V)-
yepred) (B)na

Lett, := t,Ut,. Ifv € t,\ t,, thenlet pred, (v) = pred;(v) Uluepreds (v)nt, pred;(u).
Finally, let dom( ;) := dom(f,,) udom(f). If (a, b) € dom(f; ), then let f,(a,b) :=
fq(a,b).1f (a,b) e dom(f,) ~ dom(f,), thenlet f,(a,b) := fy(a,b).

The only clauses of Definition 4.11 that are nontrivial to check are (6) and (7). Let
us first deal with clause (6). To this end, fix a,b,c € t} such that (a,b),(a,c) €
dom(f,) and f,(a,b) n f,(a,c) # @. If we have either (a,b), (a,c) € dom(f;) or
(a,b),(a,c) € dom(f,) \ dom(f,), then the conclusion of clause (6) follows from
the fact that p,q € P. Thus, we can assume without loss of generality that (a,b) €
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dom(f;) and (a,c) € dom(f,) ~ dom(f,). Let B,y € x, be such that b ¢ (tr);‘; and
¢ € (ty)}. By assumption, we have § < & < y.

Ifg f_(r) y, then there is nothing to check. Thus, assume that 8 <? y. By the definition
of <7, it follows that there is B’ € (x, N @) such that <" and B'<}y. Let ¢’ € (tp)g,
be the unique level sequence such that a<), ¢’ <j,c. Since p € P, it follows that (a, ¢') €
dom(f,) and f,(a,c") 2 f,(a,c). Since q < p t &, we must have (a,c") € dom(f;)
and fy(a,c") 2 fy(a,c). Thus, we have f,(a,c’) n fy(a,b) # @. Since q € P and
B Sg B’, we have that, for A\-many i < A, b(i) S; ¢’(i). But then, for all such i < A, we
also have b(i) <! ¢(i), as required.

Finally, we check clause (7). Suppose that (a, ¢) € dom(f,) and b € t* is such that
a<;b<}clf(a,c) e dom(f,), then the conclusion follows from the fact that g ¢ IP.
Thus, suppose that (a,c) € dom(f,) \ dom(f;). Let 8 € x, be such that b € (t,)g,
and let y € x, be such that ¢ € (tp);. If B € xp, then we have a <}, b <}, ¢, and the
conclusion follows from the fact that p € IP. Thus, assume that 8 € x, \ x,,. Then there
is B’ € x, N a such that /332[3’ and /3’32)}. Letc € (tp)g, be the unique level sequence
such that a<}, ¢ <},c. Since p € P, we have (a, ¢") € dom(f,) and f,(a, ") 2 f,(a, c).
Since q <p p ta, we have fy(a,¢’) 2 f,(a,c). Finally, since g € Pand a <} b <} ¢/,
we have (a,b) € dom(f;) and f,(a,b) 2 fy(a,c"). Thus, (a,b) € dom(f,) and
fr(a,b) 2 f.(a,c), as required. [ |

It now follows that (P, <p, Q) is in P,+. We are thus left with isolating the relevant
sharply dense systems. The following are all straightforward.

Lemma 4.20 (Normal and splitting) Suppose n < A*. For every a < § < A**, let
D’y gy be the set of all conditions p € Q such that

s {a, B} c Xps
* (an), (Bon) € tp;
* (@, 1) has at least two <),-successors in (t)p.

Then Dy* == {Dy, | x € (’V;)} is a sharply dense system. [ |

Lemma 4.21 (Complete) Suppose that y < A* is a regular cardinal and g:y — A*.

/\++)) let D" be the set of all conditions p € Q such that

For every x € ('u+1

e xC Xps
e forall i < u, we have (x(i), g(i)) € tp;
o if {(x(i), g(i)) | i < p} forms a <i,-chain, then it has a <,-upper bound in (tp)(y)-

Then DP™ := {D [ x € (1/\:1)} is a sharply dense system. ]

Lemma 4.22 (Super-Souslin) Suppose §,e < A*. Foralla < f <A™, let Eg ¢ 14,p}
be the set of all conditions p € Q such that

o {o, B} € xp;

® Qg,6> aﬁ,s € t;;
* if a5 <}, apc then (aa,s, ag.) € dom(fp).
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Then €5 := {Esex | X € (A;)} is a sharply dense system. [ |

By SDFA(P;+ ), we can find a filter G on P such that

o for every 7 < A%, G meets ‘D,’;‘ everywhere;

o for every regular cardinal y < A* and every function g:y - A*, G meets D;"m
everywhere (recall that by Corollary 3.9, SDFA (P, + ) implies [*"A*| = 1) ;

o forall §,e < A", G meets ;. everywhere.

Now define a tree (T,<r) as follows. Let T := A** x A*. Let (a, ) <r (B, &) if and

only if there is p € G such that (a, ), (B, §) € t, and (a, ) <, (B, §). The fact that G

meets Dy* everywhere for all 7 < A ensures that (T, <r) is a normal, splitting tree

and Ty = {a} x A" for all « < A*". The fact that G meets D™ everywhere for all

regular g < A and g: 4 — A ensures that (T, <r) is A*-complete.

Finally, we define a function F:[T*]*> - A* witnessing that (T,<r) is a super-
Souslin tree. Fix « < # < A™" and §,e < A* such that a,,s <r ag.. Find p € Gn
Esc{apy- Since p € Q and aq,5 <r ape, it follows that a, s <}, ag,c. Therefore,
(.5, ap,e) € dom(fy). Let F(aq,s, ap,c) be an arbitrary element of f;(aq,s, ap,e)-

To verify that F is as sought, fix a, b, c € T* such that (a,b), (a,c) € [T*]? and
F(a,b) = F(a, ¢). Without loss of generality, suppose there are § < y < A** such that
be Tg, and c € T;‘. Find p;, € G such that (a,b) € dom(f,,) and F(a,b) € f,,(a,b).
Similarly, find p. € G such that (a,c) € dom(f,,) and F(a,c) € fp (a,c). Find
q € GnQ with q <p py, pc. Then (a,b), (a,c) € dom(fy), F(a,b) € fy(a,b), and
F(a,c) € fq(a,c). In particular, f,(a,b) n fy(a,c) # @. Since q € Q it follows that
there are A-many i < A such that b(i) <j c(i). But then, for all such i < A, we have
b(i) <r c(i). Thus, F witnesses that (T, <r) is a A**-super-Souslin tree, so our proof
of Theorem C is now complete. ]

5 Square and Diamond

In this section, we use 0O and ¢ () to construct combinatorial objects that will help
us prove Theorem B in Section 6.

5.1 Enlarged Direct Limit

In this short subsection, we introduce an “enlarged direct limit” operator. This oper-
ator motivates our application of 0% that will be carried out in the next subsection.

Definition 5.1 For a linearly ordered set (Y, <) and a subset Z € Y, we define
double(Y, <) as alinearly ordered set whose underlying setis (Zx {0})w (Y x{1}),
ordered lexicographically by letting (y, i) <; (3', i') if and only if one of the following
holds:

PAPS

e y=y"and (i,i') = (0,1).
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The linearly ordered set (Y, <) we have in mind is a direct limit of a system of
well-ordered sets, and the choice of the subset Z € Y (to be doubled) will be defined
momentarily. The following is obvious.

Lemma 5.2 Forall Z C Y, if Y is well-ordered by <, then doublez (Y, <) is well-
ordered by <. ]

We start with a certain system of well-ordered sets. Suppose that 6 = (0,11 <&
and 7 = (v | n < n' < &) are such that
 ¢isalimit ordinal,
* 0 is a nondecreasing sequence of ordinals,
e foralln<n' <& my 0, >0, isaco.i,
o foralln <n' <n" <& wehave m, v =1y oo My 4.

As is well known, the direct limit of the system (6, 7) is defined as follows.

* PutX:={(n,y) |7 <8y <0y}

* For (1,y),(n',y") e X with y < ', let (n,y) ~ (n,y") ifand only if 7, - (y) = y'.
* Let Y consists of all equivalence classes [(7,y)] for (1,y) € X.

* Order Y by letting [(#0,y0)] < [(#1,y1)] if and only if there exists some 7 >

max{#o, m} and y < yy such that (170, yo) ~ (1, y5) and (11, y1) ~ (1, y1)-
* For each 7 < ¢, define a map 7,: 0,, - Y by stipulating 7, (y) == [(#,y)].

Definition 5.3 (Directlimit) Letlim(6,77) denote (Y, <, (my | n<&)).

Next, we let Z be the set of equivalence classes in Y such that, for every represen-
tative (#,y) from the equivalence class, 7, |y is bounded below 7, (y), i.e.,

Z:={zeY|VY(y,y) ez3y e YVB < y[m,(B) <y amy(y)]}.
Let W := doublez (Y, <), and let @ denote the map from Y to its canonical copy
inside W, i.e., @(y) = (»,1).

Definition 5.4 (Enlarged direct limit) Letlim* (6, 77) denote (W, <, (my | n <)),

where 71} := @ o m,, for each n < &.

n

Finally, by Lemma 5.2, in the special case that (Y, <) is well-ordered, we know that
(W, <) is well-ordered. In this case, we put 6 := otp(W, <;), and let 7: W — 0 be
the collapse map. Then, we define the following.

Definition 5.5 (Ordinal enlarged direct limit) lim" (6, 7) stands for
(6e(m; 11 <8)).

+= 7'[*071;; forall 4 < &

where T,

5.2 Square

Fixa OF-sequence, (Cg | B € I'). Enlarge the preceding to a sequence C = (Cg | f < «)
by letting, for all limit 8 € k \ T, Cg be an arbitrary club in f8 of order type cf(f3), and
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letting Cg,y := {0, B} for all f < k. In particular, for every B € Ej \ T, we have
acc(Cg) = @. Thus, without loss of generality, we can assume that Ef, ¢ T. For
convenience, assume also that 0 € Cy for all nonzero 8 < .

We now turn to constructing a matrix B = (Bg | B <x*, n <x)suchthat U, Bg =

B +1forall B < «*. From this matrix, for each § < k™, we shall derive the following
additional objects:
* We let 775 denote the least # < « such that Bf; 0.
* For each & € acc(x \ 1), we write BliE = Un<EB£1;'
e For each 7 < k, we set 95 = otp(Bg ) and let 7'[5 : Bg - 95 denote the unique order-

preserving bijection.
e Foreachy <& <x, ﬂ‘s I 95 - 6% will denote the order-preserving injection indi-

cating how Bﬁ “sits inside” B?, ie., ”5,5 = n? ° (ng)’l.

We shall also derive a “distance function” d: [x*]* — « by letting

d(a,B) :=min{n<x|a eBg} (a<B<x™).

Lemma 5.6 'There exists a matrix B = (Bg | B <", < ) such that for each < k¥,
the following hold:

1 (Bg | n < k) is a C-increasing sequence of closed sets, each of size < «, that converges
to B +1, and f € By,;

(2) foralln <xand o € B, we have By = Bf; N (a+1) and my = nf; Ma+1);
(3) forall y < x, if cf(B) = x, then max(Bf 1 B) = Cy(wn);
(4) if p €T NEX,, then np = otp(acc(Cp)) and acc(Cp) € Bgﬁ;
(5) forall & € acc(x \ 1), all of the following hold:

(a) B? is the ordinal closure ofB/jE;

(b) forevery a € Bf N st, letting y := min(B/; N (a +1)), we have cf(y) = k and

a =Cy(wd);
(c) cf(B) =« if and only ifssup(ﬂg)s“ng(ﬁ)) < n?(ﬁ)for all n € [np, §).

Proof The construction is by recursion on f < x*.

Case 0: 8 =0. Set Bﬁ := {0} for all < «. It is trivial to see that (1)-(5) all hold.

Casel: f = a+1 Forall 4 < 74, let Bg = &, and for all 4 € [#4, %), let Bf; =
{}u By. Ttis trivial to see that (1)-(5) all hold.

Case 2: f € acc(x) and sup(acc(Cp)) < f. In particular, a := Cg \ sup(acc(Cg))
is a cofinal subset of 8 of order type w. Note that since cf(f8) = w, wehave € T.
Put 775 := otp(acc(Cp)) and 7* := max{np, sup(d“[a]*)}. Now, for all 7 < x,
define B} as follows:

» If n <np, then let Bg := . Clauses (2)-(5) are trivially satisfied.
» If yg < n < 5%, then let &* := min(a) and put Bf; = {B}u B,‘;‘*. Since
a* eacc(Cp) u{0} and f € T, we have Co+ E Cg, which ensures (4). As for
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(5¢), for all 7 < & in [, * ], we have

ssup( ﬂ « ﬁ(/})) =7, E( g((x*)+1) :ng(oc*)+1:ﬂ§(/5).

The other clauses are easily seen to be satisfied.

> Otherw1se, let Bﬁ = {B} UUueq By Since i > 11, for every pair of ordinals
a < o from a, we have a € B"‘ , so that By = B"‘ N (a +1). It follows that
(By | & € a) is an E-increasing sequence of closed sets. In particular, Bﬁ np
is a club in f3, which takes care of (5¢). So, all clauses are satisfied.

Case 3: cf(p) < x and sup(acc(Cg)) = B. Put 15 := sup(d“[acc(Cg)]?), and, for
all 4 < x, define B,/; as follows:

» If < np, then let Bﬁ := . Clauses (2)-(5) are trivially satisfied.

» If 7 > 5, then let B/3 = {B} UUacace(cy) By- Since i > sup(d “lacc(Cp)]%),
we have that (Bj | a € acc(Cp)) is an =- 1ncreas1ng sequence of closed sets.
So B nPisa club in B, and all clauses except (4) are easily seen to be sat-
1sﬁed Now, if B € T, then, since (4) holds for all « € acc(Cp); we have

np = otp(acc(Cg)), so that (4) holds for §, as well.
Case4: 8¢ EX . Forall 7 < «, let ay = Cp(wn) and Bﬁ = {B} UB,", so that (3)

is satisfied.

Since cf(fB) = x, we have § € I'. Hence, for all # < & < k, we have a; € T,
so that a, € B; by (4). It follows that (Bﬁ N B | n < k) is C-increasing. In
particular, (1) and (2) are satisfied. It also follows that, for all £ € acc(x) and

ac€ B N B, we have Bﬁ Nn(a+1) =B 2p SO that (5a) and (5b) are satisfied.
F1nally, to verify (5c) fix an arbitrary & € acc(K) and 77 < & By (2) and (3),
we have Bﬁ = {B} uBy," and Bf ={B}u B , so that 7'[,7([3) = 7'[,1(05,7) +land

7'[? (B) = ﬂf(ag) + 1. Therefore, we have
5 E“ﬂg(ﬁ) ., E(”g(“”)) +1= (oc,,) +1< n?((xf) < n?(/ﬁ’) [ |
The next lemma assumes familiarity with the previous subsection.

Lemma 5.7  Suppose § < x* and & € acc(x \ np). Write 6 := (95 | n < &) and
Ti = (715,,1, | n < ' < &). Thenlim™ (8, B) is defined and, letting (6, €, (my | n<8)):=
lim* (6, ), we have 0 = 6? and (my | n < §) = (rrf;’g | 7 < &).

Proof Let(Y,<,(m, | n < &) = lim((6, 77)). For every class y € Y and repre-
sentatives (17,y), (1,y") € y with < 1, we have ﬂﬁ o) =7 ie, (nﬁ ) (Y) =
(”11) '(y). Therefore, for each y € Y, we can let a, := (7‘[,7) !(y) for an arbitrary
choice of (1, y) € y. Note that, for all y, y" in Y, we have y < y' ifand only if &) < &,

Therefore, the order type of (Y, <) is precisely otp(Bf ¢)- In particular, lim(6, 77) is
well-ordered, so lim* (6, 77) is defined. Write (6, €, (my | <)) for lim* (6, 7).
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Let Z be the set of equivalence classes in Y such that, for every representative
(11, y) from the class, we have that 7, 'y is bounded below m,(y). By clause (5c)
of Lemma 5.6 we know that Z = {z € Y | cf(a;,) = «}.

Foralla € BéEﬂEf,wehave Co(wi) € B?\Bff anda = min(B? N (Co(wé) +1)).
Also, by clauses (5a) and (5b) of Lemma 5.6, we know that
B} = B!, U{Co(wk) |ae BE, nEY }.
Now, for all z € Z, the addition of (z, 0) when passing from Y to W := doublez (Y, <)
corresponds precisely to the addition of C,_(w&) when passing from Bﬁ to Bﬁ It

follows that otp(W, <) = otp(Bﬁ) 9‘6 that is, 6 = Gﬁ Letting 7*: W — 0 be the

collapse map, we have that, for all z € Y n*(z,1) = n (ocz) so, for all n < & and
y < 9,1, we have

my(y) = 7" ([(n.y)11) =7 ()7 () =) (),
so (my [n<&=(n [n<&). m
5.3 Diamond

Our next goal is to prove the following.

Lemma 5.8  Suppose that ¢ (k) holds and that (P, <p, Q) € P,. Then there are arrays
(95 | n<&<x), ((wa, |n<n <&<x), and(qi | 7 < & < x) such that every B < x*
and every decreasing sequence (p, | n < x) € [1,<, Py, there are stationarily many
& <« such that

(9 ln<O=(0n1n<8)

@y < <& =(m, In<n <8

(bl <& =(mh.p, | n<b).

B
By’

The rest of this subsection will be devoted to proving Lemma 5.8. To avoid the use
of codings, we will make use of the following equivalent version of ¢(x) (see [2]).

Definition 5.9 ¢~ (H,) asserts the existence of a sequence (A; | £ < k) such that,
for every A € H, and p € H,+, there exists an elementary submodel M < H,+, with
p € M, such that k™ := M n « is an ordinal < k and AN M = A .

Fix a ¢~ (H,)-sequence, (A¢ | & < k).
Definition 5.10 We say that & < « is good if £ € acc(x) and
Ag={(95,q5, @} o) | <y <&,

where, for all 7 < 1 < " < £, we have
e 98 < 9¢

\9? <9, <k
* qy € Pyp
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o @5 .9t ¢ ; 3 3 3
(Dg)n,. 9, —; 9, is agc.o.l. and q,, <p @, /45>

d (D’,I)r’” = (D”I)”” o (Dn’rll)

. lim((9$ | < &), (win, | 7 <n' <&))is well-ordered.

» If £ < x is good, then (9,? | 7 < &), ((Di)n, | 1 <75 < &), and (qg | # < &) are
already defined, and we let

(95 (@) 1n< &) =lm*((9; [n< &) (@), |n<n <&).

» If & < x is not good, then let (9$ | n <&, (‘Di)n’ |n <y <&, and (qf, | n < &) be
arbitrary.

We claim that the arrays thus defined satisfy the conclusion of Lemma 5.8. To
verify this, fix 8 < k", a decreasing sequence (p, | 17 < «) € IT, IPB?,’ and a club D
in x. Put

A= {05, 7. pysh onn') [ < <xc}.

Since A ¢ H, and D € H,+, we can let p := {A, D} and fix an elementary submodel
M < Hy+ with p € M such that £ := M n« isin x and A n M = A;. By the fact that
D e M and the elementarity of M, we have £ € D. Since M nx = £and A € M, and
by the elementarity of M, we have

Ag={ (00, 7h.pyorb o) [ n<n' <E}.
In particular, & is good. By Lemma 5.7, we have 9§ = 9? and, forall 5 < ¢, (DZ,E = nﬁ,f.

Therefore, £ € D satisfies the three bullet points in the statement of Lemma 5.8. Since
D was arbitrary, this completes the proof of the lemma.

6 Proof of Theorem B

This section is devoted to the proof of Theorem B, which forms the main result of this
paper.

Theorem B Suppose that 0F and ¢ (x) both hold. Then so does SDFA(P,).

6.1 Setup

Fix an arbitrary (P, <p, Q) € P, along with a collection {D; | i < x} of sharply dense
systems. For each i < k, write D; = {D; , | x € (9";)}

Let B be given by Lemma 5.6, and let (19;; | n < &<x), ((Di)n, |n<n <&<x),
(qg | n < &€ < k) be given by Lemma 5.8 applied to (P, <p, Q).

Definition 6.1 Let X denote the set of & € acc(x) such that
* & is good, in the sense of Definition 5.10;
. ((Dg E.qg | 7 < &) admits a lower bound in P .

: i

https://doi.org/10.4153/CJM-2017-058-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-058-2

A Forcing Axiom Deciding the Generalized Souslin Hypothesis 465

Let <, be some well-ordering of H,. Using «** = « (which follows from ¢(x)),
enumerate all elements of ;. {i} x x x (9;) as a sequence ((iy, jy»24) | 7 < k).

Lemma 6.2 There is a sequence of conditions (s¢ | € X) € [Tgex Qge, such that, for
¢

allée X

* s; is a lower bound for <(Dr§ E.qs | n < &);

s foralln <& if jy<&andz, ¢ 19;”, then there is q € D, \ such that sg <p q.

wf”’s“z
Proof Let { € X be arbitrary. We first define a sequence (s" | n < &) € T, ¢ Q¢ by

£
recursion on #:

» For 71 = 0, use clauses (1c) and (6) of Definition 2.1 and the fact that £ € X to find

s% € Q such that x, = 9;5 and s° is a lower bound for ((D;;)E.qf; | 7 < &).

» For 7 < & with j, < and z, ¢ 92 , use the fact that D;, is a sharply dense system

and that (Df “zy € 9§ to find s"* € D such that s”* <p s and xgn.» = 9?
"

;oA E o«
& l"’qu,z‘ Zy

Then, use Definition 2.1(6) to find s7*! € Q such that s7"! <p s"* and xg1 = 9?
» For < Ewith j, > orz, ¢ 9;, simply let s*! := 5",
» For 1 € acc(& + 1), assuming that (s° | { < ) has already been defined, use
Definition 2.1(7) to let s be a lower bound for (s° | { < ) in Q with x,/ = 9?.

Having constructed (s | < £), it is clear that s; := s is as sought. |

Fix a sequence (s¢ | £ € X) as in the preceding lemma. We will construct a matrix
of conditions p‘s | B <", n < k) satisfying the following conditions:

(i) forall B <«*and 5 < x, we have pﬁ €Pps;
n

(ii) forall B <«™, (pg | n < k) is <p-decreasing;

(iii) forallB<x*,n<x,anda € BE, we have pg, Mo +1) = pys

(iv) forall f<«*,alli<xk,andallx ¢ (5;1), there is £ < k and g € D; , such that
p[; <P g;

(v) forall f e EX andall £ € acc(), the sequence (ﬂ?.pg | 7 < &) depends only on
the value of Cg(w¢).

Note that if we succeed, then letting G be the upward closure of { pg | B<«*, n<k},

it follows from (i)-(iv) that G is a filter on IP that, for each # < x, meets D, everywhere.

Of course, the sequence (s | £ € X), which was derived from ¢, will be a key to
ensuring clause (iv).

6.2 Hypotheses
The construction of pg | B < x*, < x) will be by recursion on 1 < « and, for

fixed #, by recursion on 8 < k*. We will maintain requirements (i)-(iii) and (v) as
recursion hypotheses. In order to ensure that the construction will be successful, we
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need to carry along some further hypotheses. Suppose that § < k¥, £ € acc(k), and
(py | & <&, n < &) has been constructed.

Definition 6.3 We say that the pair (8, £) is active if £ € X, 9‘; < 9£ and one of the
following holds:

* {>npand, foralln <& s; <p ng.pﬁ;

» {=rnpgandthereisy e EX such that 8 € acc(Cy) and (y, &) is active.

In our construction, we will require that, for all active (3, &), we have T[?. pg =
St F@? . In particular, if (8, £) is active, then p/; € Qand X8 = B? . Moreover, for all
3
B < «*, we will arrange that, if £ < « is least such that § € x p» then either (B, &) is
3

active or (& = 77 and pg €Q).

Lemma 6.4 Suppose that f < x*, & € X, and (B, §) is active. Then (a, £) is active
forall a e B? .

Proof Leta ¢ Bﬁ be arbitrary. As Bg N (a +1) = B, we have 05 < 9? < 9§ = X

» If f > 1p and o€ Bﬂ then & > 5, and, for all sufficiently large # < &, we have
Py p,7 P(a+1). By Lemma 5.6(2), then, s <p 71,7 Py = my-Py» 50 (a, &) is active.

»If&>npand a € B? Bff, then let y := mln(Blg N (oc +1)). By Lemma 5.6(b),
we know that cf(y) = x and & = C,(w¢). It follows that & € T and hence, by
Lemma 5.6(4), we have & = #,. Slnce |B | < %, and by Lemma 5.6(a), we know
that y € Bﬁ ~p 80, by the previous paragraph, (y, &) is active. Hence, by Definition 6.3,
(a, &) is active as well.

»If & =rnpandy e EX" is such that § ¢ acc(C,) and (y, &) is active, then by
clauses (2) and (3) of Lemma 5.6, By Nn(B+1)= Blé, SO € By Moreover, & > 11, = 0,
so, by the previous cases, we again conclude that («, &) is act1ve [ |

Our final recursion hypotheses concern nonactive pairs (3, ).
First, suppose that (3, £) is not active and & = 7. If § € acc(x) and thereis y € EX
such that € acc(C,) and sup{rn < & | (y,n) is active} = ¢, then we will require that

B B
€Qandx s = B}.
pg Q p? &
Next, suppose that (3, §) is not active and & > 7. Let

n* = max{sup{n < &| (B, ) is active}, 7p}.
» If n* = &, then we will require that p ¢ €Qandx o= Bﬁ

»Ifn* <&andfe xp;; , then we w111 have p € Q and w111 require that p is the
<p-greatest condition q stch that q <p p . and, for all a € B nB gt(a+l)= pg-
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6.3 The Construction

We now turn to the actual construction. Suppose that f < x*, & < x, and we have
B
already constructed (py | a < x*, 7 < §) and (p§ | a < ). We now construct p.

There are a number of cases to consider. In all cases, unless explicitly verified, it will
be trivial to check that the recursion hypotheses are maintained.

Case 0: & <p. Let pg := 1p.
Case 1: & = 7. There are now a few subcases to consider.

Subcase Ia: (B, &) is active. Then, in particular, x,, = 9£ > Gﬁ Let p£
be the unlque condltlon g such that x; = B? and nE q =S¢ F@?, ie.,

(71 ) (st Y ¢)- Note that, for all a € B‘? Lemma 6.4 implies
that (a, f) is act1ve We therefore have ﬂf ps =mg.pg =sg b0, so
p ¢ Pla+1) = p¥ ¢» and requirement (iii) is satisfied.

Subcase Ib: (B, £) is not active and there is y ¢ EX" such that § acc(Cy)
and sup{#n < &| (y,7) is active} = &. Fix such a y. Note that Byfmﬁ is un-
boundedeﬁmlB and, foralla € B B> sup{n < & (a, n) isactive} = &.
Therefore, by our recursion hypotheses, for all « € B’ <p We know that
pE € Qand Xpe = B”‘ By clause (5) of Definition 2.1, there is a unique
condition g € Q such that x; = BSn B and, for all & € BY, we have

qt(a +1) = p§. By Definition 2.1(7), there is a lower bound p for
(p% | < &) such that
cpe
°%=%=$UW%
*ptB=4q
Fix such alower bound p with a <,.-minimal possible value for 7} ¢-p>and
let p ¢ = pF(B +1). Note that, by requirement (v), the construction in
this Subcase is 1ndependent of our choice of y.

Subcase Ic: Otherwise. Let p ¢ be the unique condition, given by Defini-
tion 2.1(5), such that

X8 =U{xp«;|oce(B§m/3)}

and, for all « € (Bﬂ N fB), we have pl; (a+1) = pt.
Case 2: &> np. There are again a few subcases to consider.

Subcase 2a: ( B, &) is active. Let p ¢ be the unique condition g such that Xq =
Bﬁ and rzf .q = s¢ Feﬁ By Deﬁn1t10n 6.3, we have that 5£<1p=71’E p,7 for all
n < &, which implies that p <p p,7 for all # < &, so requirement (i) holds.

Subcase 2b: (B, &) is not active, sup{n < & | (B,n) is active} = & and B ¢
EX". In this subcase, we have that £ € acc(x) and Bﬁ N f is unbounded in
Bﬁ N f. Since, for all « € Bﬁ , we know that sup{# < E | (&, 17) is active} =
E it follows as in Subcase 1b that there is a unique condition g € Q such
that x, = B? N Band, forall « € BY, we have qt(a+1) = p§. By Defini-
tion 2.1(7), there is p € Q such that
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* pisalower bound for (pﬁ | n < &)
. pe@

Let p? be such a p.
Subcase 2c: (f, &) is not active, sup{n < & | (B,n) is active} = & and f3 €
EX . Leta = Cg(wé), sothatBﬁ = By u{B}. Whendeﬁnmgpg,wewere

in Subcase 1b. In that subcase, we considered a y ¢ E" such that « €
acc(Cy ), produced a condition p with x, = B and let pg := p(a +1).

Let Bg Blé be the unique order—preservmg bijection, and let p? =
7.p. Since, by requirement (v), we have

(mf.ply | < & = (m).p) | m < &),

and since 77 | B ‘g is the identity, the recursion hypotheses are all easily ver-
ified.
Subcase 2d: (B, &) is not active and there is no n < & such that f3 € Xph- Let

p be the unique condition ¢ such that x, = U{xp |ae (Bﬁ N ﬁ)} and,
for all o € (Bﬁ N B), wehave q f(a+1) = pg.
Subcase 2e: Otherwzse Let

N = max{ sup{n < &| (B, n) is active}, 11;;}.
Since we are not in any of the previous Subcases, it must be the case that

n*<n, p €@, and Xp = Bﬁ Forall n € (1, £], let g, be the unique
condltlon given by Deﬁ"nltlon 2.1(5), such that

Xq, :U{xpg, |a€ (Bf;mﬁ)}

and, for all « € (Bg n B), we have g (a +1) = py. By the recursion
hypotheses, we know that, for all € (5%, &), pg is the <p-greatest lower
bound of pﬁ* and g, as given by Definition 2.1(8). Therefore, if we let p[;

be the <p-greatest lower bound of pﬁ . and g, which again exists by Def-

inition 2.1(8), it will follow that p E<]p> p,, for all 4 < &, so requirement (i)
holds. The other requirements are easily verified.

This completes the construction. We have maintained requirements (i)-(iii) and
(v) throughout. We now verify requirement (iv). To this end, fix f < x*, i < «, and

xe€ (5;) We will find & < x and g € D; , such that plg <p q.

Fix j < x such that x € Bf, and fix #* < « such that (i,i*,jﬂ*,z”*) = (i, ], nf“x).
Find £ € acc(x \ (max{j, n*,%p} +1)) such that

(951 n<&=(0h <8
* (‘Dg,q’|77<77/§£>:<ﬂ5”1,|;7<;1’£§>;
« (qb|n<&=(mh.phln<b.
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The following two claims now suffice for the verification of requirement (iv).

Claim 6.5 (f3,¢&) is active.

Proof We verify the requirements in Definition 6.3. We clearly have 9? < 9§ and

& > 1. Moreover, for all 7 < &, we have

& &__p B B__PB P
(D"’E.q” = nn)f.nq.pq =Tg-Py-

Since plg € P4s is a lower bound for (pg | 7 < &), it follows that 7'[[; .p? € Py: is alower
3 £
bound for

(@ a1 <8).

In particular, £ € X. It follows that s; is a lower bound for

(@ a1 n <& = (nk.ph [ 1< &),

which completes the verification. ]
Claim 6.6 'Thereis q € D; x such that p? <p q.

B B

Proof Since (8, £) is active and 0? = 9%, we have M- Py = sg. It thus suffices to find

q e Di’n,:“x such that s; <p ¢q'.

Note that #*, j < £ and nf “xc 9? = 9;. Therefore, since

C o Ba N (i
(i, j, TT; x) = (1,1*,],1*,2,1*)
and (s¢ | € € X) satisfies the conclusion of Lemma 6.2, it follows that there is g’ €
— !/ .
Di’@f,g“"f“x = Di,n?“x such that s; <p q’, as desired. ]
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