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Numerical Simulations and Coarse-Graining
Fernando F. Grinstein

Abstract
Accurate predictions with quantifiable uncertainty are essential to many practical turbulent
flows in engineering, geophysics, and astrophysics typically comprising extreme geometri-
cal complexity and broad ranges of length and timescales. Dominating effects of the flow
instabilities can be captured with coarse-graining (CG) modeling based on the primary con-
servation equations and effectively codesigned physics and algorithms. The collaborative
computational and laboratory experiments unavoidably involve inherently intrusive coarse-
grained observations – intimately linked to their subgrid scale and supergrid (initial and
boundary conditions) specifics. We discuss turbulence fundamentals and predictability as-
pects and introduce the CG modified equation analysis. Modeling and predictability issues
for underresolved flow and mixing driven by underresolved velocity fields and underresolved
initial and boundary conditions are revisited in this context. CG simulations modeling proto-
typical shock-tube experiments are used to exemplify relevant actual issues, challenges, and
strategies.

1.1 Introduction
Mixing of initially separate materials by turbulent motions is a critical element in many
research areas of interest, such as inertial confinement fusion, combustion, and supernova
implosions and explosions, where vorticity is introduced at material interfaces by (interface)
acceleration or impulsive loading of shock waves, and turbulence is generated via flow
instabilities (Zhou, 2017a,b). Hydrodynamics of interest depends on initial conditions and
involves transition to turbulence, nonequilibrium turbulence development, and late-time
relaminarization. Flow instabilities and associated vortex production driving high Reynolds
number (𝑅𝑒) mixing are crucial ingredients in the enstrophy budget equation,

𝐷Ω/𝐷𝑡 ∼ {𝜔𝑖𝑠𝑖 𝑗𝜔 𝑗}︸      ︷︷      ︸
(a) vortex stretching

+ {𝜔𝑖𝜔 𝑗}𝑆𝑖 𝑗︸      ︷︷      ︸
(b) KH, Dilatational, BP, . . .

+ 𝜖𝑖 𝑗𝑘𝜌−2{𝜔𝑖𝜌, 𝑗}𝑃,𝑘︸                 ︷︷                 ︸
(c) Baroclinic: RT, RM,. . .

+ 𝜖𝑖 𝑗𝑘𝜌
−2{𝜔 𝑗 𝑝,𝑖}𝜌,𝑘︸                 ︷︷                 ︸

(d) other Baroclinic. . .

+ viscous terms,
(1.1)
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where mean enstrophy Ω = {𝜔𝑖𝜔𝑖} is defined in terms of the vorticity components 𝜔𝑖, 𝑃 is
mean pressure, 𝑠𝑖 𝑗 and 𝑆𝑖 𝑗 are fluctuating and mean strain rates, 𝑠𝑖 𝑗 = (𝑢𝑖, 𝑗 + 𝑢 𝑗 ,𝑖)/2, 𝜌 is
mean mass density, and the brackets {} denote ensemble averaging.

Highlighted terms on the right-hand side of equation (1.1) depict inherently inviscid in-
stability mechanisms governing the high 𝑅𝑒 regimes: (a) vortex stretching driving vortex
cascade and transition to turbulence – only present in 3D; (b) mean-shear driven Kelvin–
Helmholtz (KH) instability, mean dilatation by shock and the Bell–Plesset (BP) convergence
instability; (c) two baroclinic instabilities proportional to pressure gradients – one corre-
sponding to the classical Richtmyer–Meshkov (RM) and Rayleigh–Taylor (RT) drivers; and
(d) two other baroclinic instabilities proportional to density gradients.

Laboratory studies typically demonstrate the end outcome of complex, nonlinear, three-
dimensional physical processes with many unexplained details and mechanisms. Flow ex-
periments based on numerical simulations carried out with precise control of initial and
boundary conditions are ideally suited to provide insights into the underlying dynamics of
the laboratory observations. Direct numerical simulation (DNS) – capturing the dynamics
of all relevant space/timescales of motion without any turbulence model, typically based on
the numerical solution of the continuum Navier–Stokes equations (NSE), is prohibitively
expensive in the foreseeable future for practical flows of interest at moderate-to-high 𝑅𝑒. At
the other end of the simulation spectrum are the Reynolds averaged Navier–Stokes equations
(RANS) approaches, which solve flow equations averaged over time, spatially homogeneous
directions, or across an ensemble of equivalent flows, and model mean flow effects.

Alternatively, the coarse-graining (CG) paradigms presume the spectral cascade rate of en-
ergy (the rate-limiting step) is determined by the initial and boundary conditions constrained
large-scale dynamics – which enslaves the small-scale flow dynamics. Small-scale assump-
tions are the basis for a variety of CG turbulence approaches, all assuming that turbulence
can be split into two groups: one consisting of the resolved geometry and regime-specific
scales – the so-called energy-containing scales; the other associated with the unresolved
smallest eddies, for which presumably more-universal flow dynamics is represented with
subgrid scale (SGS) closure models. CG strategies include classical large eddy simulation
(LES, Sagaut et al. 2006), focusing on explicit use of SGS closure models, implicit LES
(ILES, Grinstein et al. 2010), relying on SGS modeling and filtering provided by physics
capturing numerical algorithms, and hybrid RANS/LES bridging approaches (Frolich and
von Terzi, 2008).

In practice, all simulation models reduce the range of reduced scales. Both CG simulations
and DNS (as practiced) presume scale separation between resolved and unresolved scales to
be possible – DNS leaves out the longest scales (e.g., through periodicity constraints) and CG
simulations model the effects of the shortest scales. RANS typically presumes equilibrium
developed turbulence – and thus models effects of all scales. Realizability in capturing
questions and quantities of interest are the only solid basis to establish simulation model
adequacy and effectiveness – there is no absolutely better ranked simulation model1 and a
suitable set of modeling ingredients for the prediction task at hand must be prescribed.2

1 Essentially, all models are wrong, but some are useful (Box, 1979).
2 Everything should be made as simple as possible, but no simpler – attributed to Albert Einstein.
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Computation of quantities of interest requires building appropriate physics in the actual
equations solved as the basis of the simulation model and a suitable verification, valida-
tion, and uncertainty quantification framework. Predictability issues in the collaborative
laboratory/computational context involve characterizing and modeling the relevant flow con-
ditions at the SGS level – within a computational cell or instrumentation resolution, and at
the supergrid (SPG) scale – at initialization and boundaries of computational and laboratory
experiments.

1.2 Turbulence Modeling and Predictability
Outstanding fundamental open questions in the turbulence modeling context have been
usefully delineated by Tsinober (2009, 2011): Why modeling works? Models versus physical
laws / first principles, or Models versus physics and mathematics in turbulence? What is the
meaning of the term ‘works’? What is the meaning of experimental validation of models?
Can models clarify the physics and produce genuine predictions, or are they just a ’kind’ of
‘postdiction’ and sophisticated methods of data description/fitting?

Emulating particular flow realizations demands SPG choices at initialization and bound-
aries of computational and laboratory experiments (Grinstein, 2004). Long-term effects of
SPG specifics have been extensively observed in the laboratory experiments (Hussain and
Zedan, 1978; Gutmark and Ho, 1983; Wygnanski et al., 1986; George, 1990; Li and Gut-
mark, 2006). The crucial SPG issues were clearly recognized by George (1990): Unlike the
theoretician, the experimentalist already knows the solution, for it is the flow he has real-
ized. His objective is to find which equations and which boundary and initial conditions his
solution corresponds to and then to compare them and his results to those dealt with by the
theoretician.

The sensitivity of turbulent flows to initial conditions is now well established. Far-field
(and late time) characteristics of turbulent flows remember their near-field (and initial)
features (Wygnanski et al., 1986; George, 1989; Slessor et al., 1998; Ramaprabhu et al.,
2005), and the mechanism by which transition from initial conditions to asymptotic flow
occurs involves unsteady large-scale coherent structure dynamics; transition can be captured
by CG simulations but not by single-point closure modeling (George and Davidson, 2004b;
George and Tutkun, 2009) typical in RANS. The long-standing view that initial conditions
independent universal turbulence state are achieved in the far field (or at late times) – for
example, Townsend (1976) – has been replaced by the recognition that different self-similar
end turbulence states are possible depending on initial conditions (George, 1989).

Computational and laboratory observations are inherently intrusive due to characterization
and modeling uncertainties – versus nature’s separate physics control. Suitable modeling,
computational design, and initial conditions characterization and parameterization must be
combined within appropriate validation and uncertainty quantification frameworks to ensure
repeatability of computational and laboratory experiments for the predictability assessments
– Figure 1.13 .

3 What we observe is not nature itself but nature exposed to our method of questioning. Our scientific work in physics
consists of asking questions about nature in the language that we possess and trying to get an answer from
experiments by the means that are at our disposal (Heisenberg, 1958).
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Figure 1.1 Predictions are constrained by strong interactions between closely coupled models,
theory, laboratory observations, theoretical and numerical approximations, software implementation,
and hardware capability.

1.3 Low-Pass Filtered and Discretized Navier–Stokes Equations
To simplify discussion and conceptualization, Sections 1.3–1.3.1 focus on a continuum
formulation of incompressible flow with scalar mixing – exemplifying issues and challenges
with coupled physics of frequent interest.

Turbulent mixing of material scalars can be usefully characterized by the length scales of
the fluid physics involved: (1) large-scale entrainment in which advection brings relatively
large regions of the pure materials together; (2) an intermediate length scale associated
with the convective stirring due to velocity gradient fluctuations; and (3) much smaller
scale interpenetration resulting from molecular diffusion. At moderate and high 𝑅𝑒 – when
convective timescales are much smaller than those associated with molecular diffusion –
and for Schmidt number 𝑆𝑐 ∼ 1, large-scale vortices and their interactions play a crucial
role in controlling transitional growth and entrainment, and the primary concern is with the
numerical simulation of the first two processes above – advection and stirring.

CG simulations involve solving the NSE with the smallest resolved length scale fixed by
a characteristic filter length – based on available physics insights on the problem of interest
and on which results depend. Equations for the filtered unknowns follow from applying a
spatial filtering operation to velocity and mixing scalar equations,

𝜕𝑢𝑖
𝜕𝑡
+ 𝜕

(
𝑢𝑖𝑢 𝑗

)
𝜕𝑥 𝑗

+ 1
𝜌

𝜕𝑝

𝜕𝑥𝑖
− 𝜈

(
𝜕2𝑢𝑖
𝜕𝑥 𝑗𝜕𝑥 𝑗

)
= − 𝜕

𝜕𝑥𝑖
(∇ · 𝜏u + 𝜙u), (1.2)

𝜕𝑐

𝜕𝑡
+ 𝜕

(
𝑐 𝑢 𝑗

)
𝜕𝑥 𝑗

− D𝑠
(
𝜕2𝑐

𝜕𝑥 𝑗𝜕𝑥 𝑗

)
= −∇ · 𝜏𝑐 + 𝜙𝑐, (1.3)
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where overbars denote the filtering operation 𝑞 =
∫
𝑞(x′)𝐺 (x′, x)𝑑𝑥′𝑑𝑦′𝑑𝑧′ characterized by

a generic prescribed kernel 𝐺 (x′, x). Moreover, u is the (here presumed solenoidal) velocity
field, 𝑐 is a conserved material scalar concentration, 𝑝 is the pressure, 𝜈 and D𝑠 denote
viscosity and scalar diffusivity, respectively, 𝜏u = u ⊗ u − ū ⊗ ū and 𝜏𝑐 = 𝑐 u − 𝑐 u are
explicit SGS models needed to close the equations in filtered unknowns. Finally, 𝜙u and
𝜙𝑐 are terms due to potential noncommuting differentiation and filtering – typically lumped
together with the prescribed explicit SGS models 𝜏u and 𝜏𝑐.

As inverse filtering operations are necessarily ill-posed, we estimate 𝜏u and 𝜏𝑐 through
approximate inversion, for example, for 𝜏u – after discretization u→ u𝑛,

𝜏𝑛u = (u ⊗ u − u𝑛 ⊗ u𝑛︸                ︷︷                ︸
stress model

) + (u𝑛 ⊗ u𝑛 − ū𝑛 ⊗ ū𝑛︸                   ︷︷                   ︸
grid resolved stress

), (1.4)

where 𝜏u is thus formally decomposed in terms of modeled and grid-resolved components –
for example, von Kaenel et al. (2003). Hard deconvolution is associated with the continuum-
grid link portion, approximately accounting for grid nonrepresented information, which must
be necessarily modeled. Softer deconvolution involves seeking approximations associated
with grid-represented scales.

1.3.1 Modified Equation Analysis of Coarse-Graining
Formal CG simulations analysis can be based on modified equation analysis (Hirt, 1969;
Ghosal, 1996), a technique for generating approximate equations for the computed solutions
– actual solutions of the numerical algorithm underlying the simulation model. A detailed
discussion of modified equation analysis for LES, including compressibility, has been pre-
sented separately (Fureby and Grinstein, 1999; Margolin and Rider, 2010; Grinstein and
Fureby, 2007).

The modified equations satisfied by the computed numerical solutions with the given
discretization method have the general form,

𝜕𝑢𝑖
𝜕𝑡
+ 𝜕

(
𝑢𝑖𝑢 𝑗

)
𝜕𝑥 𝑗

+ 1
𝜌

𝜕𝑝

𝜕𝑥𝑖
− 𝜈 𝜕2𝑢𝑖

𝜕𝑥 𝑗𝜕𝑥 𝑗
= − 𝜕

𝜕𝑥𝑖
(∇ · 𝜏u + 𝜙u + 𝑡u), (1.5)

𝜕𝑐

𝜕𝑡
+ 𝜕

(
𝑐 𝑢 𝑗

)
𝜕𝑥 𝑗

− D𝑠 𝜕2𝑐

𝜕𝑥 𝑗𝜕𝑥 𝑗
= −∇ · 𝜏𝑐 + 𝜙𝑐 + 𝑡𝑐, (1.6)

where the new terms on the right, 𝑡u and 𝑡𝑐, denote implicit SGS models associated with
discretization truncation.

High 𝑅𝑒 turbulent flow physics can be captured with CG simulations (Grinstein, 2016).
Depending on the simulation model equations solved – and actual values of 𝑅𝑒 and other
characteristic (e.g., Schmidt, Damkohler, Knudsen) numbers, combined explicit and implicit
SGS models may be needed to address physics such as diffusive mixing and combustion, as
well as noncontinuum statistical aspects. In the absence of an established universal theory
of turbulence, the construction of SGS models is pragmatic and primarily based on rational
use of empirical information.

Convergence issues versus resolution in turbulent flow simulations are typically problem-
dependent and difficult to address in general. Grid independence can be, in principle, achieved
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with DNS. Otherwise, inherent to any CG approach is the fact that the smallest resolved
turbulence scale is determined by the resolution cutoff wavelength prescribed by explicit or
implicit spatial filtering. Ideally, the CG smallest resolved length scale is fixed by a chosen
characteristic grid-independent filter length – for example, Bose et al. (2010), on which results
are still dependent. However, as computational resolution requirements become prohibitively
expensive for problems involving complex flow and geometries at moderate-to-high 𝑅𝑒, well-
established practical CG typically relies on the implicitly provided discretization filtering –
for example, Hill et al. (2006).

Implicit Large Eddy Simulation
The question of whether LES is a physical model, a numerical procedure, or a combination
of both has been discussed in detail by Pope (2004). The crucial practical computational
aspect is the need to distinctly separate (and effectively combine) the effects of explicit
spatial filtering and SGS reconstruction models from their unavoidable implicit counterparts
due to discretization – which have been demonstrated to be comparable in the classical LES
practice (Ghosal, 1996).

Given the seemingly insurmountable issues posed to LES by underresolution, the pos-
sibility of relying on the SGS modeling and filtering provided implicitly by the numerical
algorithms was proposed as an option (Boris, 1990; Boris et al., 1992; Fureby and Grinstein,
1999). From the modified equation analysis perspective, the crucial caveat is that good or
bad SGS physics can be built into a (so-called) no-model simulation model depending on
numerical schemes and their particular spatiotemporal implementation.

Many numerical paradigms have been proposed in the ILES context, including nonoscil-
latory finite-volume algorithms – surveyed in Grinstein et al. (2010), spectral viscosity
vanishing methods (Karamanos and Karniadakis, 2000), approximate deconvolution (Stolz
et al., 2001; Domaradzki and Adams, 2002), vorticity confinement (Fan et al., 2002), com-
bined compact differencing and filtering (Visbal and Rizzetta, 2002), weighted essentially
nonoscillatory methods (Schilling and Latini, 2010), discontinuous Galerkin (Uranga et al.,
2011), and finite elements (Wang et al., 2021).

Underresolved simulations are typically unavoidable in the high 𝑅𝑒 turbulent flow appli-
cations at scale, and ILES often becomes the effective CG strategy to capture the dominating
effects of flow instabilities. Comparisons of instantaneous probability distribution functions
of explicit and implicit SGS viscosities for homogeneous isotropic turbulence showed sim-
ilar behaviors dependent on the actual SGS models involved (Fureby and Grinstein, 1999).
Well-behaved ILES spectral eddy viscosities in agreement with theory (Domaradzki et al.,
2003; Thornber et al., 2007) were also reported. Positive evaluations of ILES of forced and
decaying isotropic turbulence have been reported (Porter et al., 1998; Fureby and Grinstein,
2002; Domaradzki et al., 2003; Margolin et al., 2006; Thornber et al., 2007; Grinstein,
2020). Turbulent mixing of a passive scalar by forced isotropic turbulence with a prescribed
mean scalar gradient (Wachtor et al., 2013) as function of effective turbulence 𝑅𝑒 deter-
mined by grid resolution showed that a properly designed ILES can accurately capture the
asymptotic behaviors of high 𝑅𝑒 stirring-driven turbulent mixing associated with the mixing
transition (Dimotakis, 2000). ILES based on effectively codesigned physics and numerical
models solving the compressible conservation equations with nonoscillatory finite-volume
algorithms have been used to study transition to turbulence from laminar conditions in free
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shear flows; the occurrence of global instabilities, complex dynamics of three-dimensional
vortical geometries, and their impact on jet entrainment and combustion have been surveyed
separately (Grinstein, 2001, 2010).

The monotone integrated LES (MILES) approach (Boris, 1990; Boris et al., 1992) incor-
porates the effects of the SGS physics on the resolved scales through functional reconstruction
of the convective fluxes using locally monotonic finite-volume schemes. The more broadly
defined ILES in Grinstein et al. (2010) focused on using nonoscillatory finite-volume algo-
rithms to solve the unfiltered Euler or NSE, such as the flux-corrected transport, the piecewise
parabolic method, the multidimensional positive definite advection transport algorithm, Go-
dunov, and total variation diminishing algorithms.

By concentrating on resolving the inertially dominated flow dynamics and the regular-
ization of underresolved flow, ILES follows on the precedent of using nonoscillatory finite-
volume methods for shock capturing – requiring weak solutions and satisfying an entropy
condition. In apparent serendipity, physics built over decades into popular nonoscillatory
finite-volume numerical schemes to simulate shocks also provides implicit SGS models
suitable for turbulent flow.

Modified equation analysis provides an analysis framework to reverse-engineer desirable
physics into the design of the numerical schemes for ILES. Modified equation analysis was
used in the early formal comparisons (Fureby and Grinstein, 1999; Grinstein and Fureby,
2007) between MILES and traditional LES to show that a class of nonoscillatory finite-
volume algorithms with dissipative leading order terms provides appropriate built-in (im-
plicit) SGS models of a mixed tensorial (generalized) eddy-viscosity type. Modified equation
analysis can examine specific implementation aspects of the numerical schemes, such as the
effects of temporal integration schemes, and can address how prescribed anisotropies in-
troduced by nonuniform adaptive gridding contribute to the implicit SGS stress tensor in
the modified equations. Because implicit SGS model contributions associated with finite-
volume discretizations can be formally cast in divergence form as their explicit counterparts
in the modified equation analysis – equations (1.5) and (1.6), and volume integrals in the
finite-volume representation naturally link with the discrete spatial filtering operation in LES
– top-hat filtering, finite-volume discretizations are formally favored for ILES. Finite volume
discretizations have also been motivated based on derived characteristics of the associated
implicit SGS models from modified equation analysis (Fureby and Grinstein, 1999; Grinstein
and Fureby, 2007; Margolin and Rider, 2010; Grinstein et al., 2023) – versus classical SGS
models.

Ensemble Averaged Flow
Analysis of ensemble-averaged flow equations – carried out as that of the spatially filtered
equations at the top of this section – would formally yield RANS modified equations analo-
gous to those for LES, with substituted ensemble-averaging and spatial-filtering operations
on the flow variables and substituted RANS and LES (explicit and implicit) SGS stresses and
commutation terms. This CG similarity reflects the fact that (spectral) effects of ensemble
averaging and spatial filtering on the velocity solutions resemble each other in their nature.
However, a key difference between the LES and RANS equations relates to their limiting
behavior as the grid size ℎ→ 0, when only the equations associated with a properly designed
(realizable) LES will approach the high fidelity (DNS) limit – Sections 1.3.3 and 1.5.
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Finite-Scale Navier–Stokes
Generalizing the spatial (cubical) averaging results of Margolin and Rider (2002) to three-
dimensional tensor coordinates, adding temporal averaging and prescribing length scale L
and timescale T , to O(L4,T 4) the instantaneous Finite-Scale Navier–Stokes equations by
Ristorcelli (2016) describe the transport of a passive scalar and momentum by an incom-
pressible fluid (𝑢 𝑗 , 𝑗 = 0),

𝜕𝑐

𝜕𝑡
+ 𝜕

(
𝑐 𝑢 𝑗

)
𝜕𝑥 𝑗

= D𝑠 𝜕2𝑐

𝜕𝑥 𝑗𝜕𝑥 𝑗
− L2 𝜕

𝜕𝑥 𝑗

(
𝜕𝑐

𝑥𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘

)
− T 2 𝜕

𝜕𝑥 𝑗

(
𝜕𝑐

𝜕𝑡

𝜕𝑢 𝑗

𝜕𝑡

)
, (1.7)

𝜕𝑢𝑖
𝜕𝑡
+ 𝜕

(
𝑢𝑖𝑢 𝑗

)
𝜕𝑥 𝑗

= − 1
𝜌

𝜕𝑝

𝜕𝑥𝑖
− L2 𝜕

𝜕𝑥 𝑗

(
𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘

)
− T 2 𝜕

𝜕𝑥 𝑗

(
𝜕𝑢𝑖
𝜕𝑡

𝜕𝑢 𝑗

𝜕𝑡

)
+ 𝜈 𝜕2𝑢𝑖

𝜕𝑥 𝑗𝜕𝑥 𝑗
, (1.8)

− 1
𝜌
∇2𝑝 =

𝜕𝑢 𝑗

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥 𝑗
+ L2 𝜕𝑢 𝑗

𝜕𝑥𝑖𝜕𝑥𝑘

𝜕𝑢𝑖
𝜕𝑥 𝑗𝜕𝑥𝑘

+ T 2 𝜕𝑢 𝑗

𝜕𝑡𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑡𝜕𝑥 𝑗

, (1.9)

where the overbars indicate spatial and temporal averaging in a fixed Eulerian coordinate
system over length scale L and timescale T .

The Finite-Scale Navier–Stokes framework reframes the computational questions of tur-
bulence. In the continuum, the usual questions related to the velocity at a point and time, a
concept limited computationally by finite volumes, mesh spacing ℎ, and timestepΔ𝑡, and there
are associated convergence issues as well as issues of consistent definition of finite-volume
averaged velocities. The question Finite-Scale Navier–Stokes proposes to answer is different:
What is the velocity in a finite volume (L3) over a finite time T ? As the true and desired
solution is an average over space and time (L and T ), and the definition of averaged velocity
will not change once ℎ < L and Δ𝑡 < T , that is, there is no need for SGS modeling once the
latter resolution limit can be achieved. Additional motivation for Finite-Scale Navier–Stokes
approaches can be given in practical applications with inherently discrete (noncontinuum)
requirements: for example, needed contaminant dispersal prediction for urban consequences
management is dosages (contaminant in volume L3 over time T ).

The Finite-Scale Navier–Stokes solutions directly relate to laboratory observables, as
measurement devices always involve finite space/timescales and cannot capture arbitrarily
small-scales of high 𝑅𝑒 turbulence. By design, Finite-Scale Navier–Stokes models what is
observable for a measurement device characterized by length and timescales L and T (e.g.,
thermocouple or hotwire width L, instrumentation inertia T ).

Crucial insights follow from modified equation analysis studies for the Burgers (Margolin
and Rider, 2002) and the NSE (Margolin, 2009) – demonstrating that leading order truncation
(so-called) errors introduced by nonoscillatory finite-volume schemes represent physical flow
regularization providing actual necessary modifications to the governing equations that arise
when the motion of finite-scale observables is considered: ILES works because it solves the
equations that most accurately represent the dynamics of finite-volumes of fluid – governing
the behavior of measurable physical quantities on the computational cells.

SGS and SPG issues are typically intertwined and cannot be dealt with independently
in many contexts of interest. This is the case – for example, when studying shock-driven
turbulence generated via the RM instability (RMI, Brouillette 2002), where ILES has proven
to be the effective CG simulation strategy because of its unique combination of shock and

https://doi.org/10.1017/9781009377379.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009377379.003


Numerical Simulations and Coarse-Graining 13

turbulence emulation capabilities (Cohen et al., 2002; Leinov et al., 2009; Thornber et al.,
2010; Grinstein et al., 2011; Gowardhan et al., 2011; Gowardhan and Grinstein, 2011; Haines
et al., 2014). In what follows, we discuss CG characterization and requirements in terms of
turbulence Reynolds number, revisit relevant realizability constraints for SGS modeling, and
examine the impact of initial conditions on transition and predictions.

1.3.2 Turbulence Reynolds Number and the Mixing Transition

Transition to turbulence is traditionally viewed in terms of the rapid increase in the energy and
the enstrophy production by mode coupling of a spectrum of smaller length scale motions.
Transition can lead to an inertial range exhibiting Kolmogorov −5/3 wave-number power-
law in the turbulence kinetic energy spectrum for sufficiently high 𝑅𝑒 (Dimotakis, 2000;
Zhou, 2007) above the mixing transition threshold, 𝑅𝑒 ∼ 1 − 2 × 104 based on the integral
length scale 𝐿 (or 𝑅𝑒 ∼ 1 − 1.4 × 102 based on the Taylor microscale) (Dimotakis, 2000).
A higher threshold, 𝑅𝑒 ∼ 1.6 × 105, is needed to achieve a minimum turbulent state (Zhou,
2007) – proposed as having enough large-/small-scale separation to ensure the robustness of
macroscopic flow characteristics.

Transition is inherently dependent on initial conditions (George and Davidson, 2004b;
Ristorcelli et al., 2013; Grinstein, 2017). Cascade pathways driven by vortex instabilities, self-
induced deformations, stretching, and reconnections (Hussain and Husain, 1989; Grinstein,
1995, 2001; Leweke et al., 2016; Yao and Hussain, 2022) are fundamental building blocks
to be captured by CG simulations.

The dimensionless ratio 𝐷 = 𝜖𝐿/𝑢3 = (𝜖/𝑢2)/(𝑢/𝐿) – ratio of dissipation to convection
times, where 𝑢 and 𝐿 denote characteristic velocity fluctuation magnitude and length scale,
has been extensively investigated as function of 𝑅𝑒 (Sreenivasan, 1984, 1998; Kaneda et al.,
2003). Analysis of a large body of laboratory and simulation data suggests that a nondi-
mensional parameter such as 𝐷 approaches constancy when 𝑅𝑒 becomes sufficiently large.
The data compiled by Sreenivasan (1984) exhibits consistent establishment of an inertial
range and attaining asymptotic constant behavior 𝐷 ∼ 1/2 for Taylor-microscale based 𝑅𝑒,
𝑅𝑒𝜆 > 50. Further data analysis (Sreenivasan, 1998; Kaneda et al., 2003) suggests that some-
what higher 𝑅𝑒𝜆 may be needed to achieve constancy of 𝐷, perhaps as high as 𝑅𝑒𝜆 ∼ 200, for
which the inertial range is about one decade. The high-𝑅𝑒 asymptotic results depict the noted
viscosity-independent energy-dissipation-limit law for high but finite 𝑅𝑒 (Sreenivasan, 1984;
Frisch, 1995) and are the basis for the fundamental turbulence scaling relation 𝜖 ∼ 𝑢3/𝐿.

Cascade mechanisms for high 𝑅𝑒 are believed to be mainly driven by 𝑅𝑒-independent
equilibrium dissipation. However, there is also reported evidence for significant high-𝑅𝑒
nonequilibrium dissipation regimes existing in various turbulent flows in which the energy
spectrum has Kolmogorov −5/3 wave-number scaling over a wide wave-number range, and
for which distinctly different scaling relations supporting asymptotically nonconstant𝐷 apply
(Vassilicos, 2015b) – see Chapter 11.

From an applied perspective, we can estimate a relevant CG effective 𝑅𝑒 (and hence
an effective viscosity) for the simulated turbulence to assess the impact of resolution on
predicted flow quantities and to characterize their macroscopic convergence. The ILES
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effective kinematic viscosity can be defined as

𝜈𝑒 ≡ 𝜈 + 𝜈𝑛, (1.10)

where 𝜈 and 𝜈𝑛 are the molecular and numerical kinematic viscosities. The first component
is a fluid property, whereas the second stems from the numerics and it is used by ILES as the
SGS closure (Boris et al., 1992; Grinstein et al., 2010).

An expression for the numerical ILES kinematic viscosity 𝜈𝑛 in physical space can be
obtained on dimensional grounds – based on local dissipation 𝜀 in a viscous fluid (Fureby
and Grinstein, 1999; Wachtor et al., 2013),

𝜈𝑛 =
𝜀

2⟨𝑆𝑖 𝑗𝑆𝑖 𝑗⟩ , (1.11)

where ⟨⟩ denotes volumetric average, sum over repeated Roman indices is assumed, and 𝑆𝑖 𝑗
is the strain tensor which can be readily evaluated based on the computed raw velocity data.

The dissipation 𝜀 can be determined by the prescribed momentum forcing for the homo-
geneous isotropic turbulence case, or related directly to the kinetic energy dissipation for
unsteady turbulence. In the high-𝑅𝑒 limit we can presume 𝐷 ≈ 1/2 (Zhou et al., 2014), and
use

𝜀 ∼ 𝐷𝑢3/𝐿. (1.12)

With sufficiently resolved ILES having large-enough turbulence 𝑅𝑒 (scale separation) the
cutoff lies within a simulated inertial range (e.g., Figure 1.15).

Evaluation of the ILES 𝜈𝑛 through equation (1.11) – based on the computed ratio of
dissipation to squared strain-rate – characterizes the turbulence dissipation in the inertial
subrange of the simulated high-𝑅𝑒 dominated flow. It is distinct from the residual local “New-
tonian fluid” numerical viscosity associated with the algorithm specifics through modified
equation analysis directly affecting the smallest scales – characterizing the simulated viscous
dissipation subrange.

Once a numerical viscosity 𝜈𝑛 is evaluated, an (effective) turbulence (Taylor microscale
based) 𝑅𝑒, can be computed as 𝑅𝑒𝜆 = 𝑢𝜆/𝜈𝑒, where 𝑢 is the rms value of the velocity
fluctuations, and 𝜆 is the Taylor microscale of the velocity fluctuations characterizing the
inertial-range cutoff – Figure 1.15 – directly computable also in terms of suitably averaged
measures of the raw velocity data,

𝜆 =

[
𝑖=3∑︁
𝑖=1

√︃
⟨𝑢2
𝑖 ⟩/⟨𝑢𝑖,𝑖2⟩

]
/3. (1.13)

Wachtor et al. (2013) used established turbulence metrics and DNS data (Jiménez et al.,
1993) to show that a well-designed ILES can accurately capture the mixing transition and
asymptotic high-𝑅𝑒 self-similar behavior (Figure 1.2), in terms of this effective turbulence
𝑅𝑒.

1.3.3 Realizability Constraints for Subgrid-Scale Modeling
Mixing of a passive scalar 𝜃 by a fluctuating flow field is a classical problem in turbulence
and relevant in many industrial flow applications. Overholt and Pope (1996) conducted

https://doi.org/10.1017/9781009377379.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009377379.003


Numerical Simulations and Coarse-Graining 15

Figure 1.2 PDF of vorticity magnitude vs. 𝑅𝑒𝜆 for homogeneous isotropic turbulence. Reprinted
from Wachtor et al. (2013) with the permission of AIP Publishing.

DNS of 𝑆𝑐 ∼ 1 mixing of a passive scalar in the presence of a mean scalar gradient by
forced, spatially periodic, isotropic turbulence. In this flow, a statistically steady-state scalar
variance is achieved by balancing scalar variance production and dissipation. The passive-
scalar mixing problem was first investigated with LES by Pullin (2000), who predicted that
the normalized scalar variance asymptotically approaches a constant value as a function
of 𝑅𝑒 – Figure 1.3a. Uncertain nonconstancy of the highest-𝑅𝑒 DNS predictions (Gotoh
and Watanabe, 2012) are clearly apparent due to fairly different sampling times ranging
between 27 and 2.3 eddy-turnover times for 𝑅𝑒 between 174 and 586. Lower scalar variance
predictions with ILES in Figure 1.3a are attributed to differences in the forcing schemes
– and somewhat less to compressibility effects since the solenoidal velocity component is
responsible for the generation of a passive scalar flux and subsequent scalar stirring (Blaisdell
et al., 1994).

A scalar Taylor micro-scale, 𝜆𝜃 , can be defined in terms of the raw scalar simulation data as
its velocity analog 𝜆 – equation (1.13). The squared ratio of Taylor microscales, proportional
to the velocity-to-scalar dissipation time ratio ℛ, was also reported to be asymptotically con-
stant as function of 𝑅𝑒 by Pullin (2000), albeit comparisons with the early DNS (Overholt
and Pope, 1996; Yeung et al., 2002) were inconclusive – Figure 1.3b. Analysis of subse-
quent results from DNS (Gotoh and Watanabe, 2012) and theory (Ristorcelli, 2006) shows
the continued growth of ℛ consistent with high-𝑅𝑒 nonequilibrium dissipation variability
(Vassilicos, 2015b).

Figure 1.3b also shows that the ℛ results by Pullin (2000) rapidly decrease with 𝑅𝑒 when
the explicit scalar SGS model is turned off – whereas ILES also without an explicit scalar
SGS term (Wachtor et al., 2013) – exhibits neither decreasing nor asymptotically constant
behavior but shows continued growth over the simulated range of effective 𝑅𝑒 consistent
with the available high 𝑅𝑒 data. Associated with equilibrium dissipation actually built into
the LES modeling (Misra and Pullin, 1997), 𝑅𝑒-independence of ℛ for high 𝑅𝑒 is predicted
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Figure 1.3 Predictions vs. 𝑅𝑒. (a) Scalar variance. (b) Velocity-to-scalar dissipation time ratio.
Reprinted from Wachtor et al. (2013) with the permission of AIP Publishing.

by Pullin’s LES. On the other hand, equilibrium dissipation not built into DNS, theory, and
ILES allows variability of ℛ as a function of 𝑅𝑒 for high-𝑅𝑒.

Availability of more accurate high-𝑅𝑒 reference data would be clearly helpful to elucidate
these issues. However, on a more basic note, the fact that desirable modeling features can
appear naturally built into a numerically well-designed ILES – but not necessarily in a main-
stream classical LES strategy – reiterates a crucially required CG constraint: realizable CG
predictions must approach their well-established high fidelity counterparts as grid resolution
is refined.

1.3.4 Initial Conditions Modeling
Impact on Transition

Prescribing appropriate initial conditions is critical to emulate transition to turbulence (Dru-
ault et al., 2004; Verfaillie et al., 2006; Patnaik et al., 2007; Gowardhan and Grinstein, 2011;
Grinstein et al., 2011). Use of single-point data is insufficient to characterize initial condi-
tions and white noise fluctuations are inadequate because they quickly relaminarize. Initial
conditions having red noise fluctuation content involving characteristic finite wavelength
information on coherent structure turbulence (e.g., space and time correlations) are required.
Effective initialization strategies have been proposed and demonstrated (Druault et al., 2004;
Verfaillie et al., 2006).

Transition has been examined in the CG simulation context for the Taylor–Green vortex
(TGV). TGV is a well-defined flow initialized with 3D solenoidal initial conditions, used
as a prototype for vortex stretching, instability, and production of small-scale eddies to
examine the dynamics of transition to turbulence based on DNS (Brachet et al., 1983;
Frisch, 1995). The TVG case has also been used to demonstrate how convective numerical
diffusion effects of certain algorithms can be effectively used by themselves to emulate the
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dominant SGS physics of transition to turbulence for high (but-finite) 𝑅𝑒 flows (Drikakis
et al., 2007; Grinstein et al., 2011). The TGV transition involves successive vortex self-
inductions, stretching, and reconnections of counterrotating vortex pairs (Grinstein, 1995,
2001). The TGV involves triple-periodic boundary conditions enforced on a cubical domain
and a uniformly spaced computational grid. The flow is initialized with prescribed 2D or 3D
solenoidal velocity field conditions, and the pressure is a solution of the Poisson equation for
the given velocity field. An ideal gas equation of state for air and incompressible (Brachet
et al., 1983) or low-subsonic conditions have been considered (Drikakis et al., 2007; Grinstein
et al., 2011).

Grinstein (2017) exploited the simplicity of the TGV test case to inquire regarding the
effects of initial conditions dimensionality on transition to turbulence. Figure 1.4 shows visu-
alizations illustrating the evolution of the two TGV cases, both run under similar conditions
with ILES based on using the directionally split xRAGE code (Gittings et al., 2008; Grinstein
et al., 2011) on the same uniform 2563 grid. Figure 1.4b shows that there is transition and sig-
nificant enstrophy growth when 3D initial conditions and 3D flow physics are involved in the
simulations. By contrast, by imposing 2D initial conditions (Figure 1.4a), the numerically
induced white noise is insufficient to trigger vortex-dynamics-based cascade mechanisms
promoting the growth of 3D modes: The flow remains 2D – despite 3D convection being
allowed, with enstrophy remaining largely unchanged. These results demonstrate that initial
conditions’ dimensionality matters to transition to turbulence. We also noted such absence
of transition – in terms of insufficient enstrophy and turbulent kinetic energy production, in
3D simulations of laser-driven turbulent mixing starting from 2D initial conditions (Haines
et al., 2014).

Initial Material Interface Conditions: Bipolar Richtmyer–Meshkov
Accurate and reliable simulation of material interfaces is essential to simulating material
mixing dynamics. Material interfaces can be miscible or immiscible, with the character
changing during the evolution of a system. This causes numerical approximations to the flow
physics to be extremely challenging because the basic features of the approximations need
to be dynamic, that is, adapt to the evolution of the materials. For example, in applications
of interest such as inertial confinement fusion capsule implosions, an interface may begin as
sharp and immiscible (solid/gas) and then evolve into a state where it mixes at an atomic level
with neighboring material due to the effects of temperature and diffusion, or as it becomes a
plasma.

Detailed material interface characteristics are initial conditions for the flow instabilities,
and among the most crucial issues associated with these details is the sensitivity of late-
time consequences to initial conditions specifics: Small variations in the initial state of the
interface can result in quite significant changes to even the integral character of a mixing
layer at late-times (George, 1989; Grinstein et al., 2011).

Initial material interface morphology controls the evolution of the RMI; distinctly different
growth rate trends and material mixing consequences result depending on whether first-
shocked relatively flat thin material interfaces or reshocked interfaces highly corrugated
and nonlinear from the outset are involved; this so-called bipolar behavior of RMI presents
significant challenges for moment closure modeling, and for its verification, validation, and
uncertainty quantification metrics (Ristorcelli et al., 2013). Miscible gas–material interface
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Figure 1.4 Taylor–Green Vortex starting from 2D (a) and 3D (b) initial conditions. Reprinted from
Grinstein (2017), with permission from Elsevier; see the paper for details.

modeling strategies have used various superpositions of perturbation modes (Grinstein, 2016)
in the simulation of shock-driven turbulence.

The initial interfacial morphology can be statistically characterized by the initial root-
mean-square (𝑟𝑚𝑠) slope, 𝜂𝑜 = 𝜅𝑜 𝛿𝑜 ∼ [∇𝜒∇𝜒]1/2, where 𝜒 is the local deviation of the
initial material interface around the mean interface location, 𝜅𝑜 = 2𝜋 𝜆𝑜,𝜆𝑜 is a representative
wavelength of the multiscale perturbation in the initial interface and 𝛿𝑜 = 𝛿(𝑡 = 0) denotes the
initial interface thickness (Figure 1.5). High value of 𝜂𝑜 denotes highly corrugated interfaces
with high 𝑟𝑚𝑠 slope (Figure 1.6).

Figure 1.5 Schematic of interface morphology characterization. Reprinted from Gowardhan et al.
(2011), with the permission of AIP Publishing.

Following Richtmyer (1960), the passage of a shock through the material interface has
the effect of having deposited baroclinic vorticity growing as ∼ 𝜂𝑜. For low 𝜂𝑜, less baro-
clinic vorticity is generated. When the initial characteristic wavelength is greater than its
characteristic amplitude, crests and troughs are well separated, and vortices are weaker and

https://doi.org/10.1017/9781009377379.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009377379.003


Numerical Simulations and Coarse-Graining 19

Figure 1.6 The bipolar RM behavior (Gowardhan et al., 2011; Ristorcelli et al., 2013); initial
interface conditions are depicted on the top and instantaneous mix visualizations 3,000 μs are shown
below. Reprinted from Gowardhan et al. (2011), with the permission of AIP Publishing.

consequently do not interact strongly. In this low 𝜂𝑜 regime, the modes mainly grow in the
shock direction in a ballistic (noninteracting) fashion. For high 𝜂𝑜, more baroclinic vorticity
is generated. The initial characteristic wavelength is less than its characteristic amplitude,
thus, crests and troughs of the perturbations are closer together, and the vortices are stronger
and create new modes through nonlinear processes. For these flows, there is rapid production
of smaller scales consistent with a transition to turbulence. The borderline case is 𝜂𝑜 ≈ 𝜋.

Figure 1.7 The bipolar RM behavior (Gowardhan et al., 2011). Evolving mix widths vs. time plotted
in dimensional (a) and nondimensional form (b). Reprinted from Gowardhan et al. (2011), with the
permission of AIP Publishing.

Distinctly different instability behaviors arise depending on initial 𝑟𝑚𝑠 interface slope 𝜂𝑜
– linear RMI for low 𝜂𝑜 and nonlinear RMI for high 𝜂𝑜. Despite the similarity in problem
geometry, linear and nonlinear RMI share no dynamical or statistical features. We recognize
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the nonlinear RMI as occurring when a high-𝜂𝑜 interface is first-shocked (Gowardhan et al.,
2011) and in the reshock situations (Ristorcelli et al., 2013). Both latter configurations involve
high initial 𝑟𝑚𝑠-slope 𝜂𝑜, both exhibit the same scalings and collapse of data and are also
very different from the low-𝜂𝑜 (linear) RMI. A simple way to demonstrate the very large
physical differences between linear and nonlinear RMI is with the first-shocked problem,
shown in Figure 1.7 from Gowardhan et al. (2011) and its trends with 𝜂𝑜. Instantaneous
visualizations of at the selected time, 𝑡 = 3,000 μs shown in Figure 1.6 suggest material
(interpenetration) mixing increasing with 𝜂𝑜.

1.3.5 Late-Time Predictions
The shock-accelerated material interface with a high initial 𝑟𝑚𝑠 slope is (by far) the most
challenging known example of acute sensitivity to initial conditions. This is due to the large
amplification a shock has on the various parameters of the initial interface and the fact
that the problem actually comprises a group of instabilities – beyond just the linear RMI.
Extreme sensitivity to material interfacial conditions at reshock time (Gowardhan et al.,
2011; Gowardhan and Grinstein, 2011; Ristorcelli et al., 2013) raises late-time predictability
issues.

Figure 1.8 Mix width thickness (a), bulk 𝑅𝑒 (b) and turbulent eddy viscosity (c) for
shocked/reshocked planar shock tube ILES (reshocked at 𝑡 3,700 μs) as a function of initial 𝑟𝑚𝑠
slope 𝜂𝑜 – see Ristorcelli et al. (2013). Arrows indicate the direction of increasing initial 𝑟𝑚𝑠 slope
𝜂𝑜, and 𝐾 denotes turbulent kinetic energy. Reproduced from Ristorcelli (2016).
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The impossibility of very long-range weather forecasting (Lorenz, 1963), appropriately
comes to mind here. Because of chaotic variability associated with unavoidable small pertur-
bations (uncertainties) of presumed SGS and SPG conditions, it may become impossible –
even within a mathematically well-posed dissipative flow simulation framework – to provide
realistic late-time solutions to address questions of interest (e.g., very-long-range weather
forecasting).

Figure 1.8 from Ristorcelli et al. (2013) shows the results of shocking a planar interface
twice: first-shocked at 𝑡 = 0, at which time initial 𝑟𝑚𝑠 slope is in the linear RMI regime, and
reshocked at 𝑡 3,700 ms, at which time the material interface has high initial 𝑟𝑚𝑠 slope. We
plotted as functions of time, mix-layer width, bulk 𝑅𝑒, and turbulent eddy-viscosity – used
to scale nonlinear-to-linear interactions of the flow. After reshock, mixed layer response and
growth trends are hugely different. The various cases in Figure 1.8 have similar values of
layer thickness and eddy viscosity at reshock time – followed by rapid divergence of metrics
trajectories, indicating that simple initial conditions characterization in terms of mix width
and kinetic energy – typical with engineering turbulence models, is insufficient.

The predictability problem manifests itself as a rapid divergence of the trajectories and de-
pends on subtleties of the balance of various possible instability mechanisms (beyond linear
RMI) during enstrophy deposition and generation in high 𝑟𝑚𝑠-slope interfaces in ways that
are unknown. Such sensitivity to initial conditions at reshock is also observed in other config-
urations (Gowardhan and Grinstein, 2011; Balasubramanian et al., 2012) and raises serious
questions regarding repeatability of numerical and laboratory experiments and requirements
to achieve predictability for the problem at hand: What are appropriate reduced models
for the initial conditions? What are appropriate ensemble averages of solutions covering the
relevant initial condition variability? What are usefully complete set of convergence metrics?

1.4 Coarse-Graining Shocked Gas Curtain Turbulence
Shocked gas curtain (GC) experiments at LANL were designed to validate simulation model
capabilities (Balakumar et al., 2008; Orlicz et al., 2009). The SF6 GC (Figure 1.9) is formed
by forcing SF6 through a linear arrangement of round nozzles into the shock-tube test section;
the GC is stabilized using co-flowing air and suction at the bottom of the curtain (Balakumar
et al., 2008). The developed GC is shocked (Ma = 1.2), and its later evolution subject to
RMI, transition, and nonequilibrium turbulence phenomena is investigated. Analysis in the
laboratory experiments is based on particle image velocimetry and planar laser-induced
fluorescence data acquired at the selected horizontal plane, 2 cm below the beginning of the
GC (Figure 1.9). Typically, available data involves intensities (relative SF6 concentration) at
the plane of measurement. The GC can be reshocked at times controlled by the location of
a reflecting wall to examine the effects of initial conditions at reshock time on turbulence
development and mixing.

Our strategy was to produce a well-defined starting GC with realistic 3D initial conditions
characteristics for the LES studies. We carried out separate GC simulations to emulate the
physics of a mixture of SF6 and air falling through the shock-tube test section constrained
by the available laboratory GC information (Gowardhan and Grinstein, 2011). Various ways
of superimposing synthetic noise to the baseline varicose (nonperturbed) simulated GC
were also additionally tested. Configurations with carefully controlled initial conditions were
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considered, differing from each other on the specifics of modeled low-amplitude multimode
fluctuations. This was achieved: (𝑎) by slightly offsetting the nozzles in the shock (𝑥1)
direction and (𝑏) by adding 3D perturbations to the initial (simulated) GC concentration
field.

Figure 1.9 (a) Steady-state GC in terms of SF6 volume of fraction distributions, (b) schematic of
experiments. From Gowardhan and Grinstein (2011), reprinted by permission of the publisher.

1.4.1 Hydrodynamics Modeling and Mach Number Effects
To investigate the impact of the numerical scheme on the GC predictions, Pereira et al.
(2020) conducted a series of studies based on three distinct numerical approaches: (i) the
HLL (Harten et al., 1983) Riemann solver applying Strang splitting and a Lagrange-plus-
Remap formalism (Colella, 1982; van Leer, 1997) to solve the directional sweep (see Gittings
et al. (2008) for details); (ii) the HLLC (Toro et al., 1994) Riemann solver using a direc-
tionally unsplit strategy and parabolic reconstruction (Colella and Woodward, 1984); and
(iii) the HLLC (Toro et al., 1994) Riemann solver using a directionally unsplit strategy,
parabolic reconstruction (Colella and Woodward, 1984), and added low-Mach correction
(LMC, Thornber et al. 2008) explicit SGS model. The numerical schemes are denoted split,
unsplit, and unsplit*, respectively.

Directionally unsplit algorithms are needed when distortions introduced by split schemes
are unacceptable: for incompressible or nearly incompressible flows and magnetohydrody-
namic systems – where solenoidal conditions must be captured, and for flows involving a
high degree of initial symmetry as with inertial confinement fusion capsule implosions –
Chapter 16.

By incorporating the LMC SGS model, we additionally address the problem of leading
numerical dissipation ∼ 𝑀𝑎−1 associated with upwinding in shock-capturing schemes at low
Ma – Section 1.4.3. LMC unsplit hydrodynamics accurately captures the physical effects of
vortex stretching and other basic flow instabilities driving mixing in the low-Ma regimes
where most mixing of interest occurs, resulting in further improved accuracy relative to the
default (split) hydrodynamics for significant computational cost savings (Grinstein et al.,
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Table 1.1 Numerical Hydrodynamics Details.

Solver Splitting operator Remap LMC

Split HLL Split Lagrange No ILES
Unsplit HLLC Unsplit Direct Eulerian No ILES
Unsplit∗ HLLC Unsplit Direct Eulerian Yes LES

2019, 2023). The main characteristics of these schemes are summarized in Table 1.1, and
their comprehensive description is given by Gittings et al. (2008) and Grinstein et al. (2019).
The main results of this study are summarized in what follows – see Gowardhan and Grinstein
(2011) and Pereira et al. (2020) for more details.

The GC evolution predicted by the three numerical schemes is plotted in Figure 1.10. The
results are compared against the experiments of Balakumar et al. (2008). In Figure 1.10, the
GC is defined by the concentration intensity of SF6, 𝐼SF6 = (𝑐SF6)/(𝑐SF6)max, measured at the
plane 𝑥3 = 20 mm. Figure 1.10 indicates that the results of the three numerical schemes are
in good agreement before reshock, and show small discrepancies against the experimental
observations. At 𝑡 = 0, the varicose GC is at rest, and the shock wave is about to strike
it. For later times, the shock-wave passes through the GC, leading to its compression and
deposition of vorticity at the fluids’ interface by baroclinic mechanisms (𝑡 = 20 μs). This
triggers the mixing of the two fluids. The numerical predictions exhibit a strong dependence
on the numerical scheme, which affects their agreement with the experiments. Compared
to the unsplit schemes, the split scheme predicts a thinner mixing layer than that reported
experimentally, which is featured by a heterogeneous mixture where it is possible to observe
lumps of fluid. In clear contrast, the simulations based on the more accurate unsplit schemes
agree significantly better with the laboratory experiments. Only the unsplit* scheme can
predict the cloud-like, depicting the small-scale mixing features observed in the experiments.

The three numerical schemes lead to fairly similar values of Ma for the simulated time
(Pereira et al., 2020). Whereas Ma does not exceed 0.40 before reshock, it remains under 0.10
after reshock and can even reach 0.04 at 𝑡 > 820 μs (Pereira et al., 2020). This is a reduction
of one order of magnitude to values of Ma typical of incompressible flow. Given, as noted,
that local numerical diffusion in simulations using upwinding schemes typically scales with
𝑀𝑎−1 (Book et al., 1991; Guillard and Murrone, 2004; Thornber et al., 2008), we attributed
the local differences between late-time solutions to different local magnitude of 𝑀𝑎. At such
times after reshock, O(𝑀𝑎) = 10−2 so that the characteristic numerical diffusion in the split
and unsplit computations is thus expected to be significantly larger than that for unsplit*. This
highlights the crucial role of the LMC (Thornber et al., 2008) in improving the simulations’
quality.

1.4.2 Effective Reynolds Number (Ree)
One of the main consequences of modeling a fraction of the turbulence spectrum is the
reduction of the flow effective Reynolds number, 𝑅𝑒e,

𝑅𝑒e =
𝑢𝐿

𝜈e
. (1.14)
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Figure 1.10 Evolution of the SF6 intensity 𝐼SF6 for distinct numerical schemes (Pereira et al., 2020)
and experiments (Balakumar et al., 2008). Reprinted from Pereira et al. (2020), with permission from
Elsevier.

This is driven by the increase of the flow effective viscosity, which is responsible for dimin-
ishing the computational requisites of the simulations. In equation (1.14), 𝐿 is a reference
length scale, 𝑢 is the velocity scale, and 𝜈𝑒 is the flow effective viscosity, which entails the
molecular 𝜈 (fluid), numerical 𝜈𝑛 (numerical truncation), and turbulent 𝜈𝑡 (closure) kinematic
viscosities.

Although such modeling strategies are of importance to the simulation of practical flow
configurations, an excessive reduction of 𝑅𝑒e may preclude the precise prediction of the se-
lected problem by suppressing fundamental flow processes such as instabilities and coherent
structures. Pereira et al. (2018, 2019) demonstrated the relevance of this aspect by identifying
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Figure 1.11 Evolution of the mixing-layer width 𝑤 with various numerical schemes (Pereira et al.,
2020); experiments from Balakumar et al. (2008). Reprinted from Pereira et al. (2020), with
permission from Elsevier.

the coherent structures governing the flow dynamics around circular cylinders in subcritical
regimes, and estimating the minimum 𝑅𝑒e (from experiments) to capture such phenomena.

As the present flow dynamics at late-times is governed by presumably turbulent mixing
layers, we can now correlate the outcome of the three schemes with the magnitude of 𝑅𝑒e. To
this end, the effective computational Reynolds number 𝑅𝑒e can be estimated as in Grinstein
et al. (2019) – following Zhou et al. (2014),

𝑅𝑒e =
6𝑤2

𝑘
𝑠𝑖 𝑗 𝑠𝑖 𝑗 , (1.15)

where 𝑤 is a mixing width measure (Figure 1.11), 𝑘 is the total kinetic energy defined
as 𝑘 =

∑
𝑢2
𝑖 /2, and 𝑠𝑖 𝑗 is the strain-rate tensor. We emphasize that 𝑘 and 𝑠𝑖 𝑗 consider

the complete velocity field – mean, coherent, and turbulent (Hussain and Reynolds, 1970;
Schiestel, 1987), so that the estimated 𝑅𝑒e represents an upper limit for its magnitude.

Figure 1.12 shows the temporal evolution of 𝑅𝑒e obtained with the three numerical
schemes. Until reshock, the results indicate that 𝑅𝑒e is clearly inferior to the Dimotakis’
mixing transition 𝑅𝑒 (Dimotakis, 2000) – 𝑅𝑒c = 1.0 × 104 and 2.0 × 104. By contrast, the
predictions of the three schemes show distinct tendencies after reshock. The results show
that 𝑅𝑒e for split scheme calculations is always significantly lower than the critical Reynolds
number 𝑅𝑒c. This is the reason why the mixing layer predicted by this scheme does not
exhibit high-intensity turbulence flow features or a homogeneous mixture.

On the other hand, the simulation based on the unsplit scheme exceeds the lower limit of
the 𝑅𝑒c band at 𝑡 > 800 μs but not its upper limit. In comparison to split, this explains the
quality enhancement observed in unsplit predictions. Yet, the fact that 𝑅𝑒e is within the lower
and upper limits of 𝑅𝑒c suggests that the observed low degree of heterogeneity is caused
by the magnitude of 𝑅𝑒e. Finally, Figure 1.12 indicates that only the unsplit* scheme can
clearly exceed the 𝑅𝑒c after the reshock. For instance, it is observed that 𝑅𝑒e is almost two
times larger than 𝑅𝑒c at 𝑡 = 800 μs. The larger values of 𝑅𝑒e enable unsplit* computations
to better simulate the turbulent mixing layer of the present flow.
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Figure 1.12 Temporal evolution of the effective Reynolds number, 𝑅𝑒e, for distinct numerical
schemes. Reprinted from Pereira et al. (2020), with permission from Elsevier.

1.4.3 Vorticity Production Budget
Next, we investigate the effect of the numerical hydrodynamics scheme on the inviscid
mechanisms contributing to the production of vorticity. This constitutes a crucial step in
interpreting the results because the shock-driven mixing problem is triggered by baroclinic
deposition of vorticity at the fluids’ interface and depends on the vorticity dynamics. The
evolution of the dominant inviscid mechanisms responsible for vorticity production,𝜔, in the
mixing layer (shockwise direction) is depicted in Figure 1.13 (Pereira et al., 2020). Vorticity
production mechanisms are stretching, 𝑆𝑖, dilatation, 𝐷𝑖 and baroclinic, 𝐵𝑖,

𝑆𝑖 = 𝜔 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

, (1.16)

𝐷𝑖 = 𝜔𝑖
𝜕𝑢 𝑗

𝜕𝑥 𝑗
, (1.17)

𝐵𝑖 = 𝑒𝑖 𝑗𝑘
1
𝜌2
𝜕𝜌

𝜕𝑥 𝑗

𝜕𝑝

𝜕𝑥𝑘
, (1.18)

so that,
𝜕𝜔𝑖
𝜕𝑡
+ 𝑢 𝑗 𝜕𝜔𝑖

𝜕𝑥 𝑗
∼ 𝑆𝑖 − 𝐷𝑖 + 𝐵𝑖, (1.19)

where 𝜔𝑖 is the Cartesian component of the vorticity vector. The terms 𝑆𝑖 and 𝐷𝑖 are
responsible for the production of vorticity by vortex stretching (Tennekes and Lumley, 1972;
Davidson, 2006) due to velocity gradients and compressibility effects, and 𝐵𝑖 represents
baroclinic production of vorticity driven by the misalignment of the pressure and density
gradients.

Figure 1.13 shows that production of vorticity in the mixing layer is governed by the
baroclinic mechanism up to reshock time, for 𝑡 < 600 μs. This behavior is observed for all
numerical schemes and also for the other cartesian coordinates 𝑥𝑖. However, the influence
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Figure 1.13 Temporal evolution of the 𝑥1 component vorticity production terms (𝑆1, 𝐷1, and 𝐵1);
left frame: split; right frame: unsplit*. Reprinted from Pereira et al. (2020), with permission from
Elsevier.

of each production mechanism and numerical scheme in the vorticity dynamics changes
after reshock (𝑡 > 600 μs), and vorticity production experiences a substantial increase after
reshock. This tendency is independent of 𝑥𝑖 (Pereira et al., 2020, 2021) and numerical scheme.

The most significant result in Figure 1.13 is the fact that the values of 𝑆1 and𝐷1 can surpass
those of 𝐵1 by more than one order of magnitude. This occurs for the unsplit* scheme, it is
independent of the Cartesian component (Pereira et al., 2020, 2021) and demonstrates that
the production of vorticity at late-times is governed by stretching and dilatation mechanisms.
This is typical of turbulent flow. Figure 1.13 also shows that the magnitude of the production
mechanism depends on the numerical scheme.

Whereas split leads to similar values of the three vorticity production mechanisms, the
unsplit schemes predict substantially larger contributions of 𝑆1 and 𝐷1 than 𝐵1. As we switch
from split to unsplit*, the relative importance of 𝑆 and 𝐷 grows in relation to 𝐵. This
explains the larger unsteadiness of unsplit* solutions since 𝑆 and 𝐷 are closely dependent on
the turbulent field. Overall, the vorticity production budgets shown in Figure 1.13 reiterate
the close relation between the numerical scheme and the quality of the predictions. The
numerical hydrodynamics can alter fundamental mechanisms governing the flow dynamics.

1.4.4 Bipolar Richtmyer–Meshkov Behavior
Despite the significantly more complex GC shock-tube configuration having fairly different
features (separate and diffused initial material interfaces in the GC versus single material
interface in the planar shock tube), we found it possible to also demonstrate a similarly useful
realization of the bipolar RM initial conditions parameterization and data reduction in terms
of an appropriate characteristic single parameter (Gowardhan and Grinstein, 2011) – Figure
1.14.
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Figure 1.14 Bipolar Richtmyer–Meshkov for the double-interface GC shock tube from Gowardhan
and Grinstein (2011). The 𝑟𝑚𝑠 slope parameter 𝜂𝑜 = 𝜅𝑜 𝑤𝑜 is defined in terms of the jets’ separation
2𝜋/𝜅𝑜 and jet diameter 𝑤𝑜. From Gowardhan and Grinstein (2011), reprinted by permission of the
publisher.

1.5 Dynamic Coarse-Grained Turbulent Mixing
Strategies bridging LES and RANS are being actively pursued for aerospace and automobile
full scale simulations (Frolich and von Terzi, 2008) – albeit RANS is still widely used.
Blended hybrids such as the flow simulation methodology (FSM, Speziale 1998; Fasel and
von Terzi 2006) scale closure terms on RANS equations by a contribution function 0 <
𝑓 (Δ/𝐿) < 1, where Δ is the local grid size and 𝐿 is a reference bridging length. The balance
between modeled and computed dissipation is based on the RANS stress model 𝑅𝑚𝑖 𝑗 locally
morphing into SGS Favre-averaged LES stress SGS model 𝑅𝑠𝑖 𝑗 ,

𝑅𝑠𝑖 𝑗 ≡ 𝑓 (Δ/𝐿) 𝑅𝑚𝑖 𝑗 , (1.20)

where the contribution function 𝑓 (Δ/𝐿) vanishes in the high fidelity limit (Δ → 0) and
approaches unity at the low-resolution limit (pure RANS). Formal relations such as (1.20) –
involving ensemble-averaged RANS and spatially filtered LES quantities are interpreted in a
generalized-function (integral) sense. Hybrids exploit the structural similarity of equations for
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RANS and LES and use relationships between filtering and averaging operations (Germano,
1992).

Flow simulation methodology was originally intended to locally bridge DNS and RANS
as a function of grid resolution. More generally, FSM can be used to locally blend a high-
fidelity simulation strategy with RANS to generate a sophisticated LES strategy in between.
The issue of interest is the computation of the dissipation, which must be supplemented by
the model for underresolved flow conditions. For sufficiently fine resolution, the dissipation
range is resolved, and the RANS contribution should switch itself off – that is, 𝑓 (Δ/𝐿) → 0
as Δ → 0. In the FSM approach first proposed by Speziale (1998) – and subsequently
pursued in various forms by others, empirical ad hoc forms for the contribution function 𝑓
were prescribed.

Dynamically solving for the contribution function based on decomposing the full stress
into modeled and resolved components and using a differential filter as secondary filtering
operation to define the resolved part was first proposed by Germano (1998) and recently
extended by Grinstein et al. (2020, 2021) by additionally requiring the resolved stress to
approach the full stress with grid resolution refinement to ensure realizability of the bridging-
based LES. In our dynamic FSM paradigm for turbulent material mixing applications, the
full stress is decomposed in terms of modeled 𝑅𝑠𝑖 𝑗 and resolved 𝑇𝑖 𝑗 parts,

We use LMC-xRAGE LES as a high-resolution limit strategy, there is no additional explicit
SGS model to that provided by the LMC, and the hybrid 𝑅𝑠𝑖 𝑗 is directly related to the RANS
stress 𝑅𝑚𝑖 𝑗 in terms of 𝑓 through (1.20),

𝑅 𝑓 𝑢𝑙𝑙𝑖 𝑗 = 𝑅𝑠𝑖 𝑗 + 𝑇𝑖 𝑗 . (1.21)

For consistency and realizability of the generated LES in approaching the high-resolution/
fidelity limit, we require that 𝑇𝑖 𝑗 → 𝑅 𝑓 𝑢𝑙𝑙𝑖 𝑗 as Δ/𝐿 → 0. We enforce this additional modeling
constraint, in terms of 𝛾 = (Δ/𝐿)𝑙, for 𝑙 ≥ 1, by assuming that 𝑅 𝑓 𝑢𝑙𝑙𝑖 𝑗 can be approximated by
a resolution-dependent weighted-average of the RANS and resolved stresses,

𝑅 𝑓 𝑢𝑙𝑙𝑖 𝑗 ∼ 𝛾𝑅𝑚𝑖 𝑗 + (1 − 𝛾)𝑇𝑖 𝑗 . (1.22)

We substitute equation (1.20) into (1.21), use equation (1.22), and after contracting with a
generic tensor quantity 𝑞𝑖 𝑗 – for example, 𝑞𝑖 𝑗 = 𝑇𝑖 𝑗 , we solve for 𝑓 ,

𝑓 (Δ/𝐿) = 𝛾{1 − [ 𝑞𝑖 𝑗𝑇𝑖 𝑗 ]/[ 𝑞𝑖 𝑗𝑅𝑚𝑖 𝑗] . (1.23)

By design, the contribution function enforces realizability of the bridging-based LES through
(1.20) in the high fidelity limit Δ→ 0, when LES→ DNS. The choice of 𝑙 controls how the
LMC LES SGS model is supplemented by the explicit SGS model generated by the bridging
strategy for intermediate resolutions. For xRAGE numerics – first-order near shocks and
second-order in smooth flow regions, 𝑙 ≥ 2 is a suitable choice.

Large eddy simulation is based on the newly available directionally unsplit LMC-xRAGE
numerical hydrodynamics (Grinstein et al., 2019, 2020, 2021). The default second-order
split xRAGE hydrodynamics (Gittings et al., 2008) was used in our earlier sequential hybrid
ILES/RANS simulations of the shock-tube laboratory experiments (Grinstein, 2017) running
pure ILES at early times to generate RANS initialization at selected prescribed start time.
The present blended LES/RANS paradigm acts at all times, as well as the LES used as a
reference. For consistency, we also require 𝑓 ≡ 1 for 𝛾 ≥ 1.
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A detailed discussion of derivations and BHR initialization issues can be found in Grinstein
et al. (2020, 2021). The Dynamic BHR formalism uses the Besnard–Harlow–Rauenzahn
(BHR) multi-equation RANS framework (Besnard et al., 1992) in the BHR3.0 version
(Schwarzkopf et al., 2011; Haines et al., 2013). Similar BHR extensions with the more recent
BHR3.1 (Schwarzkopf et al., 2016) version are expected to be straightforward.

In the original FSM modeling bridging DNS and RANS (Speziale, 1998; Fasel and
von Terzi, 2006), the bridging lengthscale 𝐿 was an estimated Kolmogorov length scale.
Choosing 𝐿 ∼ Kolmogorov scale amounts to choosing 𝐿 as the smallest hydrodynamic
length scale in the turbulent flow, or, a small fraction of the Taylor microscale characterizing
the smallest vortices of the turbulence. Likewise, for bridging LES and RANS, a computed
Taylor microscale of the velocity fluctuations (𝜆𝑐) characterizing the CG simulations cutoff
and simulated turbulence can be usefully considered (see Figure 1.15). Such computed Taylor
microscale 𝜆𝑐 can be directly evaluated in terms of suitable volumetric-averaged functions
of the raw velocity data {𝑢𝑖} (Wachtor et al., 2013) – equation 1.13. As 𝜆𝑐 is typically found
to be ≳ 10 cells for LMC-xRAGE LES (Grinstein, 2020), choices of 𝐿 ∼ few cells in what
follows, amount to choosing 𝐿 as small fraction of 𝜆𝑐.

1.5.1 Planar Shock Tube
We revisit the planar shock-tube laboratory experiments by Poggi et al. (1998), involving
high (SF6) and low (air) density gases, Atwood number, 𝐴𝑡 = 0.67, presumed geometries of
the membranes and the wire mesh initially separating the gases, and reshock off an end-wall.

Figure 1.15 Bridging length 𝐿 for RANS/DNS and RANS/LES hybrids. Reprinted from Grinstein
(2020), with permission from Elsevier.
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Figure 1.16 Schematic of the planar shock tube configuration.

A shocked 𝑆𝐹6 region is created upstream in terms of a higher-density higher-pressure 𝑆𝐹6
region for a Mach 1.45 shock (strength 0.54). The planar primary shock propagates in the
through unshocked 𝑆𝐹6 , and then through the 𝑆𝐹6 /Air contact discontinuity. The shock
propagates through the contact discontinuity and reflects at the end of the simulation box,
where purely reflecting boundary conditions are enforced (Figure 1.16).

Early (0.05 mm resolution) planar shock-tube simulations by Mugler and Gauthier (2000)
were based on the 2D NSE. In the more recent sequential xRAGE-ILES/BHR-RANS hy-
brid simulation studies (Grinstein, 2017), xRAGE-ILES generated data was used to provide
physics-based initial conditions to BHR-RANS just before first reshock and was also used
as a reference for its assessment. By prescribing ILES-generated 3D initial conditions and
allowing for 3D convection with just enough resolution in Grinstein (2017), the computed
dissipation in 3D RANS (vs. 2D RANS) was found to effectively supplement the modeled
dissipation following 1st reshock. However, 3D RANS cannot resolve the subsequent conse-
quences of a new transitional flow event at second reshock (Grinstein, 2017). This limitation
is typical of a standalone RANS and motivates our pursuit of blended LES/RANS capable of
dynamically adapting the simulation model to local flow conditions for applications driven
by multiple shocks.

Spectral content and standard deviation are prescribed for the initial material sharp-
interface conditions (Grinstein, 2017), in terms of superposition of six equally weighed
wavelengths in the neighborhood of characteristic initial egg-crate length and mix thickness,
ℎ, and red-noise∼ 𝑘−2 deformations with standard deviation 0.04ℎ – with shortest wavelength
of at least four coarsest cells.

Mix width, as well as velocity magnitude and variance data from the experiments (Poggi
et al., 1998; Mugler and Gauthier, 2000) are used for benchmarking the LMC-xRAGE LES
predictions (Grinstein et al., 2021). In turn, the LES results can then be used as a detailed
reference for dynamic bridging mixing predictions – all generated with the same domain,
same resolutions, and same initial and boundary conditions.

Compared to the laboratory experiments (Poggi et al., 1998), the computational domain in
the present simulations (Figure 1.16) had the same (30 cm) initial interface-to-wall distance.
As runtime compromise – as in Grinstein (2017), we focused again on the center 5 × 5 cm
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transverse portion of the laboratory channel window section with periodicity imposed in
the transverse (𝑦, 𝑧) directions – in contrast with 8 × 8 cm channel cross-section limited by
no-slip wall boundaries in the laboratory experiments.

Late-time discrepancies between computational and laboratory studies can be again ex-
pected due to effectively different boundary conditions in transverse directions and unac-
counted effects of near-wall momentum deficit in actual experiments (Mugler and Gauthier,
2000). Grinstein (2017) found such disagreements after first reshock, for times ⪆ 1.4 ms.

The initial material interface thickness 𝛿𝑜 in the laboratory experiments is not reported
in the original paper (Poggi et al., 1998) and was chosen in Mugler and Gauthier (2000) to
be a fraction of the egg crate wavelength in the laboratory experiments (ℎ = 1 mm). The
convenient computational resolution choice here is to use a single length scale for initial
conditions, with the same characteristic initial wavelength ℎ also used to prescribe 𝛿𝑜 = ℎ.

1.5.2 Large Eddy Simulation Validated with Experiment
The present 3D simulations use between two and eight levels of adaptive mesh refinement
(AMR) with the finest resolutions ranging between 0.2 mm and 0.05 mm, respectively; the
(more practically motivated) 3D dynamic xRAGE-BHR bridging simulations below use 2–4
levels of AMR with 0.100–0.200 mm resolution. The simulations typically used ∼0.1 Billion
(0.2 mm resolution), ∼0.5B (0.1 mm resolution), and up to ∼5.2B (0.05 mm resolution) com-
putational cells. We use the third-order LMC xRAGE numerical hydrodynamics (Grinstein
et al., 2019, 2020) as main strategy – versus split second-order xRAGE used in Grinstein
(2017).

Figure 1.17 illustrates SF6 mass fraction distributions near first-shock time – reflecting
on initial conditions characteristics and at later times, before the first reshock and after the
second reshock. Figures 1.18 and 1.19 compare the axial velocity magnitude and variance
evolution versus those in the reported experiments (Mugler and Gauthier, 2000). As in the
experiments, Figure 1.18 shows a first velocity plateau near 130 m/s corresponding to air
accelerated by the incident shock wave, followed by a brief drop at 0 m/s corresponding to
air decelerated by the first reflected shock on the end wall, and then by a second perturbed
plateau which includes the crossing of the turbulent mixture reflecting gradually on the
density gradient in the turbulent mixing zone. The present mean axial-velocity results for
the latter plateau agree well with the experiments up to approximately 𝑡 ∼ 1.3 ms and then
agree with the theoretical mean velocity of 47 m/s computed in Poggi et al. (1998) based on
the Rankine–Hugoniot relations for transversely unbound flow (not affected by wall boundary
layers). Reported differences between laboratory measured mean velocity (59 m/s) and the
said theoretical expectation (47 m/s) have been attributed to the wall boundary-layer reversal
effects in the SF6 at shock crossing (Mugler and Gauthier, 2000). As noted, the present
simulations do not account for the wall boundary layer effects – and that consistently also
underlies the discrepancies with experiments in Figure 1.19 for 𝑡 ≳ 1.4 ms. In agreement
with the laboratory experiments, the second velocity plateau ends with the arrival of the
second reflected shock wave on the end wall. The presently reported computed axial-velocity
results are fairly independent of grid resolution.

Laboratory axial velocity variance (R11) data with ±15% estimated uncertainty was
reported at locations of 161, 169, and 178.5 mm (Poggi et al., 1998), covering a range where
turbulent mixing zone passages occur between its interactions with first and second reshock
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Figure 1.17 𝑆𝐹6 mass-fraction isosurface visualizations of 0.05 mm resolution LMC-xRAGE LES
predictions. Reprinted from Grinstein (2024), with permission from Elsevier.

Figure 1.18 Axial velocity magnitude at x = 161 mm, LMC-xRAGE LES vs. laboratory data.
Reprinted from Grinstein (2024), with permission from Elsevier.

associated with the reflected shocks. Laboratory transverse velocity variance (R22) data was
reported at the location 169 mm (Mugler and Gauthier, 2000; Grégoire et al., 2005). At the
location 161 mm – just after the first reshock, Figure 1.19 shows a strong increase of the axial
velocity variance was observed reaching a peak laboratory value of 117(m/s)2, as the axial
variance in the gaseous mixture has been excited by the first-reflected shock. Our results
for R11 are consistent with those reported in the laboratory experiments – particularly so
immediately after the first reshock (finest 0.1 mm and 0.05 mm resolution LMC-xRAGE LES
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Figure 1.19 Axial velocity variance at x = 161 mm, LMC-xRAGE LES vs. laboratory data.
Reprinted from Grinstein (2024), with permission from Elsevier.

results fall within reported ±15% uncertainty bar at the location 161 mm), and are fairly
stable as a function of grid resolution changes also for R22 (Grinstein et al., 2021). The
highest values for R11 occur mostly just after the first reshock as in Poggi et al. (1998).
The peak R22 values quoted in Mugler and Gauthier (2000) and Grégoire et al. (2005) are
fractions ∼ 1/3 of their R11 counterparts – which is also consistent with our findings.

1.5.3 Dynamic Bridging Mixing Validated with LES
As in Grinstein et al. (2020), our 3D Dynamic BHR simulations in this work use 𝑞𝑖 𝑗 = 𝑇𝑖 𝑗 in
conjunction with 𝑙 = 2. We used between 2 and 8 levels of AMR with the finest resolutions
ranging between 0.2 mm and 0.05 mm, respectively. More practically motivated Dynamic
BHR bridging simulations used 2–4 levels of AMR with the finest 0.100 mm resolution. The
shock-tube simulations used between 0.1 and 5.5 × 109 computational cells.

Mixing measures less sensitive to SGS contributions may enable accurate prediction of
quantities of interest with the bridging-based generated LES with less resolution than required
with the LES high-fidelity option. Such potential benefits were noted in (Grinstein et al.,
2020) with regard to having scalar-mixing predictions converged on coarser grids with the
more accurate LMC xRAGE. We examined the impact of bridging length 𝐿 choices in this
context.

Figure 1.20 shows the center plane predicted mass-fraction distributions associated with
dynamic bridging and LMC-xRAGE LES for the coarsest 0.2 mm resolution (two-level
AMR) case. Prediction accuracy is determined by the ability to capture the vortical structures
responsible for the onset and development of turbulence, and bridging modeling efficiency
is directly determined by how much less resolution is required to resolve the flow scales not
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Figure 1.20 Dynamic BHR vs. LES for 0.2 mm resolution (two-level AMR). Reprinted from
Grinstein (2024), with permission from Elsevier.

amenable to modeling (Pereira et al., 2018). Results with bridging length 𝐿 ∼ 2, and 𝐿 ∼ 4
(smallest) cells are shown at selected times before, after, and between the reshock events.

Varying the bridging length directly impacts the detailed captured content of space/time
fluctuations effects with Dynamic BHR. Figure 1.21 shows probability distribution functions
(PDF’s) of the contribution function 𝑓 over the whole 3D domain versus Δ𝑥/𝐿. Significantly
smaller values ( 𝑓 ∼ 0.1–0.3) indicate less contribution of RANS for Δ𝑥/𝐿 = 0.26, consistent
with the corresponding results in Figure 1.20 – for which case increased captured content of
space/time fluctuations effects are depicted. The suitability of this Δ𝑥/𝐿 sweet spot value is
confirmed below in terms of results for the chevron shock-tube case.

For the sake of quantitative mix analysis, we consider here a frequently used integrated
mixing measure (Hahn et al., 2011),𝑇𝑀𝑋 = 4

∫
𝜌2 𝑌 𝑎𝑖𝑟𝑌 𝑆𝐹6 𝑑𝑥, in terms of the mass density

𝜌, SF6 and air mass fractions 𝑌SF6 and 𝑌air = 1 − 𝑌SF6 , and using transverse-plane averaging,
𝜙(𝑥) =

∫
𝜙(𝑥, 𝑦, 𝑧) 𝑑𝑦𝑑𝑧 /

∫
𝑑𝑦𝑑𝑧.

The top portion of Figure 1.22 compares TMX versus resolution and bridging length 𝐿.
The ability of the dynamic bridging model to capture the basic mixing features with less
resolution is well apparent between first and second reshock, where the 0.2 mm and 0.1 mm
bridging predictions for Δ/𝐿 = 0.26 are in very good agreement with the finest (0.05 mm)
LES – suggesting preferred bridging/resolution trade-offs and robust mixing capturing with
coarser gridding. Accurate mixing predictions can be thus attained with dynamic BHR with
significantly less resolution than required with the highest-fidelity turbulence simulation
models typically used at scale with default xRAGE hydrodynamics (Grinstein et al., 2021).
Two levels of grid-coarsening savings are achieved for the improved mixing predictions: one
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Figure 1.21 Dynamic BHR shock-tube simulations; PDF of the contribution function vs. Δ𝑥/𝐿.
Reprinted from Grinstein (2024), with permission from Elsevier.

associated with the more accurate LMC-xRAGE hydrodynamics and an additional one from
using the dynamic xRAGE-BHR bridging.

Beyond the second reshock, bridging with 0.1 mm resolution andΔ/𝐿 = 0.26 still provides
good predictions – albeit RANS corrections to better converged (resolved) LES appear
unnecessary there. This is confirmed in the bottom part of Figure 1.22, where the focus is on
the case Δ/𝐿 = 0.26, and on examining dynamic BHR simulations restarted at time 1.65 ms
(before 2nd reshock) and continued thereafter with RANS contributions turned off (i.e., pure
ILES); significantly improved mixing predictions are thus achieved after second reshock for
both resolutions. The latter results suggest potential benefits of imposing additional late-time
constraints on 𝑓 , for example, by requiring that 𝑓 vanish at late-times when conditions are met
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Figure 1.22 TMX for LMC-xRAGE LES and Dynamic BHR vs. resolution for Δ/𝐿 = 0.26, 0.49
(top); for Δ/𝐿 = 0.26, results for dynamic BHR + late-time LES are also included (pure LES after
time 1.65 ms) – focusing on improved mixing prediction after second reshock (bottom). Reprinted
from Grinstein (2024), with permission from Elsevier.

in terms of a suitable progress variable characterizing transition and small-scale population –
for example, as a function of 𝜆𝑐.

On separate notes (Grinstein et al., 2021; Grinstein, 2024), the axial velocity variance
results between the first and second reshock exhibited similar velocity turbulence features
captured with dynamic bridging and ILES as a function of grid resolution, indicating that
the dynamic bridging modeling does not appear to provide much added improvement on
the turbulent velocity fluctuations predictions for a given resolution. This suggests that
exploring the use of an explicit SGS component in (1.20) using the extended dynamic bridging
formalism in Grinstein et al. (2021) may be warranted for the coarsest grid resolutions.
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Figure 1.23 Schematic of the chevron shock tube. Reprinted from Grinstein (2024), with permission
from Elsevier.

Figure 1.24 Chevron shock-tube Dynamic BHR simulation center plane mass-fraction visualization
results for Δ/𝐿 = 0.25. Reprinted from Grinstein (2024), with permission from Elsevier.

Contribution Function Analysis for the Chevron Shock Tube
The chevron shock-tube case (Hahn et al., 2011) – involving high (𝑆𝐹6) and low (air) density
gases initially separated by membranes and wire mesh is indicated schematically in Figure
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Figure 1.25 Chevron shock-tube Dynamic BHR simulations; PDF of the contribution function for
Δ/𝐿 = 0.25. Reprinted from Grinstein (2024), with permission from Elsevier.

1.23. The growth of the RMI and characteristic turbulent mixing measures are studied using
interface perturbations involving prescribed spectral content and standard deviation 𝑠.𝑑. The
SF6 and air are assumed to be initially in temperature and pressure equilibrium at 1 bar,
with densities of 6.34 kg/m3 and 1.184 kg/m3, respectively. A shocked air region is created
upstream in terms of a higher-density higher-pressure region chosen to satisfy the Rankine–
Hugoniot relations for a 𝑀𝑎 = 1.26 shock. The shock propagates in the (𝑥) direction
through the contact discontinuity and reflects at the right (reflective) boundary. Uniform
cartesian gridding with smallest grid sizes Δ of 1/16 cm and 1/32 cm were employed in
our earlier chevron simulations (Haines et al., 2013; Grinstein et al., 2019, 2020) having
Δ/𝐿 = 0.21, 0.10. AMR with grid sizes ranging between (1/4 cm – 1/16 cm) and (1/4 cm –
1/32 cm) and fixed Δ/𝐿 = 0.25 were considered.

Representative temporal evolution of center plane visualizations of SF6 mass-fraction
and 𝑓 distributions are shown in Figure 1.24. Corresponding full-domain PDFs of 𝑓 for
the selected times and both grid resolutions presented in Figure 1.25 indicate relatively
small RANS contributions ( 𝑓 < 0.3) for Δ/𝐿 = 0.25 – consistent with Δ/𝐿 = 0.26 being
a convenient working choice for Dynamic BHR for the planar shock-tube case. Finally,
sensitivities to grid resolution shown in Figure 1.26 clearly depict the robustness of the
late-time mixing predictions.

1.6 Outlook
Throughout our presentation, we have emphasized the inherently intrusive nature of coarse-
grained observations in computational and laboratory experiments, intimately linked to
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Figure 1.26 Chevron shock-tube Dynamic BHR simulations center plane mass-fraction
visualizations, late-time (𝑡 = 3.09 ms) sample results vs. grid resolution for Δ/𝐿 = 0.25. Reprinted
from Grinstein (2024), with permission from Elsevier.

their SGS and SPG specifics. Difficult challenges are then related to characterizing and
modeling unresolved SGS and SPG aspects and assessing uncertainties associated with CG
predictions and laboratory measurements. Suitable verification, validation, and uncertainty
quantification processes provide a rational basis to decide on CG modeling goodness for
its intended purpose. Issues of SGS modeling have motivated intense research in the last
four decades. Late-time (or far-field) sensitivity of observations to (SPG) initial and other
boundary conditions has also been recognized as a crucial aspect to be addressed.

Nondissipative SGS issues are presumably less important for high enough 𝑅𝑒 (large scale
separation) but need to be carefully addressed when relatively short-scale separations are
involved. Largely uncharacterized small-scale turbulence processes remain in the turbulent
variable-density context, including: effects of SGS perturbations to initial material interfaces;
effects of interacting shocks and sharp material interfaces with turbulence; baroclinic pro-
duction of vorticity and other effects of small-scale density variations; exothermicity effects
of chemical (or thermonuclear) reactions resulting from molecular scale material mixing.

Robust CG simulations for dissipative turbulent phenomena exhibiting enslavement of
small-scale dynamics are, in principle, achievable with suitable SGS modeling, enough
scale separation, and well-resolved IC. However, predictability assessments for high-𝑅𝑒
phenomena cannot be robust when inherent resolution sensitivities are present – while
nature controls the flow physics independently. If the initial conditions content in filtered-out
smaller and SGS spatial scales can significantly alter the evolution of the larger scales of
motion and practical integral measures, then the use of any CG strategy for their prediction
is dubious and not rationally or scientifically justifiable (Grinstein, 2009). These are serious
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concerns when coarse-grained observations are constrained by characterization and modeling
of intertwined SGS and SPG specifics.

Turbulent mixing modeling and predictability rely on the availability of big data from
computational and laboratory experiments. Fundamental issues of big data generation in-
volve characterizing and modeling the specific flow conditions at the SGS and SPG scales.
Big data purpose, generation, reduction, and organization are qualified by the very spe-
cific research questions of interest to be addressed and by the predictability metrics in the
associated verification, validation, and uncertainty quantification process. In practice, only
certain statistical predictions and big data types will be useful. Ensemble averaging solutions
over a suitably complete set of realizations covering initial conditions (and other) relevant
variability remains a data reduction strategy of choice.
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