
J. Appl. Prob. 47, 1084–1092 (2010)
Printed in England

© Applied Probability Trust 2010

DISCRETE SCAN STATISTICS GENERATED
BY EXCHANGEABLE BINARY TRIALS
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Abstract

Let {Xi}ni=1 be a sequence of random variables with two possible outcomes, denoted 0
and 1. Define a random variable Sn,m to be the maximum number of 1s within any m

consecutive trials in {Xi}ni=1. The random variable Sn,m is called a discrete scan statistic
and has applications in many areas. In this paper we evaluate the distribution of discrete
scan statistics when {Xi}ni=1 consists of exchangeable binary trials. We provide simple
closed-form expressions for both conditional and unconditional distributions of Sn,m for
2m ≥ n. These results are also new for independent, identically distributed Bernoulli
trials, which are a special case of exchangeable trials.

Keywords: Bernoulli sequence; exchangeable binary trial; reliability; scan statistics

2010 Mathematics Subject Classification: Primary 60E05; 62E15

1. Introduction

Scan statistics are used in diverse fields including epidemiology, molecular biology, reli-
ability, and quality control. In the literature, discrete and continuous scan statistics in one-
dimensional as well as multidimensional cases have been defined and extensively studied. For
excellent and comprehensive reviews of scans and their applications, we refer the reader to
Glaz et al. (2001), and Balakrishnan and Koutras (2002).

Let {Xi}ni=1 be a sequence of random variables with two possible outcomes, denoted ‘0’
(failure) and ‘1’ (success). The discrete scan statistic of window size m for the sequence
{Xi}ni=1 is defined as

Sn,m = max

{i+m−1∑
j=i

Xj : 1 ≤ i ≤ n − m + 1

}
.

The main problem in this context is the evaluation of P{Sn,m < k} under various assumptions
on {Xi}ni=1. An exact formula for P{Sn,m < k} is not available for arbitrary values of n, m,

and k even in the simplest case when the {Xi}ni=1 are independent and identically distributed
(i.i.d.) Bernoulli trials. To the author’s knowledge, the best formula currently available for
P{Sn,m < k} exists only for the case n = mL, L ≥ 2, when {Xi}ni=1 consists of i.i.d. Bernoulli
trials (see Naus (1974)). Because of the difficulty in finding the exact value of P{Sn,m < k},
accurate approximations and inequalities have been developed in the literature especially for
the case when {Xi}ni=1 consists of independent elements. Some recent contributions on the
topic, among others, are the works of Haiman (2007), Zhenkiu and Glaz (2008), and Inoue and
Aki (2009).

Received 11 January 2010; revision received 29 June 2010.
∗ Current address: Department of Industrial Engineering, Atilim University, 06836 Incek, Ankara, Turkey.
Email address: seryilmaz@atilim.edu.tr

1084

https://doi.org/10.1239/jap/1294170521 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170521


Discrete scan statistics generated by exchangeable binary trials 1085

In this paper we study P{Sn,m < k} for the case when {Xi}ni=1 consists of exchangeable
dependent binary trials. It is worth mentioning that P{Sn,k < k} = P{Ln < k}, where Ln is the
length of the longest success run, which has recently been studied for exchangeable binary trials
(see Eryılmaz and Demir (2007), Makri et al. (2007a), (2007b), Eryılmaz (2008a), (2008b) and
Makri and Psillakis (2010)).

A finite set of binary random variables {Xi}ni=1 is said to be exchangeable if, for any r (≤ n)
and any vector (x1, . . . , xr ), with xi = 0, 1, i = 1, . . . , r ,

P{Xπ(1) = x1, . . . , Xπ(r) = xr} = P{X1 = x1, . . . , Xr = xr}
for any permutation π = (π(1), . . . , π(r)) of {1, . . . , r}. For example, the probabilities of two
sequences 10011 and 01101 are the same under exchangeability.

There might be various situations for studying scans for a sequence of exchangeable binary
trials. One of the widely studied system models in reliability analysis is a linear consecutive
k-within-m-out-of-n : F system, consisting of n linearly ordered components such that the
system fails if and only if there are m consecutive components which include among them
at least k failed components (see, e.g. Kuo and Zuo (2003, pp. 407–410)). If Xi denotes
the state of the ith component (Xi = 1 if the ith component fails and Xi = 0 if it works),
then P{Sn,m < k} gives the reliability of the consecutive k-within-m-out-of-n : F system.
Let T1, . . . , Tn denote the lifetimes of components, and define Xi(t) = 1 if Ti ≤ t and
Xi(t) = 0 if Ti > t, i = 1, . . . , n. Then Xi(t) represents the state of the ith component at
time t . If Tk,m:n denotes the lifetime of the consecutive k-within-m-out-of-n : F system then
P{Tk,m:n > t} = P{Sn,m(t) < k}, where Sn,m(t) is the scan statistic in {Xi(t)}ni=1. In most
cases the lifetimes of components, T1, . . . , Tn, are dependent and have an exchangeable joint
distribution. The exchangeability of the Tis implies the exchangeability of {Xi(t)}ni=1. Thus,
the reliability evaluation of this particular system with exchangeable component lifetimes needs
to include the study of the distribution of discrete scan statistics in an exchangeable sequence.

The paper is organized as follows. In Section 2 we present exact expressions for both
conditional and unconditional distributions of Sn,m for 2m ≥ n when {Xi}ni=1 consists of i.i.d.
and exchangeable binary trials. In Section 3 we present some numerical results on the reliability
of the abovementioned systems to illustrate the findings of the paper. The results included in
this paper are not only an extension to exchangeable trials but also new for i.i.d. trials.

2. Exact distributions

Let {Xi}ni=1 be a sequence of exchangeable trials with two possible outcomes, denoted ‘0’
and ‘1’, and let Sn,n = ∑n

i=1 Xi . Using an inclusion and exclusion principle, George and
Bowman (1995) proved that

P{Sn,n = l} =
(

n

l

)
p(l, n) =

(
n

l

) n−l∑
i=0

(−1)i
(

n − l

i

)
λl+i , (1)

where, for the subset {i1, . . . , ir} of {1, . . . , n}, r = 1, . . . , n,

λr = P{Xi1 = 1, . . . , Xir = 1} = P{X1 = 1, . . . , Xr = 1},
and λ0 = 1.

From (1) we have

P

{ s∑
j=1

Xj = l, Xs+1 = xs+1, . . . , Xn = xn

}
=

(
s

l

)
p

(
l +

n∑
i=s+1

xi, n

)
. (2)
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It is clear that if λr = λr
1 for r = 1, . . . , n then {Xi}ni=1 defines a Bernoulli sequence with

success probability p = λ1, and in this case Sn,n is a binomial random variable.
Exact expressions for conditional and unconditional distributions of Sn,m are available only

for a restricted range of parameters when {Xi}ni=1 consists of i.i.d. Bernoulli trials. Saperstein
(1972) obtained combinatorial formulae for the conditional distribution of Sn,m given the
number of successes Sn,n = l for i.i.d. Bernoulli trials when 2l ≤ n + 1. Naus (1974)
derived the following formula for i.i.d. Bernoulli trials when n = mL, L ≥ 2:

P(k; m, n, l) = P{Sn,m < k | Sn,n = l} = (m!)L(
n
l

) ∑
σ∈Sk

det |dij |, (3)

where

dij = 1

cij ! (m − cij )! ,

cij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(j − i)k −
j−1∑
r=1

nr + ni for i < j,

(j − i)k +
i∑

r=j

nr for i ≥ j,

ni is the number of 1s in the trials (i − 1)m + 1, . . . , im, 1 ≤ i ≤ L, and Sk denotes the set of
all partitions of l into L nonnegative integers each less than k.

Naus (1982) obtained the following simple expression for the unconditional distribution of
S2m,m for i.i.d. Bernoulli trials:

Q(k, m) = P{S2m,m < k}
= F 2(k − 1; m, p) − (k − 1)

(
m

k

)
pk(1 − p)m−kF (k − 2; m, p)

+ mp

(
m

k

)
pk(1 − p)m−kF (k − 3; m − 1, p),

where F(r; s, p) = ∑r
i=0

(
s
i

)
pi(1 − p)s−i .

We first obtain the unconditional distribution of Sn,m for i.i.d. Bernoulli trials when 2m ≥ n

in terms of Q(k, m). The following simple combinatorial formula is more general and more
efficient than the formulae given in Naus (1974), (1982).

Theorem 1. Let {Xi}ni=1 be a sequence of i.i.d. Bernoulli trials with success probability p.
Then, for 2m ≥ n,

P {Sn,m < k} =
min(n−m,k−1)∑

s=0

min(2m−n,k−s−1)∑
j=0

(
2m − n

j

)
pj (1 − p)2m−n−j

× [Q(s + 1, n − m) − Q(s, n − m)].
Proof. By the definition of Sn,m,

P{Sn,m < k} = P

{ m∑
j=1

Xj < k,

m+1∑
j=2

Xj < k, . . . ,

n∑
j=n−m+1

Xj < k

}
.
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For 2m ≥ n,

P{Sn,m < k} =
∑

x1,...,xn−m,xm+1,...,xn∈{0,1}
P

{ m∑
i=n−m+1

Xi < m∗, X1 = x1, . . . , Xn−m = xn−m,

Xm+1 = xm+1, . . . , Xn = xn

}
,

where

m∗ = min(k − x1 − · · · − xn−m, k − x2 − · · · − xn−m − xm+1, . . . , k − xm+1 − · · · − xn)

= k − max(x1 + · · · + xn−m, x2 + · · · + xn−m + xm+1, . . . , xm+1 + · · · + xn).

If S∗
2(n−m),n−m denotes the scan statistic based on X1, . . . , Xn−m,Xm+1, . . . , Xn then

P{Sn,m < k} =
min(n−m,k−1)∑

s=0

P

{ m∑
i=n−m+1

Xi < k − s, S∗
2(n−m),n−m = s

}
.

Because {Xi}ni=1 consists of i.i.d. trials,
∑n

i=n−m+1 Xi and S∗
2(n−m),n−m are independent. Thus,

the proof is completed by observing that

P

{ m∑
i=n−m+1

Xi = j

}
=

(
2m − n

j

)
pj (1 − p)2m−n−j

and
P{S∗

2(n−m),n−m = s} = P{S∗
2(n−m),n−m < s + 1} − P{S∗

2(n−m),n−m < s}
= Q(s + 1, n − m) − Q(s, n − m).

Corollary 1. For m = k in Theorem 1, we obtain

P{Sn,k < k} = P{Ln < k} = 1 − (n − k + 1)pk + (n − k)pk+1

for 2k ≥ n, which corresponds to that found in Tong (1985).

Remark 1. Since the exchangeability implies that all sequences with the same number of
successes are equally likely, it is evident that P{Sn,m < k | Sn,n = l} does not depend on the
particular distribution of (X1, . . . , Xn) when the {Xi}ni=1 are exchangeable (and, in particular,
i.i.d.). Thus,

P{Sn,m < k | Sn,n = l} =
(

n

l

)−1

N(l, k, m, n),

where N(l, k, m, n) is the number of binary sequences of length n with l successes such that
there are less than k successes among any consecutive m trials.

Theorem 2. Let {Xi}ni=1 be a sequence of exchangeable binary trials. Then, for 2m ≥ n,

P{Sn,m < k | Sn,n = l}

=
(

n

l

)−1 min(n−m,k−1)∑
s=0

min(l,2m−n,k−s−1)∑
j=max(0,l−2(n−m))

(
2m − n

j

)(
2(n − m)

l − j

)

× [P(s + 1; n − m, 2(n − m), l − j)

− P(s; n − m, 2(n − m), l − j)].
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Proof. Using the notation given in the proof of Theorem 1, we have

P{Sn,m < k | Sn,n = l}

=
min(n−m,k−1)∑

s=0

P

{ m∑
i=n−m+1

Xi < k − s, S∗
2(n−m),n−m = s

∣∣∣∣ Sn,n = l

}
.

Because P{Sn,m < k | Sn,n = l} is identical for both i.i.d. and exchangeable trials,

P{Sn,m < k | Sn,n = l}
= 1

P{Sn,n = l}

×
min(n−m,k−1)∑

s=0

min(l,2m−n,k−s−1)∑
j=0

P

{ m∑
i=n−m+1

Xi = j

}

× P{S∗
2(n−m),n−m = s | S∗

2(n−m),2(n−m) = l − j}
× P{S∗

2(n−m),2(n−m) = l − j}.
Thus, the proof follows from

P{∑m
i=n−m+1 Xi = j} P{S∗

2(n−m),2(n−m) = l − j}
P{Sn,n = l} =

(
2m − n

j

)(
2(n − m)

l − j

)(
n

l

)−1

,

and using (3) for P{S∗
2(n−m),n−m = s | S∗

2(n−m),2(n−m) = l − j} when L = 2.

The proof of the following result immediately follows by conditioning on the number of
successes and using the observation given in Remark 1.

Theorem 3. Let {Xi}ni=1 be a sequence of exchangeable binary trials with λr = P{Xi1 =
1, . . . , Xir = 1}, r = 1, . . . , n. Then, for 2m ≥ n,

P{Sn,m < k} =
n∑

l=0

min(n−m,k−1)∑
s=0

min(l,2m−n,k−s−1)∑
j=max(0,l−2(n−m))

(
2m − n

j

)(
2(n − m)

l − j

)

× [P(s + 1; n − m, 2(n − m), l − j)

− P(s; n − m, 2(n − m), l − j)]p(l, n),

where

p(l, n) =
n−l∑
i=0

(−1)i
(

n − l

i

)
λl+i .

Remark 2. From Theorems 1, 2, and 3, we observe that the conditional and unconditional
distributions of Sn,m for 2m = n are enough to obtain the corresponding distributions of Sn,m

for 2m ≥ n when {Xi}ni=1 is a sequence of i.i.d. or exchangeable binary trials.

3. Application to reliability

Since the reliability of the consecutive k-within-m-out-of-n : F system is defined by the
probability Rk,m:n = P{Sn,m < k}, the findings of this paper can be effectively used to evaluate
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Table 1: Exact reliability of the consecutive k-within-m-out-of-n : F system with i.i.d. components.

n m k Rk,m:n
10 5 3 0.9707

5 4 0.9980
6 3 0.9596

12 6 3 0.9479
7 3 0.9339
7 4 0.9911

15 8 3 0.8933
8 4 0.9817
8 5 0.9980

10 3 0.8613
10 4 0.9689
10 6 0.9995

20 10 4 0.9521
12 4 0.9304

30 15 4 0.8247
15 5 0.9484

40 20 5 0.8498
21 5 0.8346

the reliability of this system. It is worth mentioning that this model involves consecutive k-out-
of-n : F and k-out-of-n : F systems for m = k and m = n, respectively. The result provided in
Theorem 1 is the simplest formula that has been obtained in the literature for computing Rk,m:n
when 2m ≥ n. For illustrative purposes, in Table 1 we present some values of Rk,m:n, assuming
that the system components are independent and have the same failure probability, p = 0.1.

Using Theorem 3, we can compute the reliability of the consecutive k-within-m-out-of-n : F

system consisting of exchangeable components. Let the components have an exchangeable
Lomax distribution with joint survival function

F̄ (t1, . . . , tn) = P{T1 > t, . . . , Tn > t} =
(

1 +
n∑

i=1

ti

)−α

for α > 0 and ti > 0, i = 1, . . . , n. Then

λr = P{T1 > t, . . . , Tr > t} = (1 + rt)−α

for r = 1, . . . , n. The survival function of the consecutive k-within-m-out-of-n : F system is
given by

Rk,m:n(t) = P{Tk,m:n > t} = P{Sn,m(t) < k}
and can be computed exactly using Theorem 3 when 2m ≥ n.

In Table 2 we present some values of Rk,m:n(0.1) for various values of k, m, and n (2m ≥ n)
when α = 1.

The survival function of any coherent system with lifetime T = φ(T1, . . . , Tn) and
exchangeable component lifetimesT1, . . . , Tn having an absolutely continuous joint distribution
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Table 2: Exact reliability of the consecutive k-within-m-out-of-n : F system with exchangeable
components.

n m k Rk,m:n(0.1)

10 5 3 0.9425
5 4 0.9879
6 3 0.9283

12 6 3 0.9130
7 3 0.8985
7 4 0.9657

15 8 3 0.8594
8 4 0.9441
8 5 0.9812
10 3 0.8347
10 4 0.9237
10 6 0.9882

20 10 4 0.8985
12 4 0.8760

30 15 4 0.7913
15 5 0.8769

40 20 5 0.7949
21 5 0.7862

can be written as a mixture of survival functions of order statistics, i.e.

P{T > t} =
n∑

i=1

pi P{Ti:n > t}

(see Samaniego (1985), Kochar et al. (1999), and Navarro and Rychlik (2007)). Here pi is
the probability that the system fails upon the occurrence of the ith component failure, i.e.
pi = P{T = Ti:n}. The vector p = (p1, . . . , pn) is called the system signature. The system
signature has been found to be a useful tool in a variety of applications, including the evaluation
of the reliability characteristics of systems and the comparison of the performance of competing
systems. For the details of the notion of a signature and its applications in reliability engineering,
the reader is referred to the excellent monograph in Samaniego (2007).

The signature of a system consisting of exchangeable components can be computed by
finding the number of path sets of the system with exactly i working components. Let ri(n)

denote the number of path sets of the system with exactly i working components. Define

ai(n) = ri(n)(
n
i

) , i = 1, 2, . . . , n. (4)

Then the quantities

pi = an−i+1(n) − an−i (n), i = 1, 2, . . . , n, (5)

give the signature of a system, where a0(n) = 0 (see, e.g. Boland (2001)).
The formula currently available for the signature of the consecutive k-within-m-out-of-n : F

system exists only for the case k = 2 (see Eryılmaz (2010)). Using Theorem 2, we can obtain
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Table 3: Signatures of consecutive k-within-m-out-of-n : F systems.

n m k Signature

5 3 2 (0, 0.7, 0.3, 0, 0)
3 3 (0, 0, 0.3, 0.5, 0.2)
4 2 (0, 0.9, 0.1, 0,0)
4 3 (0, 0, 0.7, 0.3, 0)

10 5 3 (0, 0, 0.3333, 0.4286, 0.2381, 0, 0, 0 ,0, 0)
5 5 (0, 0, 0, 0, 0.0238, 0.0952, 0.2143, 0.3333, 0.3333, 0)
6 3 (0, 0, 0.5, 0.4048, 0.0952, 0, 0, 0, 0, 0)
6 4 (0, 0, 0, 0.2619, 0.4206, 0.2698, 0.0476, 0, 0, 0)

the signature of this system for 2m ≥ n and an arbitrary value of k. If N(l, k, m, n) denotes the
number of ways of arranging a total of n components with l failed components and n−l working
components in a line such that less than k components are failed among any consecutive m

components, then

P{Sn,m < k | Sn,n = l} =
(

n

l

)−1

N(l, k, m, n).

By Theorem 2, we obtain

N(l, k, m, n) =
min(n−m,k−1)∑

s=0

min(l,2m−n,k−s−1)∑
j=max(0,l−2(n−m))

(
2m − n

j

)

× [N(l − j, s + 1, n − m, 2(n − m))

− N(l − j, s, n − m, 2(n − m))]
for 2m ≥ n.

By virtue of (4) and (5), the signature of the consecutive k-within-m-out-of-n : F system for
2m ≥ n can be computed from

pi = N(i − 1, k, m, n)(
n

n−i+1

) − N(i, k, m, n)(
n

n−i

)
for i ≥ k, and pi = 0 for i < k.

In Table 3 we present signatures of various consecutive k-within-m-out-of-n : F systems for
selected values of n, m, and k.
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