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1. Introduction

Let 0 < ¢ < 1 and denote the g-integers by [n], =1+ ¢+ - +¢" ! forn =1,2,...
and [0], = 0. Besides, let [n],! = [1]4[2],- - [n]q for n =1,2,... and [0],! = 1. Then the
g-binomial coefficient is defined by

where 0 < k < n.
Recently, Phillips [7] proposed the following generalization of the Bernstein operators,
based on the g-integers. For every n =1,2,... and f € C[0, 1], we define

n

By q(f,2) = (Bn,of)(z) = Z JkPnkq(T), (1.1)

k=0

where fj, denotes f([k]q/[n]q), K =0,1,...,n, and

pn,k,q(‘r): [Z‘| xk(l_w)(l_xq)...(l_an_k_1)7 k:O717"'7n
q
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(an empty product is taken to equal 1). B, ,(f,z) are called ¢g-Bernstein polynomials.
For ¢ = 1, B, 4(f, ) reduces to the well-known Bernstein polynomials:

Bua(f,) = Bu(f.2) = Zf(i) (Z) (1= 2)nk,
k=0

A useful property of (1.1) is based on the g¢-differences. For f € C[0,1] we define
Adf; = fi for i =0,1,...,n and, recursively,

NS = Al fipa — AL (1.2)

for k=0,1,...,n —1i— 1. It is easy to show by induction on k that g-differences satisfy
the relation

k
r, r(r— k
Abfi =) (~1)gh2 Lﬂ] fith—r- (1.3)
r=0 q
Then, in view of [7], we may write
n n
Bn,‘](.ﬂx) = k A];foxk~ (14)

k=0 q

The rate of convergence and a Voronovskaja-type asymptotic formula are studied in [7]
for the new Bernstein polynomials defined in (1.1). Results concerning the convergence
of derivatives of the g-Bernstein polynomials are given in [8]. Further properties of (1.1),
such as convexity and monotonicity, are obtained in [5] and [6], respectively. For the
main results of [7], Videnskii gave another proof in [9].

In the present paper we prove direct and converse global theorems for the g-Bernstein
polynomials. The direct results are formulated by the second-order Ditzian—Totik mod-
ulus of smoothness, given by

wy(f,6) = sup sup  [f(z + he(z)) = 2f (z) + f(z — he(x))],
0<h<6 zthep(x)€[0,1]

o(x) = v/z(1 —z), z € [0,1]. The corresponding K-functional is

K. ,0%) = inf —gll + %1¥%d" I},
20(f:0) = _Inf {lIf =gl + "l g}
where W2(¢) = {g € C[0,1] : ¢ € AC10¢[0,1], ¢?g" € C[0,1]}, ||-|| denotes the sup-norm
on C[0,1] and ¢’ € ACj0c[0, 1] means that g is differentiable such that ¢’ is absolutely
continuous on every interval [a, b] C [0, 1]. It is known (see [3, Theorem 2.1.1, p. 11]) that
Ky, (f,6%) and w2(f,0) are equivalent, i.e. there exists an absolute constant C' > 0 such
that

O (£.0) < Ko o(1.6%) < CW(1.) (15)

Here we mention that C' > 0 is an absolute constant which can be different at each
occurrence. The converse results are theorems of Berens—Lorentz type (see [3, (9.3.3),
p. 117]).
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2. Direct theorem
The direct results are presented in the following.

Theorem 2.1. Let B, ,f be defined as in (1.1) and let ¢ = g(n) such that 0 < g(n) < 1
and g(n) — 1 as n — oo. Then there exists C > 0 such that

—1/2
1Brguyf = FIl < Cw(f,[n] %)
for all f € C[0,1] and n=1,2,....

Proof. We recall some properties of the g-Bernstein polynomials. In view of [8, (10),
p. 264] we have

Bn’q(n)(l,x) = 17 (2.1)
Bn,q(n) (ta 33) =, (22)

1
B, o (t2,2) = 2% + z(l —x). 2.3

Moreover, the g-Bernstein operator defined by (1.1) is a positive linear operator. There-
fore, by (2.1), we obtain

i.e.

for all f € C[0,1].
Next, for g € W?2(p) we find, in view of Taylor’s expansion

t

o(t) = g(2) + ¢ (&)t — ) + / ¢"(u)(t —w)du, te0,1],

x

by (2.1)—(2.3) and [3, Lemma 9.6.1, p. 140], that
t

1By gy (9,) — g()] = ’ ) (/ o (w)(t — ) du,x>’
x

t
< Boyin (\ [ gl = ujau x)
< lley H|Bn¢I(")<‘/ o= du#”)

H‘PQ HH‘P 2(1')Bn q(n)((t_x) ,.’E)

_ 2 I
= [n]q(n) el (2.5)
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Now for f € C[0,1], in view of (2.4) and (2.5), we find that

<20f - gll + (8 I
<2{]1f = gll + Il %" 1}

Hence, ||By ) f — fll < 2K2,(f, [n];&)). Using (1.5) we get the assertion of the
theorem. 0

3. Converse theorem

The converse results of Berens—Lorentz type are included in the following theorem.

Theorem 3.1. Let B, ,f be defined as in (1.1) and let ¢ = q(n) such that 0 < ¢(n) < 1
and satisfies the following properties:

12 n n—1 .
(3 [n]4n) ([n}q(n) =Ty - 1)) is a bounded sequence, (3.1)

Co < (g(n))" <1 foralln=1,2,... and for some absolute constant Cy > 0. (3.2)
Then, for f € C[0,1] and 0 < a < 2, the global approximation

—a/2
1Bugey f = FI < ClLE7 n=1,2,..., (3.3)

implies wi(f, N <KC*0<d< 1.
First of all, we give two lemmas which are necessary to prove our theorem.

Lemma 3.2. For 0 < ¢ < 1 and g € W?(p) we have

2q(1 +q) .
B %9l ift =0,
q
2t+1 2
1 +q)” L (t+1] .
‘A?Igt‘ < 2[n)? 2( [n}qq le?g”|l ift=1,2,...,n =3,
q
2¢"3(1+q .
LDy ift=n-2.
q

Proof. Using the definition of the g-integers and the definition of the divided differ-
ences for g at points [t],/[nly, [t + 1]4/[n]q and [t + 2],/[n]4, We have, by (1.2),

[[gﬁ, ! E?;]i]q, ! [Z]j]q;g = q2t+£T(1]1q+ ) (gt+2 — (L + @) ge+1 + q9¢)
(]

q 2
= q2t+1(1+q) q9t-
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Hence, taking into account the representation of the divided differences by the Peano
kernel [2, (7.16), p. 123], we find that

oo

Mg = gz (14 0) [ ) Mig, (), (34)

q — 00

where

g e 1 [ 2]g
Mig, (u) "M(’[n]q’ Wy | Tl >

q
is the piecewise linear B-spline (cf. [2, pp. 137-138]). From

(oo}

M[t]q(u) du =1
— 00
we find
i (L) - 20
A\l ¢'(1+9q)
Therefore,
4[n)3
M[O]q(u) < T ‘;u(l —u), u € [0,1]
and
M, (0) < a8 _y1 ), wefo,]
oo (U) < ————u(l—-u), wel01].
[ 2]<1 qn72(1 + q)
We thus conclude from (3.4) that
1 4[n]2 (2l¢/Inlq
AQ < 1 q 2 " d
A0 < e+ ags [ F i @l
QQ(l + Q) 2
< —— e g"ll (3.5)
]y
and
1 4[71]2 1
AQ _ g q2n73 1_|_q q / 2 U " u du
N0l € a0t ) g [ Pl
2qn73 1 +q
<UDy (3.6)
[n]q

respectively. If ¢t € {1,2,...,n — 3}, then, for u between [t],/[n], and [t + 2],/[n]q, we
have ©?([t +1],/[n]y) < (1 + q)p?(u). Hence, by (3.4),

201 < e 0+ 00 (L5 )0 a) [Pl @i, () du
1 " ot +1], %
< gt (L el 5.)
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[ M[t]q(u) du=1.

By combining (3.5)—(3.7) we arrive at the desired estimates. O

because

Lemma 3.3.

(i) We have
l? By, o fIl < Cnllf]l

for0<g<1, feCl0,1]] andn=1,2,....

(ii) Let q = q(n) satisfy the conditions 0 < q(n) < 1, (3.1) and (3.2). Then

192 By 4myll < Cllp*d"|
for g € W2(p) andn =1,2,....

Proof. (i) For 0 < ¢ < 1 we have

Prkg() = lZ] xk(l —z)[1l—-2)+z(1—-q)]...[Q1—2)+z(1— qn—k—l)]

= lZ] ("1 — )" F P Q=) Q=g+ 1= 4+ 1= g
q

+ot " 1 —2) 1 - g)(1—¢*) - (1 —g" " HL

Thus, pp k,q(z) is a polynomial with positive coefficients in z and 1 —z (see [2, pp. 109-
113]).
Let It ={k€{0,1,...,n}: fr 20} and I_ ={k € {0,1,...,n}: fr, <O0}. Then

D fipnpg(x) and D (= fi)pakg(@)

kel kel_

are polynomials with positive coefficients in  and 1—xz. Using the Bernstein-type inequal-
ity for polynomials with positive coefficients in z, 1 —x and of degree < n (see [2, pp. 112—
113] or [4]), we obtain

(p2($)|BZ’q(f7 .’17)| = (102(37) Z fkpn k,q Z fk?pn k,q
kel kel
< Q@) Y fibl @)+ 27 @)| D (—fu)pipq(@)
kely kel_
= ¢*() ( > fkpn,k,q(x)> + % (x) ( > (—fk)Pn,m(w))
kel kel_
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Z fkpn,k,q +Cn Z (_fk)pn,k,q
kel kel_
< Cn||f|( Z Pnk,q Z Dnk,q )
kel kel_
< Cnllf],

because By 4(1,x) = 1 in view of (2.1). Hence, [|¢*Bj,  f|| < Cnl|f||, which was to be
proved.

(ii) By [8, (21), p. 269] we have

n—2
(k+2)(k+1) n—2 i 9 k
Bria (f:2) Z [k + 2] <n>[k¢+ Ug(n) [ k Bqn) (ot 1 = Uatm) gy Jo)
k=0 q(n)
(3.8)
Following [8, (12), p. 265], let us consider the next modified form of the g-Bernstein

polynomials:

B2.qm) ([lg(my [0 = gm) Al fr @)

n—2

where f € C[0, 1]. By combining (3.8), (3.9) and (1.3), we arrive at the following inequal-
ity for g € W2(p):

‘»02(55) 'Z,q(n) (97 x) - ‘PQ(x)Bn—Zq(n)([n]q(n) [n - 1]q(n)A§(n)ga x)

n—2
k+2 k+1 ) n—2
< —1 [7)g(my [0 = gy
Z ( k + 2 (J(”) [k + 1]‘1(") [ k ]q(n) ! !
i k
X (ZQ(H)W—”/Q H |A3<n)9kr|>xk+1(1 — ). (3.10)
r=0 q(n)
By applying Lemma 3.2 for ¢t € {1,2,...,n — 3}, we obtain
n) 2+ (1 + g(n))? 2,
|A(21(n)gt| < Q( ) (2 Q( )) q(n) H()OZ //H
2[n]3 [+ gy (nlgmy = [t + Ug(m))
< Q(n)2t+l(1 + q(n))2 [ L](” ||¢2 //”
2[”]2@) q(n)tq(n)t+t
<2/l%g"|;
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by applying the same Lemma 3.2 for ¢ € {0,n — 2}, we also obtain

4
A% gl < [7”@2 "Il < 4lle?g"|l

nq(n)
In conclusion, by (3.10),

©%(@) Bn—a,q(m) ([ gy [0 = Ug(m) A3y 95 @)

2/ k42 k+1 n—2 2
k n 2 k n ” -1 k [n]q(n)
o ot [ a(n) a(n)

x (iq(nw—w H

|02 () By, y(ny (95 2) —

)W "N 31

r=0 a(n)
Since
k42 k+1 n n—1
~1< 1
[k 4 2lg(n [k + Ugen) [n]g(n) [n = qgen)
for k € {0,1,...,n — 2} and the g-binomial coefficients are increasing functions of ¢, we

get from (3.11) and (3.1) that

@2('%)Bg7q(n)(ga x) - 902(x)Bn72,q(n)([n]q(n) [n - 1]q(n)A§(n)g’ Ji)

2 1 n—1 — S n=2 k "
< Al P ||(Hq(n) = 1);( k )(2())

—1
= 4[n N 3n— 2( n n _ 1) L)02 "

< Cle?g”|- (3.12)
Furthermore, by (1.1),

902 (x)Bn—Q,q(n)([n}q(n) [n - l]q(n)Ag(n)ga 'T)

n—2

= [n}q(n) [TL - l]q(n)Az(n)gk(P2 (gj)pn—Q,k,q(n) (1‘)
k=0

Hence, using Lemma 3.2, we find that

‘30 ( ) n— 2,q(n)([ ]q(n)[nfl]q(n)Ag(n)gv‘T”

n—2

g Z[n]g(n) |A3(n)gk|<p2 (x)pn—Q,k,q(n) (ZL’)
k=0

< 2g(n) (1 + q(n)) [n]g(n) 99" 10% (@)Pn—2,0,40n) (@) + 5 (1 + q(n))?
3

2 1 (S n)2k+1 ,—2 [kJrl]q(n) 2(p .
1 3 a2 (B ) a0
+2q(n)n_3(1+q(n))[n]q(n)”9‘72 HH@ ( )pn72,n72,q(n)(1‘)' (313)
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But

0 (2)Pn—2,0,4m) (%) = 2(1 = 2)*(1 = 2q(n)) - - (1 — 2q(n)"~?)
< a(l—aq(n)"~?)" !

and x(1 — zq(n)"~2)"~1 has its maximum at z = 1/(ng(n)"~3) on [0, 1]. Therefore,

1 1yt 1
O} (T)Pr—2,0,4(n) (z) < g3 (1 - n) < gl (3.14)
A similar argument gives the following estimate for t =n — 2:
9 . V1
O (T)Pn—2.n—2,4(m) () = 2" (1 —2) < (1 - n) < (3.15)

At the same time, for t € {1,2,...,n — 3}, we have

) o k4 1gn
q(n)2k+1(p 2( q(n)

[TL] ( ) )Sog(x)pnlk,q(n) (.’17)

2
2k+1 [n]q(n) n—2
[k + 1]q(n)([n]q(n) - [k + l]q(”)) L k

x "1~ 2)*(1 — 2q(n)) - (1 — q(n

=q(n)

~—
3
|
7
N
N

) ’
2k+1 [n]q(n) n—2
et Ugny ([lom) = b+ Uge) | k|

x 2" (1 —2)(1 = zq(n)) - (1 — 2q(n)"37%)(1 — zq(n)"~27%).
Using [9, (2.3), (2.4), p. 214], we get

< q(n)

[RQ] _n—1 [k+1}q(n)
k o lk+1 —1u(n
a(n) Ty = Haw
| n [n =k = gen) [k + g
k+1 a(n) [”}q(n) [n — 1]q(n)
Thus,
o[k + 1y
g(n)? o2 (1) 2 ()p gy ()
[n]qn)
2
< q(n)?*+1 [n]q(n) [n—k =1y [k + 1)
[k + l]q(n)([n]q(n) - [k + l]q(n)) [n]q(n) [n - 1]q(n)
n n—3_ N9
ol P "1 = 2)(1 = zq(n)) -+ (1 — 2q(n)">7F)(1 — q(n)">7")
q(n
T TCO N (s V1)

Pn,k+1,q9(n (‘T)
[ = gy Mgty — [+ gy 11
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On the other hand,

=1y 1—g(n)"! <1+q(n)
and
[Pk —Ugmy __ 14g(n)+-+qm)" "2 1

[n]q(n) _ [k + 1]q(n) - q(n)k-H + q(n)k+2 4+ 4 q(n>n—1 - q(n)k-i-l .

In conclusion,

o [k + 1y
q(n)2k+1¢ 2( a(n)

(] 4(m) )“”2(“””)?”—271«@(71) () < ¢(n)* (1 + ¢(n)Pn k+1,9(n) ()
< 2Pk 41,q(n) (2)- (3.16)

Combining the estimates (3.13)—(3.16), we find that

|02 (2) Br—2,9(m) ([Pl g(n) [0 = Ug(n) A2 ()95 )|

< 2¢(n) (1 + q(n))[nly(n) :

2 ”H
ng(n )” ’

I

+ %(1 + q( ”502 H” Z 2pn Jk+1, q(n)( )

+2¢(n)" (1 + q(n)) [n]g(n) *II@Q "Il
4 [n]Q(n) 2 1 2 1 [ ]4(”) 2 1
< 4 nok+1,g(n
ey L B L HZp et 1a(m) (@ ol M
< Cle?d"l, (3.17)

where we have used [n]q,) < n, (2.1) and (3.2). Now, from (3.12) and (3.17), we arrive
at the desired estimate, which completes the proof of the lemma. (Il

Proof of Theorem 3.1. By taking into account the definition of the K-functional
K5 ,(f,6?), (3.3) and Lemma 3.3, we obtain

Koo (f,n™") <|If = Begu fll + 1 19?By a [l
|f = B fI + 07 (102 By 40y (f = 9l + 10 By 41y 911)

< CI, 3% + Cn (kI F = gll + 2" ])

c([ ]q_((l);)/2+ <||f gl ++ ||gp2 //||)>.

Taking infimum over all g € W?2(y), we find that

NN

Maelhn ) < O(“‘“]q&{? + Ko, w)
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Moreover, by (3.1), we obtain that the sequence (n/[n]q(,)) is also bounded. Then

k
Koplfon™) < 0 (K702 4 a7 ).

Hence, in view of the Berens—Lorentz lemma (see [1] or [2, p. 312]), we have
Ko (f,n )y <Cn /% n=1,2,.... (3.18)

For every 0 < § < 1 there exists n such that

1 1
<6< —.
vn+1 Vn
Then the definition of K5 ,(f,?) and (3.18) imply K ,(f, %) < C3*. By (1.5) we obtain
wi(f, 0) < C'§“, which was to be proved. O

Remark 3.4. There exist sequences (g(n)) which satisfy conditions (3.1) and (3.2).
An example of such a sequence is g(n) =1 — 1/na™, where a > 27 and n=1,2,....

Remark 3.5. Condition (3.2) provides that ¢(n) — 1 as n — oo. Thus, in Theorem 3.1
we have the uniform convergence of B,, 4,,)f to f on [0, 1] (see [7,8]).
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