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Abstract

In the context of a dividend barrier strategy (see, e.g. Lin, Willmot and Drekic (2003)) we
analyze the moments of the discounted dividend payments and the expected discounted
penalty function for surplus processes with claims arriving according to a Markovian
arrival process (MAP). We show that a relationship similar to the dividend-penalty identity
of Gerber, Lin andYang (2006) can be established for the class of perturbed MAP surplus
processes, extending in the process some results of Li and Lu (2008) for the Markov-
modulated risk model. Also, we revisit the same ruin-related quantities in an identical
MAP risk model with the only exception that the barrier level effective at time t depends on
the state of the underlying environment at this time. Similar relationships are investigated
and derived. Numerical examples are also considered.
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1. Introduction

In this paper we consider surplus processes for which the claim number process {N(t), t ≥ 0}
is a Markovian arrival process (MAP). A MAP with representation MAP(α, D, T ) of order m is
a two-dimensional Markov process on the state space N×{1, . . . , m} for which the first dimen-
sion reflects the evolution of the total number of claims over time and the second dimension
refers to the evolution of an underlying homogeneous continuous-time Markov chain (CTMC)
J = {J (t), t ≥ 0} with finite state space E = {1, . . . , m}. For such a process, we subdivide
the transitions of the MAP into the following two types.

Type 1. Transitions of the CTMC J from state i to state j (j �= i) without an accompanying
claim.

Type 2. Transitions of the CTMC J from state i to state j (with possibly i = j ) with an
accompanying claim.

Transitions of type 1 are governed by the matrix D for which its (i, j)th element Dij

(Dij ≥ 0) corresponds to the instantaneous rate of transition from state i to state j �= i in E

without an accompanying claim. Type-2 transitions are governed by the matrix T for which its
(i, j)th element Tij (Tij ≥ 0) corresponds to the instantaneous rate of transition from state i

to state j in E with an accompanying claim. The diagonal elements of D are assumed to be
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522 E. C. K. CHEUNG AND D. LANDRIAULT

negative and such that the sums of the elements on each row of the generator D + T are all 0.
We denote by α the initial (i.e. at time 0) probability vector of the underlying CTMC. For a
detailed treatment of MAPs, we refer the reader to, e.g. Latouche and Ramaswami (1999) and
Neuts (1989).

For type-2 transitions, we assume that the distribution of the accompanying claim size
can depend on the state of the CTMC J immediately before and after the transition. Thus,
for a type-2 transition of the CTMC from state i to state j , the accompanying claim size is
assumed to have density function fij , cumulative distribution function Fij , Laplace transform
f̃ij (s) = ∫∞

0 e−sxfij (x) dx, and finite mean µij . In this paper we denote by Xn the size of
the nth claim. From the above construction, it is immediate that the random variables (RVs)
{Xn}n≥1 are not independent (in general); conditional on J , the claim size RVs {Xn}n≥1 are
independent.

Remark 1. Both the Markov-modulated risk model (see, e.g. Asmussen (1989), Lu and Tsai
(2007), and the references therein) and Albrecher and Boxma’s (2005) semi-Markovian risk
model are special cases of a risk model with Markovian claim arrivals for which the matrices
T and D, respectively, in the MAP representation are assumed to be diagonal.

To account for small fluctuations in the surplus level, we assume that the surplus process
is perturbed by a Wiener process with mean 0 and volatility σi (σi > 0) whenever the CTMC
J is in state i. It is also assumed that the insurer collects premiums at a rate ci whenever
the environment process J is in state i. Under the above assumptions, the surplus process
U = {U(t), t ≥ 0} is defined as

U(t) = u +
∫ t

0
cJ (s) ds −

N(t)∑
n=1

Xn +
∫ t

0
σJ(s) dW(s),

where u is the insurer’s nonnegative initial surplus and {W(t), t ≥ 0} is a standard Wiener
process, independent of the claim sizes {Xn}n≥1 and the claim number process {N(t), t ≥ 0}.
For the surplus process U , the time to ruin T is defined as T = inf{t ≥ 0 : U(t) ≤ 0} with
T = ∞ if ruin does not occur (i.e. U(t) > 0 for all t ≥ 0).

In the presence of a dividend barrier at level b > 0, the barrier-modified version of the
surplus process U is denoted by {Ub(t), t ≥ 0}. For such a dividend strategy, it is assumed that
whenever the (modified) surplus reaches level b, the overflow is paid as dividends; otherwise,
no dividend is paid (see, e.g. Lin et al. (2003) and Gerber and Shiu (2004a)). To provide a
formal definition of {Ub(t), t ≥ 0}, we define the running maximum of the surplus process U

at time t by
M(t) = max

0≤y≤t
U(y).

It follows that the total of the (nondiscounted) dividend payments by time t is

D(t) = max((M(t) − b), 0).

This leads to the following definition of the barrier-modified surplus process {Ub(t), t ≥ 0}:
Ub(t) = U(t) − D(t). (1)

Pertaining to the surplus process (1) is the time to ruin Tb = inf{t ≥ 0 : Ub(t) ≤ 0}, which is
finite almost surely (a.s.).
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Perturbed MAP risk models with dividend barrier strategies 523

Remark 2. In the ruin theory literature, it is common to express ruin-related quantities defined
in a barrier-type environment in terms of the same ruin-related quantities defined in an identical
but barrier-free environment (see, e.g. Lin et al. (2003), Li and Lu (2008), and the references
therein). For surplus processes defined in a barrier-free environment, a condition known as
the positive security loading condition is generally assumed to be satisfied (to avoid some
technicalities that arise otherwise). In our setup, this positive security loading condition is

m∑
i=1

πi

m∑
j=1

Tijµij <

m∑
i=1

πici, (2)

where the πis are the stationary probabilities of the CTMC J , which are the solutions of the
following system of linear equations:

m∑
j=1, j �=i

πj (Dji + Tji) = πi

m∑
j=1, j �=i

(Dij + Tij ), i ∈ E,

and
m∑

j=1

πj = 1.

We point out that the left- and right-hand sides of (2) correspond to the long-run claim expense
and the premium income, respectively, per unit time.

Applications of MAPs in a ruin-theoretical context can be found in, e.g. Ahn et al. (2007),
Badescu et al. (2005), (2007), and the references therein. Owing to the elegant interplay
between formal algebraic manipulations of mathematical expressions and their probabilistic
interpretations, matrix-analytic methods (MAMs) have been instrumental to the analysis of
risk models with Markovian claim arrival processes. From the existing connection between
fluid flows and surplus processes (see, e.g. Asmussen (1995)), the analysis of these risk models
has benefited from the development of MAMs in the fluid flow literature (see, e.g. Ahn et al.
(2007)). In general, the fluid flow type analysis of MAP risk models is more probabilist in
nature and relies heavily on the knowledge of the Laplace transform of various first passage
times (see, e.g. Ahn and Ramaswami (2006) and Ramaswami (2006)). However, a drawback
of these fluid flow MAMs for the purpose of ruin theory applications is their limitation to claim
size distributions that are phase type, excluding heavy-tail claim size distributions (among
others) from the analysis. In this paper we propose to rely on a purely analytic approach to
analyze MAP risk models. A variety of theoretical results are derived for general claim size
distributions fij (i, j = 1, . . . , m). Remarks on their numerical implementation and some
possible limitations will be made as appropriate.

The rest of the paper is structured as follows. In Sections 2 and 3 we analyze the moments
of the discounted dividend payments and the expected discounted penalty function for the
surplus process {Ub(t), t ≥ 0}, respectively. In Section 3 we also show that a dividend-penalty
identity type relationship holds for the class of perturbed MAP surplus processes, extending
in the process some results of Li and Lu (2008) for the Markov-modulated risk model. In
Section 4, all these ruin-related quantities are revisited in an identical MAP risk model subject
to a dividend barrier strategy for which the barrier level effective at a given time t depends on
the state of the CTMC J at that time. A numerical illustration follows.
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524 E. C. K. CHEUNG AND D. LANDRIAULT

2. Discounted dividend payments

In this section we analyze the moments of

Du,b =
∫ Tb

0
e−δy dD(y),

representing the total discounted dividend payments before ruin for the surplus process (1),
where δ (δ ≥ 0) is the force of interest.

2.1. Expected discounted dividend payments

Let Vi(u; b) be the expected discounted dividend payments before ruin, assuming that the
initial state of the CTMC J is i (i ∈ E), i.e.

Vi(u; b) = E[Du,b | J (0) = i].
By an application of Itô’s formula for jump diffusion processes together with the fact that the
drift component of the resulting stochastic differential equation shall be 0 (due to the presence
of a dividend barrier), we readily obtain the following system of integro-differential equations
for Vi(u; b) (i ∈ E):

σ 2
i

2
V ′′

i (u; b) + ciV
′
i (u; b) − δVi(u; b) +

m∑
k=1

DikVk(u; b)

+
m∑

k=1

Tik

∫ u

0
Vk(u − x; b)fik(x) dx = 0, 0 ≤ u ≤ b. (3)

Boundary conditions associated to the system of integro-differential equations (3) for Vi(u; b)

are
Vi(0; b) = 0 (4)

and
V ′

i (b; b) = 1 (5)

for i ∈ E. Equation (4) is immediate given that ruin occurs immediately a.s. when the initial
surplus is 0 (due to the diffusion component). Boundary condition (5) is a special case of (21),
below, at n = 1. Thus, the reader is referred to the proof of (21) in Section 2.2 instead.

To determine the form of the solution for Vi(u; b), we consider the system of integro-
differential equations

σ 2
i

2
v′′
i (u) + civ

′
i (u) − δvi(u) +

m∑
k=1

Dikvk(u)

+
m∑

k=1

Tik

∫ u

0
vk(u − x)fik(x) dx = 0, u ≥ 0 and i ∈ E. (6)

From the form of the integro-differential equation (6), it is clear that the initial conditions
(v1(0), . . . , vm(0)) and (v′

1(0), . . . , v′
m(0)) uniquely determine the solutions (v1(u), . . . ,

vm(u)) of system (6). Thus, for a given j ∈ E, let vA·,j (u) = (vA
1,j (u), . . . , vA

m,j (u)) and
vB·,j (u) = (vB

1,j (u), . . . , vB
m,j (u)) be the particular solutions of (6) with initial conditions
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Perturbed MAP risk models with dividend barrier strategies 525

vA·,j (0) = ej , (vA·,j )′(0) = 0 and vB·,j (0) = 0, (vB·,j )′(0) = ej , respectively, where ej is
an m-dimensional row vector with the only nonnull entry of 1 at the j th position and 0 is an
m-dimensional row vector of 0s. Clearly, the solutions {vA·,j (u)}mj=1 and {vB·,j (u)}mj=1 are linearly
independent. In this paper we adopt the convention that the derivative of a matrix/vector holds
for an identical size matrix/vector whose elements are entrywise differentiated. Thus, the
general solution (v1(u), . . . , vm(u)) of (6) can be expressed as

vi(u) =
m∑

j=1

vj (0)vA
i,j (u) +

m∑
j=1

v′
j (0)vB

i,j (u), u ≥ 0.

In particular, for the expected discounted dividend payments, we have

Vi(u; b) =
m∑

j=1

Vj (0; b)vA
i,j (u) +

m∑
j=1

V ′
j (0; b)vB

i,j (u), 0 ≤ u ≤ b. (7)

Incorporating boundary condition (4) into (7) leads to

Vi(u; b) =
m∑

j=1

V ′
j (0; b)vB

i,j (u). (8)

From (8), boundary condition (5) can be rewritten as

V ′
i (b; b) =

m∑
j=1

V ′
j (0; b)(vB

i,j )
′(b) = 1, i ∈ E. (9)

Let vB(u) be a square matrix with element vB
i,j (u) at the (i, j)th position, and let V (u; b) =

(V1(u; b), . . . , Vm(u; b))�. In matrix form, (9) can be expressed as

V ′(0; b) = [(vB)′(b)]−1 1, (10)

where 1 is an m-dimensional column vector of 1s. Combining (8) and (10), the expected
discounted dividend payments admits the representation

V (u; b) = vB(u)[(vB)′(b)]−11, 0 ≤ u ≤ b. (11)

Equation (11) gives the first moment of Du,b conditional on the initial state J (0) of the
underlying CTMC. Premultiplying both sides of (11) by the initial probability vector α yields the
first unconditional moment of Du,b. In what follows, results are given in their conditional form
only. It is understood that their unconditional counterparts can be obtained by premultiplying
the conditional representation of a given ruin-related quantity by α.

From representation (11) of V (u; b) we devote the rest of this subsection to the particular
solutions {vB·,j (u)}mj=1. Let ṽB

i,j (s) = ∫∞
0 e−suvB

i,j (u) du for i, j ∈ E. Taking Laplace trans-
forms on both sides of (6) by first replacing vi(u) by vB

i,j (u), we obtain(
σ 2

i

2
s2 + cis − δ

)
ṽB
i,j (s) +

m∑
k=1

Dikṽ
B
k,j (s) +

m∑
k=1

Tikṽ
B
k,j (s)f̃ik(s) = σ 2

i

2
(vB

i,j )
′(0). (12)
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Letting ṽB(s) = (̃vB
i,j (s))

m
i,j=1, the system of equations (12) can be expressed in a matrix form as

A(s)̃vB(s) = diag

(
σ 2

1

2
, . . . ,

σ 2
m

2

)
,

where A(s) = P (s) + D + T (s),

P (s) = diag

(
σ 2

1

2
s2 + c1s − δ, . . . ,

σ 2
m

2
s2 + cms − δ

)
,

and T (s) is a square matrix (of size m) with element Tikf̃ik(s) in position (i, k). Letting adj A(s)

be the adjoint matrix of A(s), we conclude that

ṽB
i,j (s) = σ 2

j

2

[adj A(s)]i,j
det A(s)

. (13)

A Laplace transform inversion of (13) leads to the identification of vB
i,j (u) (i, j ∈ E). Two

cases will be discussed separately here.

(a) When all the claim size densities fij (i, j ∈ E) have a rational Laplace transform (see,
e.g. Dufresne (2001)), the Laplace transform (13) can be inverted analytically. Indeed,
let

f̃ij (s) = pij (s)

qij (s)
, i, j ∈ E,

where pij (s) is a polynomial of degree less than rij and qij (s) is a polynomial of degree
rij with pij (0)/qij (0) = 1. It is immediate that the characteristic equation det A(s) = 0
has 2m+r solutions, say {ρi}2m+r

i=1 , with r = ∑m
i=1

∑m
j=1 rij . For simplicity, we assume

that the solutions {ρi}2m+r
i=1 are distinct.

Letting q(s) = ∏m
i=1

∏m
j=1 qij (s), (13) becomes

ṽB
i,j (s) = σ 2

j

2

γij (s)

γ (s)
, (14)

where γij (s) = q(s)[adj A(s)]i,j and γ (s) = q(s) det A(s) are polynomials of degrees
less than 2m + r and 2m + r , respectively. For an arbitrary κ with κ �= ρi for i =
1, . . . , 2m+r , the use of Lagrange’s interpolating polynomial allows us to rewrite (14) as

ṽB
i,j (s) = σ 2

j

2γ (κ)

2m+r∑
l=1

γij (ρl)βl(κ)
ρl − κ

ρl − s
, (15)

where βl(s) = ∏2m+r
k=1,k �=l ((ρk − s)/(ρk − ρl)). Inverting (15) yields

vB
i,j (u) = σ 2

j

2γ (κ)

2m+r∑
l=1

γij (ρl)βl(κ)(κ − ρl)e
ρlu, u ≥ 0. (16)

Combining (11) and (16), a closed-form expression for V (u; b) can be readily found.

(b) When one or more claim size densities fij do not have a rational Laplace transform, we
will most likely have to rely on numerical Laplace transform inversion methods (see,
e.g. Abate et al. (2000)) to invert (13) in order to evaluate V (u; b) via (11).
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The following example considers the two cases discussed above.

Example 1. We consider a risk model for which claims arrive according to a MAP with

D =
[−0.045 0.005

0.02 −0.2

]
and T =

[
0.03 0.01
0.04 0.14

]
.

We assume that premiums are collected at a rate of three per unit time in both states of the
CTMC J . The volatility coefficients are σi = 0.1i for i = 1, 2.

Scenario 1. We assume that the claim size densities fij are exponentially distributed with mean
1/βij with β11 = 0.5, β12 = 0.1, β21 = 0.2, and β22 = 0.05.

Scenario 2. We assume that the claim size densities fi1 (i = 1, 2) are as stated in scenario 1.
However, the densities f12 and f22 are substituted by heavy-tail distributions with the
following Pareto densities:

fi2(x) = βi2θi2
(θi2 − 1)θi2

(θi2 − 1 + βi2x)θi2+1 , x > 0,

for i = 1, 2 with θ12 = 5 and θ22 = 3.

Note that the densities fi2 in scenarios 1 and 2 have the same mean (i = 1, 2). In the MAP
risk model described above, state 1 of the CTMC J is the ‘normal’ state with relatively small
claims occurring at a reasonable pace (in average), while state 2 is a more dangerous/volatile
environment having, in average, larger claims that occur at a higher frequency (than state 1).
In Table 1, numerical values of V (u; b) are provided when the force of interest is δ = 4%.

From Table 1 we observe that the values of V (u; 50) are larger in scenario 2 than in scenario 1.
Given that the claim size densities were chosen with an identical mean, we expect the heavy-tail
Pareto distributions in scenario 2 to have a larger probability of extremes (small and large claim
size values) than the light-tail exponential distributions in scenario 1. However, the thickness in
the right-hand tail of the claim size distribution has a limited impact on V (u; 50) given that ruin
would likely occur for a medium-to-large claim size and that the expected discounted dividend
payments V (u; 50) do not account for the severity of the deficit at ruin. On the other hand, a
larger probability of small claim sizes has a more significant impact on V (u; 50). Indeed, it
directly translates into a larger number of scenarios in which more dividends are payable for a
longer period of time. This explains why the values of V (u; 50) are as exhibited in Table 1.

Table 1: Values of V (u; 50) for different initial surplus values.

Scenario 1 Scenario 2
u

V1(u; 50) V2(u; 50) V1(u; 50) V2(u; 50)

5 31.1941 15.1104 31.7929 16.8117
10 34.0144 18.0166 34.6264 19.9311
25 43.4963 26.6633 44.1247 28.8032
40 55.1880 37.0533 55.8268 39.2807
50 64.5067 45.9318 65.1478 48.1925
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2.2. Higher-order moments of the discounted dividends

To obtain an explicit expression for the higher-order moments of Du,b, let Mi(u, s; b) be
the moment generating function of Du,b | J (0) = i, i.e.

Mi(u, s; b) ≡ E[exp(sDu,b) | J (0) = i] = 1 +
∞∑

n=1

sn

n!Vi,n(u; b),

where Vi,n(u; b) = E[Dn
u,b | J (0) = i]. For notational convenience, we also define

Vi,0(u; b) = 1.
Using Itô’s formula for jump diffusion processes and by letting the drift of the resulting

stochastic differential equation for Vi,n(u; b) be 0, we find that

σ 2
i

2
V ′′

i,n(u; b) + ciV
′
i,n(u; b) − nδVi,n(u; b) +

m∑
k=1

DikVk,n(u; b)

+
m∑

k=1

Tik

∫ u

0
Vk,n(u − x; b)fik(x) dx = 0, 0 ≤ u ≤ b. (17)

Note that (17) is of the same form as (3) with δ substituted by nδ. It is clear that Vi,n(0; b) = 0
for i ∈ E. The second set of boundary conditions is obtained via the identity

∂Mi(u, s; b)

∂u

∣∣∣∣
u=b

= sMi(b, s; b), (18)

which we shall prove via a similar heuristic argument as in Gerber and Shiu (2004b). Indeed,
define


i(u, s; b) ≡ E[ϑ(sDu,b) | J (0) = i],
where ϑ is a nonnegative differentiable function. For the surplus process {Ub(t), t ≥ 0},
we consider the following two situations: (a) situation 1 where the initial surplus is b and
(b) situation 2 where the initial surplus is b−h. For a ‘small’ and positive h, it is almost certain
that, in both situations, the surplus will sit at the barrier level shortly (and before ruin). Under
situation 1, a total dividend of h would have been paid by then. Now being at the barrier level b,
both processes evolve identically going forward. Thus, the approximation Db,b ≈ h + Db−h,b

holds, which implies that

ϑ(sDb,b) − ϑ(sDb−h,b) ≈ shϑ ′(sDb,b).

Taking expectation conditional on J (0) = i yields


i(b, s; b) − 
i(b − h, s; b) ≈ sh E[ϑ ′(sDb,b) | J (0) = i]. (19)

Dividing (19) by h and then letting h → 0, we arrive at

∂
i(u, s; b)

∂u

∣∣∣∣
u=b

= s E[ϑ ′(sDb,b) | J (0) = i]. (20)

Equation (18) is a special case of (20) with ϑ(x) = ex . Now, equating the coefficients of sn on
both sides of (18), we obtain the second set of boundary conditions

V ′
i,n(b; b) = nVi,n−1(b; b), i ∈ E. (21)
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Owing to its similarity with (3), the solution of the integro-differential equation (17) is

Vn(u; b) = nvB
n (u)[(vB

n )′(b)]−1Vn−1(b; b),

or, equivalently,

Vn(u; b) = n! vB
n (u)[(vB

n )′(b)]−1vB
n−1(b)[(vB

n−1)
′(b)]−1 · · · vB

1 (b)[(vB
1 )′(b)]−11, (22)

for 0 ≤ u ≤ b and n ∈ N
+, where Vn(u; b) = (V1,n(u; b), . . . , Vm,n(u; b))�. Note that the

matrix vB
n (u) in (22) corresponds to the matrix vB(u) of Section 2.1, where the force of interest

δ is substituted by nδ. Thus, we refer the reader to the end of Section 2.1 for comments relating
to the calculation of vB

n (u).

Remark 3. An equation of the form (22) for Vn(u; b) has also been obtained by Li and Lu
(2007) and Cheung (2007) in the Markov-modulated risk model and in the Sparre Andersen
model with phase-type interclaim times, respectively.

3. The expected discounted penalty at ruin

In this section we are interested in deriving a result similar to the dividend-penalty identity
of Gerber et al. (2006) for the class of perturbed MAP risk models. Owing to the diffusion
component in (1), contributions to the expected discounted penalty function shall be decom-
posed on the basis of the cause of ruin: oscillation or claim. For this purpose, we define the
expected discounted penalty function φi(u; b) for u ≤ b (see Gerber and Shiu (1998)) as

φi(u; b) = w0φ
d
i (u; b) + φc

i (u; b), i ∈ E, (23)

where w0 is the penalty at ruin if ruin is caused by oscillation,

φd
i (u; b) = E[e−δTb 1(Tb < ∞, Ub(Tb) = 0) | Ub(0) = u, J (0) = i] (24)

is the Laplace transform of the time of ruin due to oscillation, and

φc
i (u; b) = E[e−δTbw(Ub(T

−
b ), |Ub(Tb)|)

× 1(Tb < ∞, Ub(Tb) < 0) | Ub(0) = u, J (0) = i] (25)

is the contribution to the expected discounted penalty function due to a claim causing ruin.
Here w : R

+ × R
+ → R is the so-called penalty function which is assumed to satisfy some

mild integrability conditions and 1(A) is the indicator function of the event A.
From Itô’s formula for jump diffusion processes we easily find the following integro-

differential equations for φd
i (u; b) and φc

i (u; b) respectively:

σ 2
i

2
(φd

i )′′(u; b) + ci(φ
d
i )′(u; b) − δφd

i (u; b) +
m∑

j=1

Dijφ
d
j (u; b)

+
m∑

j=1

Tij

∫ u

0
φd

j (u − x; b)fij (x) dx = 0, 0 ≤ u ≤ b, (26)
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and

σ 2
i

2
(φc

i )
′′(u; b) + ci(φ

c
i )

′(u; b) − δφc
i (u; b) +

m∑
j=1

Dijφ
c
j (u; b)

+
m∑

j=1

Tij

(∫ u

0
φc

j (u − x; b)fij (x) dx + ωij (u)

)
= 0, 0 ≤ u ≤ b, (27)

where ωij (u) = ∫∞
u

w(u, x − u)fij (x) dx. Note that the integro-differential equations (26)
and (27) also hold in an identical MAP risk model without barrier.

Given that ruin occurs immediately a.s. when the initial surplus is 0,

φd
i (0; b) = 1, φc

i (0; b) = 0, i ∈ E. (28)

It can also be proven that

(φd
i )′(b; b) = (φc

i )
′(b; b) = 0, i ∈ E, (29)

using an argument similar to that in Gerber et al. (2006). For the sake of completeness, this
argument is given here. We consider two cases: Ub(0) = b and Ub(0) = b − h, where h is a
‘small’ and positive number. For the latter case, the surplus process almost certainly reaches
the barrier level b shortly (and before ruin). At this time, the sample paths of the two surplus
processes coincide as does their penalty in the event of ruin. This completes the proof of (29).

Let

φc
i (u) = E[e−δT w(U(T −), |U(T )|) 1(T < ∞, U(T ) < 0) | U(0) = u, J (0) = i] (30)

be the contribution to the expected discounted penalty function due to a claim causing ruin
in the identical MAP risk model without barrier. Equation (30) is a particular solution of the
integro-differential equations (27). We also point out that (6) is the homogeneous version of
(27) for which {vA·,j }mj=1 and {vB·,j }mj=1 are 2m linearly independent solutions. From the general
theory of integro-differential equations, it follows that

φc
i (u; b) = φc

i (u) +
m∑

j=1

(φc
j (0; b) − φc

j (0))vA
i,j (u)

+
m∑

j=1

((φc
j )

′(0; b) − (φc
j )

′(0))vB
i,j (u), 0 ≤ u ≤ b. (31)

From the boundary conditions in (28) (which also hold in the identical MAP without barrier),
(31) can be simplified to

φc
i (u; b) = φc

i (u) +
m∑

j=1

((φc
j )

′(0; b) − (φc
j )

′(0))vB
i,j (u), 0 ≤ u ≤ b. (32)

A matrix representation of (32) is given by

�c(u; b) = �c(u) + vB(u)ϒ, (33)
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where �c(u; b) = (φc
1(u; b), . . . , φc

m(u; b))�, �c(u) = (φc
1(u), . . . , φc

m(u))�, and ϒ is an
m-dimensional column vector whose j th element is (φc

j )
′(0; b)− (φc

j )
′(0). In Appendix A, the

component �c(u) in a MAP risk model without barrier is discussed. To determine ϒ, we use
the boundary conditions in (29), which yield

(�c)′(b) + (vB)′(b)ϒ = 0�. (34)

Combining (33) and (34) yields

�c(u; b) = �c(u) − vB(u)[(vB)′(b)]−1(�c)′(b), 0 ≤ u ≤ b. (35)

Note that a similar line of logic leads to the following representation for the Laplace transform
of the time of ruin caused by oscillation:

�d(u; b) = �d(u) − vB(u)[(vB)′(b)]−1(�d)′(b), 0 ≤ u ≤ b, (36)

where �d(u; b) = (φd
1 (u; b), . . . , φd

m(u; b))
�

and �d(u) = (φd
1 (u), . . . , φd

m(u))�. Note that
φd

i (u) holds for the Laplace transform of the time to ruin caused by oscillation in the identical
MAP risk model without barrier. We refer the reader to Appendix A for a discussion on �d(u).

Combining (23), (35), and (36), it follows that

�(u; b) = �(u) − vB(u)[(vB)′(b)]−1�′(b), 0 ≤ u ≤ b, (37)

where �(u; b) = (φ1(u; b), . . . , φm(u; b))� and �(u) = (φ1(u), . . . , φm(u))� with φi(u)

being the expected discounted penalty function in the identical MAP risk model without barrier.

Remark 4. For the class of skip-free upward stationary Markov surplus processes, the scalar
versions of (11) and (37) hold and an identity, known as the dividend-penalty identity, was
established by e.g. Gerber et al. (2006) between the expected discounted penalty function
and the expected discounted dividend payments. In general, for the MAP risk models, the
matrix structures of (11) and (37) do not allow to write �(u; b) in terms of V (u; b) directly.
Nevertheless, it is worth pointing out that the matrix vB(u)[(vB)′(b)]−1 plays a central role in
the determination of both �(u; b) and V (u; b).

4. A barrier strategy dependent on the environmental process J

In this section, a different dividend barrier strategy is applied to the perturbed MAP surplus
process described in Section 1. In the spirit of Zhu andYang (2008), we assume that the barrier
level effective at a given time t depends on the state of the CTMC J at time t . Let bi be
the barrier level effective whenever the CTMC J is in state i (i ∈ E). In what follows we
are interested in studying the corresponding surplus process {Ub(t), t ≥ 0} and some of its
ruin-related quantities. Here b = (b1, . . . , bm) is a (row) vector containing the set of barrier
levels. We assume without loss of generality that the environmental states are such that bi < bj

for i < j .
The motivation for such a dividend payment strategy is the following: it is reasonable

for an insurer to set the dividend barrier at a higher level in periods of stress (i.e. when the
underlying Markovian environment is in a so-called ‘dangerous’ state with, in average, higher
claim frequency and larger claim amounts). Indeed, at a higher barrier level, dividends are paid
only if the surplus reaches a more secure level and, as a result, more capital is usually available
to face the increased possibility of adverse claims experience. Once the company returns to a
‘normal’ state, excess reserves can be released and ‘normal’ dividend payments resume.

https://doi.org/10.1239/jap/1245676104 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1245676104


532 E. C. K. CHEUNG AND D. LANDRIAULT

4.1. Analysis of a two-state environmental process

4.1.1. Expected discounted dividend payments. Let Vi(u; b) be the expected discounted div-
idends for the surplus process {Ub(t), t ≥ 0} with an initial surplus of u and an initial state
of the CTMC J (0) = i. We assume that, at the time of a transition of the Markovian process
J , the excess of the surplus level over the new barrier level (if positive) will be paid out as a
lump-sum dividend, i.e. Vi(u; b) = Vi(bi; b) + u − bi for u > bi (i = 1, 2).

Using Itô’s formula for jump diffusion processes, we readily obtain

σ 2
1

2
V ′′

1 (u; b) + c1V
′
1(u; b) − δV1(u; b) + D11V1(u; b) + D12V2(u; b)

+ T11

∫ u

0
V1(u − x; b)f11(x) dx + T12

∫ u

0
V2(u − x; b)f12(x) dx = 0, 0 ≤ u ≤ b1,

and

σ 2
2

2
V ′′

2 (u; b) + c2V
′
2(u; b) − δV2(u; b) + D21V1(u; b) + D22V2(u; b)

+ T21

∫ u

0
V1(u − x; b)f21(x) dx + T22

∫ u

0
V2(u − x; b)f22(x) dx = 0, 0 ≤ u ≤ b2.

(38)

Using the linearly independent solutions {vA·,j (u)}2
j=1 and {vB·,j (u)}2

j=1 defined in (6), it follows
that

Vi(u; b) = V ′
1(0; b)vB

i,1(u) + V ′
2(0; b)vB

i,2(u), i = 1, 2, for 0 ≤ u ≤ b1. (39)

It is clear that, for i = 1, boundary condition (9) yields

V ′
1(b1; b) = V ′

1(0; b)(vB
1,1)

′(b1) + V ′
2(0; b)(vB

1,2)
′(b1) = 1, (40)

while, for i = 2, the quantity V ′
2(b1; b) has yet to be determined but is known to satisfy

V ′
2(b1; b) = V ′

1(0; b)(vB
2,1)

′(b1) + V ′
2(0; b)(vB

2,2)
′(b1). (41)

Letting V (u; b) = (V1(u; b), V2(u; b))�, a matrix representation of (40) and (41) is given by

V ′(0; b) = [(vB)′(b1)]−1
(

1
V ′

2(b1; b)

)
. (42)

Substituting (42) into (39) leads to

V (u; b) = vB(u)[(vB)′(b1)]−1
(

1
V ′

2(b1; b)

)
, 0 ≤ u ≤ b1. (43)

Note that V ′
2(b1; b) is unknown, which implies that (43) alone does not fully characterize

V (u; b) for 0 ≤ u ≤ b1.
Now we consider (38) for an initial surplus u ∈ (b1, b2). By letting ξ(u) = V2(u + b1; b),

it is immediate that

σ 2
2

2
ξ ′′(u) + c2ξ

′(u) − δξ(u) + D22ξ(u) + T22

∫ u

0
ξ(u − x)f22(x) dx + α(u) = 0 (44)
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for 0 ≤ u ≤ b2 − b1, where

α(u) = D21V1(u + b1; b) + T21

∫ u+b1

0
V1(x; b)f21(u + b1 − x) dx

+ T22

∫ b1

0
V2(x; b)f22(u + b1 − x) dx

= (D21 + T21F21(u))V1(b1; b) + T21

∫ b1

0
V1(x; b)f21(u + b1 − x) dx

+ T22

∫ b1

0
V2(x; b)f22(u + b1 − x) dx + D21u + T21

∫ u

0
(u − x)f21(x) dx. (45)

To find the solution of the nonhomogeneous integro-differential equation (44), we rely on
the use of one of its particular solutions, namely {χ(u), u ≥ 0}, which satisfies

σ 2
2

2
χ ′′(u)+c2χ

′(u)−δχ(u)+D22χ(u)+T22

∫ u

0
χ(u−x)f22(x) dx +α(u) = 0, u ≥ 0,

with χ(0) = χ ′(0) = 0. Clearly, the Laplace transform χ̃(s) = ∫∞
0 e−suχ(u) du is given by

χ̃(s) = − α̃(s)

(σ 2
2 /2)s2 + c2s − δ + D22 + T22f̃22(s)

, (46)

where α̃(s) = ∫∞
0 e−suα(u) du. Using (45), we readily find that

α̃(s) =
(

D21

s
+ T21

s
f̃21(s)

)
V1(b1; b) + D21

s2 + T21

s2 f̃21(s)

+ T21(V1( ; b) ∗ Tsf21)(b1) + T22(V2( ; b) ∗ Tsf22)(b1),

where Ts is the Dickson–Hipp operator (see, e.g. Dickson and Hipp (2001)) defined as

Tsf (y) =
∫ ∞

y

e−s(x−y)f (x) dx, y ≥ 0,

for Re(s) ≥ 0 and f an integrable real-valued function on [0, ∞), and ‘∗’ is the convolution
operator defined as

(f ∗ g)(y) =
∫ y

0
f (y − x)g(x) dx =

∫ y

0
g(y − x)f (x) dx = (g ∗ f )(y), y ≥ 0,

for two integrable functions f and g on [0, ∞).
Also, the solution of the integro-differential equation (44) requires the identification of two

linearly independent solutions, namely {y1(u), u ≥ 0} and {y2(u), u ≥ 0}, of the associated
homogeneous equation

σ 2
2

2
y′′(u) + c2y

′(u) − δy(u) + D22y(u) + T22

∫ u

0
y(u − x)f22(x) dx = 0. (47)

Remark 5. Note that a homogeneous integro-differential equation of the form (47) has already
been studied in the context of the classical compound Poisson risk model perturbed by diffusion.
The reader is referred to Li (2006) for more details on the form of two linearly independent
solutions.
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By defining the initial conditions y
(j)
i (0) = 1(i = j + 1) for i = 1, 2 and j = 0, 1, it follows

from the general theory on integro-differential equations that

ξ(u) ≡ V2(b1 + u; b) = χ(u) + V2(b1; b)y1(u) + V ′
2(b1; b)y2(u) (48)

for 0 ≤ u ≤ b2 − b1. Incorporating the boundary condition V ′
2(b2; b) = 1, we find that

(y′
1(b2 − b1), y

′
2(b2 − b1))

(
V2(b1; b)

V ′
2(b1; b)

)
= 1 − χ ′(b2 − b1). (49)

Combining the second equation in (43) at u = b1, namely

V2(b1; b) = (0, 1)vB(b1)[(vB)′(b1)]−1
(

1
V ′

2(b1; b)

)
,

(49) results in a system of two linear equations for the unknown quantities V2(b1; b) and
V ′

2(b1; b). Note that χ ′(b2 − b1) (in (49)) does depend on V ′
2(b1; b) via its nonhomogeneous

term α(u). The solution of the following system leads to a complete representation of V1(u; b)

and V2(u; b) (via (43) and (48)).

4.1.2. Higher moments of the discounted dividends. Let Vi,n(u; b) be the nth moment of the
discounted dividends before ruin for the surplus process {Ub(t), t ≥ 0} with Ub(0) = u and
J (0) = i. For u > bi , we have

Vi,n(u; b) =
n∑

k=0

(
n

k

)
(u − bi)

n−kVi,k(bi; b), i = 1, 2.

By the same arguments used to derive (43), it can be shown that

Vn(u; b) = vB
n (u)[(vB

n )′(b1)]−1
(

nV1,n−1(b1; b)

V ′
2,n(b1; b)

)
, 0 ≤ u ≤ b1, (50)

where Vn(u; b) = (V1,n(u; b), V2,n(u; b))�.
Letting ξn(u) = V2,n(u + b1; b), we also know that

σ 2
2

2
ξ ′′
n (u) + c2ξ

′
n(u) − nδξn(u) + D22ξn(u) + T22

∫ u

0
ξn(u − x)f22(x) dx + αn(u) = 0

(51)

for 0 ≤ u ≤ b2 − b1, where

αn(u) =
n∑

k=0

(
n

k

)(
D21u

n−k + T21

∫ u

0
(u − x)n−kf21(x) dx

)
V1,k(b1; b)

+ T21

∫ b1

0
V1,n(x; b)f21(u + b1 − x) dx + T22

∫ b1

0
V2,n(x; b)f22(u + b1 − x) dx.

(52)

It is well known that the solution of the integro-differential equation (51) satisfies

ξn(u) ≡ V2,n(u + b1; b) = χn(u) + V2,n(b1; b)y1,n(u) + V ′
2,n(b1; b)y2,n(u) (53)
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for 0 ≤ u ≤ b2 − b1, where {χn(u), u ≥ 0} is a particular solution of (51) with χn(0) =
χ ′

n(0) = 0, while {y1,n(u), u ≥ 0} and {y2,n(u), u ≥ 0} are two linearly independent solutions
of the homogeneous version of (51) with y

(j)
i,n (0) = 1(i = j + 1) for i = 1, 2 and j = 0, 1.

Given that V ′
2,n(b2; b) = nV2,n−1(b2; b), the representation (53) yields

χ ′
n(b2 − b1) + V2,n(b1; b)y′

1,n(b2 − b1) + V ′
2,n(b1; b)y′

2,n(b2 − b1) = nV2,n−1(b2; b). (54)

The solution of the system of equations which consists of the second equation of (50) at u = b1
and (54) together with the form of the solutions in (50) and (53) leads to a recursive expression
for Vn(u; b) in terms of n.

We point out that the Laplace transform of χn(u) is of the form (46) with α̃(s) replaced by

α̃n(s) =
n∑

k=0

n!
k!

1

sn−k+1 (D21 + T21f̃21(s))V1,k(b1; b) + T21(V1,n( ; b) ∗ Tsf21)(b1)

+ T22(V2,n( ; b) ∗ Tsf22)(b1).

4.1.3. The expected discounted penalty at ruin. Let φi(u; b), φd
i (u; b), and φc

i (u; b) be the
analogues of (23), (24), and (25) for the surplus process {Ub(t), t ≥ 0}, respectively. Clearly,
for u > bi , we have φi(u; b) = φi(bi; b), φd

i (u; b) = φd
i (bi; b), and φc

i (u; b) = φc
i (bi; b), for

i = 1, 2.
Relying on a similar sequence of arguments to obtain (43), we can show that

�d(u; b) = �d(u) + vB(u)[(vB)′(b1)]−1

( −(φd
1 )′(b1)

(φd
2 )′(b1; b) − (φd

2 )′(b1)

)
(55)

for 0 ≤ u ≤ b1, where �d(u; b) = (φd
1 (u; b), φd

2 (u; b))�. Note that (φd
2 )′(b1; b) in (55) is

unknown. Letting ξd(u) = φd
2 (u + b1; b), we also have

σ 2
2

2
(ξd)′′(u) + c2(ξ

d)′(u) − δξd(u) + D22ξ
d(u) + T22

∫ u

0
ξd(u − x)f22(x) dx + αd(u) = 0

(56)

for 0 ≤ u ≤ b2 − b1, where

αd(u) = (D21 + T21F21(u))φd
1 (b1; b) + T21

∫ b1

0
φd

1 (x; b)f21(u + b1 − x) dx

+ T22

∫ b1

0
φd

2 (x; b)f22(u + b1 − x) dx. (57)

It is well known that the solution of the integro-differential equation (56) satisfies

ξd(u) ≡ φd
2 (u + b1; b)

= ζ d(u) + (φd
2 (b1; b) − ζ d(0))y1(u) + ((φd

2 )′(b1; b) − (ζ d)′(0))y2(u) (58)

for 0 ≤ u ≤ b2 − b1, where {ζ d(u), u ≥ 0} is a particular solution of (56) with ζ d(0) =
(ζ d)′(0) = 0. Given that (φd

2 )′(b2; b) = 0, the use of (58) results in

(ζ d)′(b2 − b1) + (φd
2 (b1; b) − ζ d(0))y′

1(b2 − b1) + ((φd
2 )′(b1; b) − (ζ d)′(0))y′

2(b2 − b1)

= 0. (59)
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Therefore, the constants φd
2 (b1; b) and (φd

2 )′(b1; b) can be solved from the system of equations
which consists of (55) at u = b1 and (59). A complete representation of �d(u; b) can then be
obtained by combining (55) and (58).

Similarly, for φc
i (u; b), we find that

�c(u; b) = �c(u) + vB(u)[(vB)′(b1)]−1

( −(φc
1)

′(b1)

(φc
2)

′(b1; b) − (φc
2)

′(b1)

)
, 0 ≤ u ≤ b1,

(60)
where �c(u; b) = (φc

1(u; b), φc
2(u; b))�. With ξc(u) = φc

2(u + b1; b), it is clear that

σ 2
2

2
(ξc)′′(u) + c2(ξ

c)′(u) − δξc(u) + D22ξ
c(u) + T22

∫ u

0
ξc(u − x)f22(x) dx + αc(u) = 0

(61)

for ≤ u ≤ b2 − b1, where

αc(u) = (D21 + T21F21(u))φc
1(b1; b) + T21

∫ b1

0
φc

1(x; b)f21(u + b1 − x) dx

+ T22

∫ b1

0
φc

2(x; b)f22(u + b1 − x) dx + T21ω21(u + b1) + T22ω22(u + b1). (62)

The solution of (61) can be expressed as

ξc(u) ≡ φc
2(u + b1; b)

= ζ c(u) + (φc
2(b1; b) − ζ c(0))y1(u) + ((φc

2)
′(b1; b) − (ζ c)′(0))y2(u), (63)

where {ζ c(u), u ≥ 0} is a particular solution of (61) with ζ c(0) = (ζ c)′(0) = 0. Given that
(φc

2)
′(b2; b) = 0, the use of (63) results in

(ζ c)′(b2 − b1) + (φc
2(b1; b) − ζ c(0))y′

1(b2 − b1) + ((φc
2)

′(b1; b) − (ζ c)′(0))y′
2(b2 − b1)

= 0. (64)

Here, again, a complete representation of �c(u; b) is obtained by combining (60), (63), and
(64).

Finally, we obtain the expected discounted penalty function φi(u; b) via φi(u; b) =
w0φ

d
i (u; b) + φc

i (u; b) for i = 1, 2.

Remark 6. For the integro-differential equations (51), (56), and (61), their respective non-
homogeneous terms (52), (57), and (62) depend on {Vi,k(u; b)}nk=1, φd

i (u; b), and φc
i (u; b),

for u ≤ b1, which in turn are expressed in terms of the particular solutions vB(u). From
Section 2.1, it is known that when the claim size densities fij all have a rational Laplace
transform, (16) holds and an explicit expression for the nonhomogeneous terms (52), (57), and
(62) follows. However, when at least one of the claim size densities does not have a rational
Laplace transform, numerical Laplace transform inversion methods shall be used to evaluate
vB
i,j (u). In such a case, the integral terms in the nonhomogeneous terms (52), (57), and (62)

seem rather difficult to evaluate. Therefore, under the dividend barrier strategy of Section 4,
claim size densities with rational Laplace transform should be used for calculation purposes.
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4.2. Analysis for an arbitrary number of environmental states

The above analysis assumes that the CTMC J has only two environmental states. The
consideration of a two-state environment process has been primarily due to its more simple
mathematical tractability and, thus, easier presentation. However, it is clear that the technique
presented in Section 4.1 can be readily extended to a CTMC with an arbitrary finite number of
states. We highlight the procedure for the expected discounted dividend payments here.

Step 1. Consider surplus values in (0, b1). The complete set of integro-differential equations for
the expected discounted dividend payments holds for this subset of initial surplus values.
Find the form of the solution on (0, b1) and incorporate the first derivative condition,
V ′

1(b1; b) = 1, into it.

Step 2. Consider surplus values in (bi, bi+1). Only a subset of the original integro-differential
equations holds for the expected discounted dividend payments for the corresponding
surplus values. Find the form of the solution on (bi, bi+1) and incorporate the first
derivative condition V ′

i+1(bi+1; b) = 1.

Step 3. Repeat step 2 until all the values of i in {1, 2, . . . , m−1} have been considered, combine
all the first derivative conditions and solve the resulting system of linear equations.

An application of this procedure leads to a complete representation of the expected discounted
dividend payments. For the other ruin-related quantity of interest, one simply has to replace
the first derivative condition at the barrier level by the appropriate one.

5. Numerical example

The purpose of this section is two-fold: first, we show the impact on the expected discounted
dividend payments of a barrier level that depends on the state of the underlying CTMC J and
second, the methodology proposed in Section 4.1 is illustrated and some intermediate quantities
in the calculation of V (u; b) are provided.

To this end, we revisit Example 1 of Section 2.1. Following the recommendation in
Remark 6, we only consider scenario 1 here (where all the claim sizes are exponential). Table 2
contains the values of V (u; b) for a force of interest δ = 4% and different combinations of
barrier levels. Note that, given the nature of state 2, it is likely that a safer dividend policy will
be adopted for state 2 (when compared to state 1), explaining why b2 ≥ b1 in the four scenarios
considered in Table 2. In what follows, we provide some intermediate calculations for the case

Table 2: Values of V (u; b) for different combinations of (b1, b2).

b

u (50, 50) (50, 75) (50, 100) (50, ∞)

V1(u; b) V2(u; b) V1(u; b) V2(u; b) V1(u; b) V2(u; b) V1(u; b) V2(u; b)

10 34.0144 18.0166 33.1172 17.1037 32.9160 16.8991 32.8565 16.8384
25 43.4963 26.6633 42.3941 24.8339 42.1469 24.4237 42.0740 24.3023
50 64.5067 45.9318 63.1780 39.6286 62.8801 38.2154 62.7919 37.7969
75 — — — 59.5845 — 53.9792 — 52.3194

100 — — — — — 74.0910 — 67.0930

https://doi.org/10.1239/jap/1245676104 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1245676104


538 E. C. K. CHEUNG AND D. LANDRIAULT

where b1 = 50 and b2 = 75 before making some observations on the values of V (u; b) in
Table 2. Note that all the figures provided are rounded to the nearest ten thousandth.

From (43) at u = b1(= 50),

V2(50; b) = 26.9723 + 18.9595V ′
2(50; b). (65)

Also, using (48), it follows that

V2(50 + u; b) = χ(u) + V2(50; b)y1(u) + V ′
2(50; b)y2(u) (66)

for 0 ≤ u ≤ 25, where

χ(u) = 0.6u + 35.5061 + 0.0181e−0.2u − 0.0144e−150.0800u + 7.7763e−0.0285u

− 43.2861e0.0585u + (2.3979 − 0.0031e−0.2u − 0.0034e−150.0800u

+ 4.3330e−0.0285u − 6.7244e0.0585u)V2(b1; b),

y1(u) = 0.0005e−150.0800u − 0.2472e−0.0285u + 1.2467e0.0585u,

and
y2(u) = −0.0067e−150.0800u − 0.0017e−0.0285u + 0.0083e0.0585u.

Using (66), the second boundary condition V ′
2(b2; b) = 1 becomes

1 = −(10.4236 + 1.7561V ′
2(50; b)) + 0.3178V2(50; b) + 0.0021V ′

2(50; b). (67)

Solving the system of equations (65) and (67), we find that V2(50; b) = 39.6286 and
V ′

2(50; b) = 0.6675. Therefore, we conclude that

V1(u; b) = −27.3236e−600.0283u − 0.0002e−150.0800u − 0.5186e−0.4904u + 0.0091e−0.2001u

− 0.2448e−0.0996u − 0.9245e−0.0277u + 29.0001e0.0156u + 0.0024e0.0604u

and

V2(u; b) = 0.0001e−600.0283u − 11.2420e−150.0800u + 0.0023e−0.4904u − 1.1602e−0.2001u

− 0.0359e−0.0996u − 6.6932e−0.0277u + 19.1557e0.0156u − 0.0268e0.0604u

for 0 ≤ u ≤ 50, while

V2(50 + u; b) = 37.1068 + 0.6u + 0.0160e−0.2u + 0.0000e−150.0800u

+ 0.8711e−0.02849u + 1.6347e0.0585u

for 0 ≤ u ≤ 25.
Finally, let us comment on the values of the expected discounted dividend payments in

Table 2. We observe that, all else being equal, a higher barrier level b2 in Table 2 seems to lead
to a decrease in both V1(u, b) and V2(u, b) for a given surplus value u. However, we would like
to remind the reader that there exists a trade-off with respect to the expected discounted dividend
payments for a change in the barrier level (see, e.g. Li and Lu (2007) and the references therein).
Indeed, a decrease in the barrier level b2 implies that dividends will be paid more often but for
a shorter period of time (given that ruin occurs earlier a.s.), and vice versa. Consequently, we
should be careful in commenting on the effect of a change in the barrier level b2 on the expected
discounted dividend payments.
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Appendix A

The aim of this appendix is to give explicit expressions for the Laplace transform of the
quantities �d(u) and �c(u) when m = 2. Since all the techniques and procedures are almost
identical to those given in Lu and Tsai (2007), details are omitted and only results are given
here.

With m = 2, A(s) is given by

A(s) =
⎛⎜⎝σ 2

1

2
s2 + c1s − δ + D11 + T11f̃11(s) D12 + T12f̃12(s)

D21 + T21f̃21(s)
σ 2

2

2
s2 + c2s − δ + D22 + T22f̃22(s)

⎞⎟⎠ .

For δ > 0, an application of Rouché’s theorem reveals that det A(s) = 0 has two positive real
roots which we shall denote by ρ1 and ρ2, and these are the only roots on the right half of the
complex plane. If the positive security condition (2) is assumed then we have ρ1 → 0+ as
δ → 0+.

Define

φ̃c
i (s) =

∫ ∞

0
e−suφc

i (u) du, φ̃d
i (s) =

∫ ∞

0
e−suφd

i (u) du,

and ω̃ij (s) =
∫ ∞

0
e−suωij (u) du,

as well as the column vectors �̃c(s) = (φ̃c
1(s), φ̃

c
2(s))

� and �̃d(s) = (φ̃d
1 (s), φ̃d

2 (s))�. Analo-
gous to Equations (4.11) and (4.12) of Lu and Tsai (2007), we arrive at

�̃c(s) = (s − ρ1)(s − ρ2)

det A(s)

{
adj A[s, ρ1, ρ2]Bc(ρ2) − adj A[s, ρ1]

⎛⎝∑2
j=1 T1j ω̃1j [s, ρ2]∑2
j=1 T2j ω̃1j [s, ρ2]

⎞⎠
− adj A(ρ1)

⎛⎝∑2
j=1 T1j ω̃1j [s, ρ1, ρ2]∑2
j=1 T2j ω̃1j [s, ρ1, ρ2]

⎞⎠}

and

�̃d(s) = (s − ρ1)(s − ρ2)

det A(s)

{
adj A[s, ρ1, ρ2]Bd(ρ2) + adj A[s, ρ1]

⎛⎜⎜⎝
σ 2

1

2
σ 2

2

2

⎞⎟⎟⎠},

where

Bc(ρ2) = [adj A[ρ1, ρ2]]−1 adj A(ρ1)

⎛⎝∑2
j=1 T1j ω̃1j [ρ1, ρ2]∑2
j=1 T2j ω̃1j [ρ1, ρ2]

⎞⎠
and

Bd(ρ2) = −[adj A[ρ1, ρ2]]−1 adj A(ρ1)

⎛⎜⎜⎝
σ 2

1

2
σ 2

2

2

⎞⎟⎟⎠ .
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Here the first divided difference of any function f with respect to two distinct numbers x1 and
x2 is defined to be

f [x1, x2] = f (x1) − f (x2)

x1 − x2
,

while the second divided difference with respect to three distinct numbers x1, x2, and x3 is
defined to be

f [x1, x2, x3] = f [x1, x2] − f [x1, x3]
x2 − x3

.

In addition, the notion of divided difference has also been extended from scalar to matrix
quantities (see, e.g. Lu and Tsai (2007)).
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