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A NEW SPACE WITH NO
LOCALLY UNIFORMLY ROTUND RENORMING

BY
RICHARD HAYDON AND VACLAV ZIZLER

ABSTRACT. We construct a Banach space X which has no equivalent
(wLUR) norm but which has no subspace isomorphic to /.

1. Introduction. It was shown by Lindenstrauss [4] that /,, admits no locally
uniformly rotund (LUR) renorming. Other known spaces for which this is true (such
as I /co and /,(I') with I' uncountable, which actually admit no rotund renorming)
contain isomorphic copies of /, and the question has been posed whether /,, is in fact
the unique obstruction to (LUR) renorming. Similar questions arose in the context of
non-reflexive Grothendieck spaces and were answered in [1] and [5]. In this paper, we
modify the construction given in [1] to provide an example of a closed sublattice X of
I, which has no subspace isomorphic to /,, but which allows no (LUR) renorming.

Our notation and terminology for Banach spaces are mostly standard; we write
ball X for {x € X : ||x|]| = 1} and sph X for {x € X : ||x|| = 1}. A Banach space X is
said to have a locally uniformly rotund (LUR) norm if ||x —x,|| — O whenever x,x, €
sph X are such that ||(x + x,)/2|| — 1. If the above hypothesis on x and x, implies
only that x, — x weakly then X is said to have a (WLUR) norm. The example we
give actually has no (WLUR) renorming.

The plan of the paper is simple. Paragraph 2 introduces the class of “tree-complete”
sublattices of /,, defined in such a way that argument of [4] may be applied without
much modification. In paragraph 3 we follow the methods of [1] to construct a tree-
complete sublattice with no subspace ismorphic to /n.

2. Tree complete sublattices of /.. Let X be a closed subspace of /,, equipped
with a norm || - || which satisfies ||x|jco = [|x|| = M||x||oo, (x € N). When x is in
X N sph Iy, and A is a subset of N, let X (x,A) denote the set

{reX:yllo=1 and y|N\A)=x|N\A}
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and define
£(x,A) = sup{|ly|| : y € X (x,A)}

n(x,A) = inf{|ly|l : y € X (x,A)}

Lemma 2.1. If x is in XN sph I, and A is an infinite subset of N then for each .
€ > 0 there exist x' € X (x,A) and an infinite subset A’ of A such that

n(x’ A 2 €' AT) —e.

Proor. First choose x’ € X (x,A) with |[x'|| 2 &(x,A) — €/2 and then x* € X*
with |[x*]| = 1 and (x*,x) 2 £(x,A) — €/2. Extend x* to a function p € (Io,)*.
If A|, Ay, ... are disjoint infinite subsets of A then

00
llull 2~ l11a, - ol
n=1

because /% is an (AL)-space. Hence there exists n such that ||1,, - p|| < €/4. Take
A’ = A,. Now let y be in X (x’,A’). We have

(x*,y)y = (x* X"y + (x*y —x')
= (x5 x) + (La, - gy — XD,

Since ||y — x'||oo = 2, this leads to

(", y) Z €, A) —€/2-2-¢/4
=&(x,A) —e.

This gives the result since £(x’, A") = £(x, A).

We now introduce some notation for the dyadic tree T. We define T to be
Unen{0, 1}"; its elements are finite (possible empty) strings of 0’s and 1°s. The empty
string () is the unique string of length 0; more generally, the length |t| of a string ¢ is n
if 1 € {0, 1}". The tree-order is defined by s < ¢ if |s| < |¢| and t(m) = s(m)(m < |s]).
Each ¢+ € T has exactly two immediate successors, which we shall denote by ¢.0 and
t. 1. For each infinite sequence of 0’s and 1’s, that is to say, for each b € {0, 1}N,
there is a unique branch of T,

B(h)={b|n:neN}

We shall say that a sub-lattice X of I, is tree-complete if, whenever (y,),c7 is a
bounded, disjoint family in X, there exists b € {0, 1} such that the (pointwise) sum

th|n

neN

is in X.
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Notice that if X contains ¢y and is tree-complete then, for every infinite subset B
of N, there is an infinite subset C of B with 1¢ € X. Thus when we apply Lemma
2.1 to such an X we may always arrange that 1, € X and x’ | A’ = 0. (Replace A’ by
an infinite A” C A’ with 14 € X and replace x’ by x” = (x' A1) V (—14r).)

THEOREM 2.2. If X is a tree-complete sublattice of ls, and X contains cy then X
admits no equivalent (WLUR) norm.

Proor.. Let || - || be an equivalent norm on X. We shall give a recursive definition
of a family (x;),er in XN sph [, a family (A,),c7 of infinite subsets of N and a family
(my)ier\{( yy of natural numbers. These will have the following properties:

() A, CAifs <t

(ii) A, NA; = ¢ if s,t are incomparable;
(iii) m.; €A, ¢ €T,i € {0,1});

@iv) x | A =0, x(m;)=1;

V) &0y A) — 0, A) < 271

i) x, € X (x5, A;) if s < 8.

To start, we apply Lemma 2.1 with A = N, ¢ = 1 and x any element of XN
sph /. We obtain x( y and A ) with

E(x( ), ACH) —nlx Ay <1

and may assume that x( | Ay = 0.

If x;, A; have been obtained already, we choose distinct m; g, m; | in A; and disjoint
infinite subsets By, By of A;\{m,0, m;}. By inductive hypothesis, ||x;|lc = 1 and
X5 | As = 0; 50 ||X5 + em,,|lo = 1 for i € {0, 1}. Moreover, x; + e, is in X since X
contains cp. We apply Lemma 2.1 with € = 2*|s|‘1,x = X; + en,,,A = B, and obtain
Xy.i,Asi as required.

It is easy to check that this construction does produce families satisfying all of (i)
to (vi). Notice that for each b € {0, 1}N there is a positive real number p(b) such that
E(Xp|n» Apn) decreases to p(b) and n(xy|,, Ap),) increases to p(b) as n — oo. Thus, if
Zn € X (Xpjn, Apjn) for all n € N, we have ||za]| — p(b) as n — oo.

We now define a bounded, disjoint family (y,),cr in X by putting

YO) =X

Vei =Xei — X = lA, * Xpie

By tree-completeness, there exists » € {0, 1}N such that the pointwise sum
X = Zyb|n
neN

is in X. We note that x is in X (x,,,Ap|,) for all n so that |lx|| must equal p(b).
Moreover, for each 7, x,}, and (x + x,,)/2 are in X (x|, Apjy) 80 that [lxy,|| — p(b)
and ||x + x,,)/2|| — p(b).
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We can now see immediately that (X, || - ||) is not (LUR) since ||x — X, || Z 1 for
all n. (We have xp|,,(my|(ns1)) = 0, x(Mp)(r41)) = 1.)

To see that X is not (WLUR) we need to find x* € X* such that (x*, x,,) — (x*, x).
Let U be a non-principal ultrafilter on N and define p € I, by

(1) = Jim 2y
We have (u,xp,) = O for all n while (4, x) = 1, so that x* = ubigm|X will do.

3. The construction. Our aim now is to construct a closed, tree-complete sub-
lattice X of /., which contains ¢y but which has no subspace isomorphic to /. Our
sublattice X will be the closed linear span of the indicator functions 14 of sets A in a
certain subalgebra U of the power set BN of the natural numbers. In order to exclude
I, as a subspace of X, we ensure that for every infinite subset N of N there is a
subset M of N which is not in the trace {ANN : A € A} of A on N. In the lemma
that follows, which shows how to carry out the inductive step in a construction by
transfinite recursion, we suppose that each of a certain family of subsets Ny of N has
already been assigned a “forbidden” subset M,. The lemma shows how to extend a
given subalgebra, in a way that will eventually lead to tree-completeness of X, while
not going against any of the existing assignments of forbidden subsets.

LeEmMMA 3.1. Let ¥ < ¢ be an ordinal and let W be a Boolean subalgebra of YN
with #)0l < c. Let (Mg, Ng)g<y be a family of pairs of subsets of N, with Mg C Ng,
such that Mg # ANNg for all A € U, 3 <. For each k € N, let (A%Yer be a family
of elements of W and assume that A N AL = 0 if 5,t are distinct elements of T and
k,1 are in N. Then there exists b € {0, 1}N such that Mg # B (\Ng for all 3 <7 and
all B in the algebra generated by

*uu{UAf,ln;keN}.

neN

Proor. For b € {0,1}" and k € N let Bf = U,enA},, let B, be the algebra
generated by {Bf : k € N} and let %, be the algebra generated by U U B,. Note
that any element of 2, may be written in the form (4, NBYHU...U(A, NB,) with
By,...,B, € B, and A,,..., A, disjoint elements of W.

If the assertion of the lemma is false, then by a cardinality argument, there exist
disjoint Ay,...,A, € %, an ordinal 8 < and distinct b, c,d € {0, 1}N such that

Mg =NsN[(A NBYU...U(A, NB,)|
=NgN[(A; NCHU...U@A,NC,)
= N3N (A ND)U...UA,ND,)]
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for appropriately chosen B; € B,,C; € B.,D; € B,. For some natural number / we

have
B € alg{B} : k <1}

Cj €alg{Bf k< 1}
D;€alg{Bt:k<l}, (1=j=r).

Let m be the smallest natural number such that b|m, c|m, d|m are distinct and define

E= ] 4.

k<1

[t|<m
Notice that E € ) and that ENF € A whenever F € B, (or B, or By). It follows
from this observation that there exists A’ € % such that MgNE = NgNA'.

We now have to consider M3\E. Notice that B, \E, B/\E, BX\E are disjoint when-
ever i, j,k <. For any fixed j = r we have A;,N\B;NNz = A;,NC;N\Ng = A;ND;NNg =
A; N Ng (recall that the A; are disjoint).

We claim that, for each j, either

(AjNM\E = (A;NN\E or (A "NM\E = ¢.

If this is not the case, there exist p € (A; N M)\E and g € (A; N (Ng\Mp))\E.
Consequently, p € B,\E,q € (N\B))\E which means that, for some i < I, one of
p,q is in B} and the other not. Similarly, for some j,k < I,B.N{p,q} # ¢ and
BYN{p,q} # ¢. This contradicts the disjointness of B \E, B/\E,BX\E.

Finally, we see that Mg can be written as

Ms = NN [A’ U U(Aj\E)]
jel
for a suitable subset J of /. This contradicts our original hypothesis.

ProprosITION 3.2. There exists a subalgebra W of VBN, containing the finite subsets
and satisfying the following two properties:

(i) for no infinite N C N do we have BN = {N NA: A € A},

(ii) whenever AX(k € N,t € T) are elements of W such that

AYNA =6 (kjEN;s #1),
there exists b € {0, 1}N such that

U aﬁln € W for all k € N.

neN

The proof of this proposition uses the preceding lemma in the same way that 1E
was used for 1D in [1].
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THEOREM 3.3. There is a closed sublattice X of lo, which admits no equivalent
(WLUR) norm but which has no subspace isomorphic to lu,.

Proor. We construct U as in 3.2 and take X to be the closed linear span of
{14 : A € U}. That X has no subspace isomorphic to l,, follows from the argument
used in [1]. On the other hand, X contains ¢y so that we only need to show that X has
the tree-completeness property.

Let (Y,)er be a a disjointly supported family in XN ball /,,. For each t € T we
can write y, in the form

Yr = Z 24((1/{:‘ - 13[‘)
k=1
with A B¥ € N and A*, B¥ C supp y,. If we apply property (ii) of 3.2 we find
b € {0, 1}N such that

U4, €% and | B, € forall k.

neN neN

But this means that the pointwise sum

th|n

neN

is in X, since we can write it as

o0
> 27t — 1g)
k=1

with Ay = U,en A’,;In and By = U,en By,

4. Final remarks. Considerably more is known about the structure of non-
reflexive Grothendieck spaces than about that of spaces without (LUR) renormings.
The question of whether a non-reflexive Grothendieck space necessarily has Iy, as a
quotient depends upon special set-theoretic axioms ([3]) and [5]); but the dual of such
a space always contains L;({0, 1}*") [2]. It is not clear whether the similarity between
the example given here and the one in [1] is coincidental or whether results analogous
to the above may hold for spaces without (LUR) renormings.

ADDED IN PAGE-PrOOFS: G. A. Alexandrov and V. D. Babev [Comptes Rendus de
I’Académie Bulgare des Sciences, 41 (1988), 29-32.] have shown that subsequential
completeness of N is enough to guarantee that X = Xy has no (wWLUR)-renorming.
Thus the example constructed in [1] fulfills the conditions of Theorem 3.3.
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