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A NEW SPACE WITH NO 
LOCALLY UNIFORMLY ROTUND RENORMING 

BY 

RICHARD HAYDON AND VACLAV ZIZLER 

ABSTRACT. We construct a Banach space X which has no equivalent 
(wLUR) norm but which has no subspace isomorphic to l^. 

1. Introduction. It was shown by Lindenstrauss [4] that l^ admits no locally 
uniformly rotund (LUR) renorming. Other known spaces for which this is true (such 
as loo/Co and /ooiX) with T uncountable, which actually admit no rotund renorming) 
contain isomorphic copies of l^ and the question has been posed whether l^ is in fact 
the unique obstruction to (LUR) renorming. Similar questions arose in the context of 
non-reflexive Grothendieck spaces and were answered in [1] and [5]. In this paper, we 
modify the construction given in [1] to provide an example of a closed sublattice X of 
/oo which has no subspace isomorphic to l^ but which allows no (LUR) renorming. 

Our notation and terminology for Banach spaces are mostly standard; we write 
ball X for {x G X : ||JC|| ^ 1} and sph X for {x G X : \\x\\ = 1}. A Banach space X is 
said to have a locally uniformly rotund (LUR) norm if \\x —xn\\ —> 0 whenever x,xn G 
sph X are such that ||(JC + x„)/2|| —> 1. If the above hypothesis on x and xn implies 
only that xn —• x weakly then X is said to have a (wLUR) norm. The example we 
give actually has no (wLUR) renorming. 

The plan of the paper is simple. Paragraph 2 introduces the class of "tree-complete" 
sublattices of /^ defined in such a way that argument of [4] may be applied without 
much modification. In paragraph 3 we follow the methods of [1] to construct a tree-
complete sublattice with no subspace ismorphic to l^. 

2. Tree complete sublattices of l^. Let X be a closed subspace of Z^, equipped 
with a norm || • || which satisfies ||JC||OO = \\x\\ S M\\x\\oo,(x G N). When x is in 
Xn sph /QO and A is a subset of N, let X(x,A) denote the set 

{y e X : IbHoo = 1 and y | (N\A) = x | (S\A)} 

Received by the editors June 16, 1987 and, in revised form, March 24, 1988. 
AMS Subject Classification (1980): 46B20. 
© Canadian Mathematical Society 1988. 

122 

https://doi.org/10.4153/CMB-1989-019-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-019-7


A NEW SPACE WITH NO LOCALLY UNIFORMLY ROTUND RENORMING 123 

and define 
t(x,A) = sup{\\y\\:yeX(x,A)} 

r](x,A) = mf{\\y\\:yeX(x,A)}' 

LEMMA 2.1. If x is in XH sph l^ and A is an infinite subset of N then for each . 
e > 0 there exist x' G X(x,A) and an infinite subset A! of A such that 

fKJt ' ,A ' )^(* ' ,A ' ) -€ . 

PROOF. First choose x' G X(x,A) with ||jt'|| ^ £(x,A) - e/2 and then x* G X* 
with ||JC*|| = 1 and (x*,x) ^ £(*, A) — e/2. Extend x* to a function /x G (Zoo)*-

If Ai, A2,... are disjoint infinite subsets of A then 

00 

NI ^ XX-"ii 

because /£, is an (AL)-space. Hence there exists n such that ||l^w • /x|| < e/4. Take 
A' = A„. Now let y be in * (* ' , A'). We have 

(x\y) = (x\x') + (x\y-x') 

= (x*,xf) + {lAn-^y-x'). 

Since | |j — x'||oo = 2, this leads to 

(x*jy)*t(x,A)-e/2-2.e/4 

= 0*,A)-£. 

This gives the result since ^(jt^A') ^ £C*,A). 
We now introduce some notation for the dyadic tree T. We define T to be 

U ^ N J O , 1}W; its elements are finite (possible empty) strings of O's and l's. The empty 
string ( ) is the unique string of length 0; more generally, the length \t\ of a string t is n 
if t G {0, \}n. The tree-order is defined by s -< Mf |s| < \t\ and f(m) = s(m)(m < \s\). 
Each r G T has exactly two immediate successors, which we shall denote by t. 0 and 
t. 1. For each infinite sequence of O's and l's, that is to say, for each b G {0,1}N, 
there is a unique branch of T, 

B(b) = {b I n : « G N}. 

We shall say that a sub-lattice X of /oo is tree-complete if, whenever ( j , ) ,^ is a 
bounded, disjoint family in X, there exists /? G {0, 1}N such that the (pointwise) sum 

is in X. 
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Notice that if X contains CQ and is tree-complete then, for every infinite subset B 
of N, there is an infinite subset C of B with \Q G X. Thus when we apply Lemma 
2.1 to such an X we may always arrange that \A> G X and x' | A1 — 0. (Replace A' by 
an infinite A" C A' with I4// G X and replace x; by x" — {x' A 1̂ ") V (—1,4")-) 

THEOREM 2.2. If X is a tree-complete sublattice of l^ and X contains c$ then X 
admits no equivalent (wLUR) norm. 

PROOF.. Let || • || be an equivalent norm on X. We shall give a recursive definition 
of a family (xt)tET in XC\ sph /QQ, a family {At)teT of infinite subsets of N and a family 
(mt)t<ET\{( )} °f natural numbers. These will have the following properties: 

(i) At C As if s < t\ 
(ii) At Pi As — <j> if s, t are incomparable; 
(iii) m,,? €A, (f G7\ i €{0,1}); 
(iv) xt\At = 0, xu{mt.i) = 1; 
(v) ^ , i4 / ) - î? (Jc / ,A r )<2-W; 
(vi) JC; G X te, A5) if s -< t. 

To start, we apply Lemma 2.1 with A = N, e = 1 and x any element of XH 
sph /OQ. We obtain x( ) and A( ) with 

£(*( ),A( ))-r/(x ( ),A( ) ) < 1 

and may assume that x( > | A( ) = 0. 
If xSJAs have been obtained already, we choose distinct ms$,ms.\ in As and disjoint 

infinite subsets Z .̂o, BsA of As\{ms.o,msA}. By inductive hypothesis, ||JC,S||OO = 1 and 
x5 | As = 0; so ||JC.S + £/«,.,• ||oo = 1 for / G {0,1}. Moreover, xs + emsi is in X since X 
contains CQ. We apply Lemma 2.1 with e = 2~^~l,x = x5 +emsi,A — Bsi and obtain 
xXj,ASj as required. 

It is easy to check that this construction does produce families satisfying all of (i) 
to (vi). Notice that for each b G {0,1}N there is a positive real number p(b) such that 
£(xh\n,Ah\n) decreases to p(b) and r){xb\n, Ab\n) increases to p{b) as n —-»• oo. Thus, if 
zn G X{xb\n,Ab\n) for all n G N, we have \\zn\\ —+ p(Z?) as « —> oo. 

We now define a bounded, disjoint family (yt)teT in X by putting 

3>( ) = •*( ) 

Jr./ — Xtj — Xt = 1,4, * Xf./. 

By tree-completeness, there exists /? G {0,1}N such that the pointwise sum 

n<EN 

is in X. We note that x is in X(xb\n,Ab\n) for all n so that ||x|| must equal p(b). 
Moreover, for each n,xb\n and (x + xb\n)/2 are in X(xb\n,Ab\n) so that ||^|w|| —+ p(£) 
and | | x + ^ | j / 2 | | -^ p(b). 
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We can now see immediately that (X, || • ||) is not (LUR) since ||JC — xh\noo\\ ^ 1 for 
all n. (We have xh\n(mb\{n+l)) = 0, x(mb\{n+l)) = 1.) 

To see that X is not (wLUR) we need to find x* G X* such that (JC*, xh\n) —> (x*,x). 
Let U be a non-principal ultrafilter on N and define /x G /£, by 

(/i,z) = lim z(mfr|n). 

We have (ii,xb\n) — 0 for all n while (/X,JC) = 1, so that JC* = fibigm\X will do. 

3. The construction. Our aim now is to construct a closed, tree-complete sub-
lattice X of /QO which contains Co but which has no subspace isomorphic to l^. Our 
sublattice X will be the closed linear span of the indicator functions \A of sets A in a 
certain subalgebra 21 of the power set !}}N of the natural numbers. In order to exclude 
/oo as a subspace of X, we ensure that for every infinite subset N of N there is a 
subset M of N which is not in the trace {A (IN : A G 21} of 21 on N. In the lemma 
that follows, which shows how to carry out the inductive step in a construction by 
transfinite recursion, we suppose that each of a certain family of subsets Af7 of N has 
already been assigned a "forbidden" subset M1. The lemma shows how to extend a 
given subalgebra, in a way that will eventually lead to tree-completeness of X, while 
not going against any of the existing assignments of forbidden subsets. 

LEMMA 3.1. Let 7 < c be an ordinal and let 21 be a Boolean subalgebra of jN 
with #21 < c. Let ( M ^ A ^ ) ^ be a family of pairs of subsets ofN, with Mp C % 
such that Mi3 ̂  AP\Np for all A G 21, (3 < 7. For each k G N, let (Ak

t ) t e T be a family 
of elements of 21 and assume that Ak

t n Al
s = 0 if s,t are distinct elements of T and 

k, I are in N. Then there exists b G {0,1 }N such that Mp ^ BP\Np for all (3 < 7 and 
all B in the algebra generated by 

^ A7(EN J 

PROOF. For b G {0,1}N and k G N let Bk
h = L L N ^ | „ >

 l e t % b e t h e algebra 
generated by {B^ : k G N} and let 21/, be the algebra generated by 21 U 2V Note 
that any element of 2Ij> may be written in the form (A\ n J51) U . . . U (Ar n # r) with 
B\,...,Br G 25/, and A j , . . . , Ar disjoint elements of 21. 

If the assertion of the lemma is false, then by a cardinality argument, there exist 
disjoint A \,..., Ar G 21, an ordinal /? < 7 and distinct /?, c, d G {0, 1 }N such that 

A^ = /v> n [(A! n ^! ) u . . . u (Ar n £r)] 

= yv^n[(A1nc1)u.. .u(A rnc r)] 

= Np n [(A i n D i ) u . . . u (Ar n Dr )] 
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for appropriately chosen Bj G 3J&,Cy G SC,D7 G ©</. For some natural number / we 
have 

Bj G alg{£* :k<l} 

Cj G alg{S* :k<l] 

Dj G alg{fl* : k < / } , ( l ^ y ^ r ) . 

Let m be the smallest natural number such that Z?|ra, c\m, d\m are distinct and define 

E= [JAl 
k<l 

\t\<m 

Notice that E G 51 and that E H F G 31 whenever F G »* (or B c or 35rf). It follows 
from this observation that there exists A' G 31 such that MpHE = Np P\A'. 

We now have to consider Mp\E. Notice that Bl
h\E, B{\E, Bk

d\E are disjoint when­
ever i,y, k <l. For any fixed7 ^ r we have AjHBjDNp = AjilCjONp = AjHDjHNp = 
Aj HNp (recall that the Aj are disjoint). 

We claim that, for each 7, either 

(AjHMp)\E = (Aj HNp)\E or (AjHMp)\E = (f>. 

If this is not the case, there exist p G (Aj D Mp)\E and g G (Ay D (Np\Mp))\E. 
Consequently, /? G Bj\E,q G (N\Bj)\E which means that, for some / < /, one of 
p,q is in Bl

h and the other not. Similarly, for some fk < l,B{. D {p,q} 7̂  <f> and 
# j D {/?,<7} 7̂  (/>• This contradicts the disjointness of Bl

h\E,BJ
c\E,Bj\E. 

Finally, we see that Mp can be written as 

Mp=NpCi A'L>\J(Aj\E) 

for a suitable subset J of /. This contradicts our original hypothesis. 

PROPOSITION 3.2. There exists a subalgebra 31 oftyN, containing the finite subsets 
and satisfying the following two properties: 

(i) for no infinite N C N do we have $N = {N HA : A G 31}; 
(ii) whenever Ak

t(k G N, t G T) are elements of 11 such that 

Ak
tnAs = <l> (kjeN;s ^ r ) , 

there exists b G {0, 1 }N swcTz that 

( J aj|n G 31 for all £ G N. 
A2GN 

The proof of this proposition uses the preceding lemma in the same way that \E 
was used for ID in [1]. 

https://doi.org/10.4153/CMB-1989-019-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-019-7


1989] A NEW SPACE WITH NO LOCALLY UNIFORMLY ROTUND RENORMING 127 

THEOREM 3.3. There is a closed sublattice X of l^ which admits no equivalent 
(wLUR) norm but which has no subspace isomorphic to l^. 

PROOF. We construct 91 as in 3.2 and take X to be the closed linear span of 
{IA : A G %}. That X has no subspace isomorphic to l^ follows from the argument 
used in [1]. On the other hand, X contains Co so that we only need to show that X has 
the tree-completeness property. 

Let (Yt)teT be a a disjointly supported family in XH ball l^. For each t G T we 
can write yt in the form 

with A^Bf £ 91 and Ak
nB^ Ç supp yt. If we apply property (ii) of 3.2 we find 

be {0,1 }N such that 

U « Ê | „ É » and ( J * Ê | n É « f a r a l l * . 

But this means that the pointwise sum 

«GN 

is in X, since we can write it as 

oo 

£2-*(l,À-l f i i) 
k=l 

with Ak = U G N 4 | *
 a n d Bk = U G N ^ | „ 

4. Final remarks. Considerably more is known about the structure of non-
reflexive Grothendieck spaces than about that of spaces without (LUR) renormings. 
The question of whether a non-reflexive Grothendieck space necessarily has l^ as a 
quotient depends upon special set-theoretic axioms ([3]) and [5]); but the dual of such 
a space always contains Li({0, l}^1) [2]. It is not clear whether the similarity between 
the example given here and the one in [1] is coincidental or whether results analogous 
to the above may hold for spaces without (LUR) renormings. 

ADDED IN PAGE-PROOFS: G. A. Alexandrov and V. D. Babev [Comptes Rendus de 
l'Académie Bulgare des Sciences, 41 (1988), 29-32.] have shown that subsequential 
completeness of îl is enough to guarantee that X = X^ has no (wLUR)-renorming. 
Thus the example constructed in [1] fulfills the conditions of Theorem 3.3. 
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